Lecture plan for Atomic Physics (FYSC11) spring 2019.

Literature:

SP: A. Thorne, U. Litzén and Se. Johansson, Spectrophysics.
AP: C. Foot, Atomic Physics.
QM: S. McMurry, Quantum Mechanics, GO: G. Ohlén, Phenomena of the quantum world.
Course week 1. $21-25$ Jan ($14 \mathrm{~h}+2 \mathrm{~h}$)
Historical aspects up to 1913. Bohr theory of one-electron atoms. QM: 1. SP: 1. AP: 1.1-1.4.
(This is also thoroughly discussed in chapters 1 to 8 in the book by Haken and Wolf)
Quantum treatment of angular momentum. QM: $4.1-4.6$ and 6, GO: 5, 6.
Quantum theory of one-electron atoms. QM: 7.1-7.2. GO: 7 (partly)
Spin. Fine structure. QM: 8.3-8.4 (Perturbation theory 11.1-11.2, GO: 6). SP: 2.1. AP: 2. Jan 24. Problem-solving exercis.

Course week 2. 28/1-1/2 (8h+2h)
Quantum defect and Hydrogenic (Rydberg) states. The periodic table. SP: 3.1. AP: 4.1-4.2. Two-electron atoms, antisymmetric wavefunctions. QM: 13.3. SP: 2.2, 3.2. AP: 3.1-3.2 Many-electron atoms. The central field approximation. Configuration, term and level.
SP: 2.3. AP: 4.3, 5-5.2
Jan 30. Problem-solving exercis.
Course week 3. $4-8$ Feb $(8 \mathrm{~h}+2 \mathrm{~h})$
Feb 4. Problem-solving exercis.
Monday $4 / 2$. Deadline optional hand-in 1 kl 17.00
Many-electron atoms continued: $L S$-coupled wavefunctions, $j j$-coupling, intermediate coupling. SP: 2.3.3, 2.3.4, AP: 5.3.
Radiative transitions, Einstein coefficients, lifetimes, laser principles, selection rules and relative intensities in $L S$-multiplets. SP: 2.4, 7.5, 7.8, 7.10, 14. AP: 1.7, 5.4 and 7.1 and 7.2. Zeeman effect and Hyperfine structure. SP: 3.8, 3.9. AP: 5.5, $6-6.2$
Line widths and broadening effects. SP: 8, AP: 8.1, 8.2.
Course week 4. 11-15 Feb ($2 \mathrm{~h}+2 \mathrm{~h}+2 \mathrm{~h}+\mathrm{lab}$)
Feb 11 Problem-solving exercis.
Feb 11. Prof. Anne L'Huillier: Laser cooling and trapping. SP: 14, AP: 9.
Feb12. Compulsory Lab preparation. The Fabry-Perot interferometer SP 13.3
Laboratory sessions: "2-electron spectra", "Diode laser spectroscopy" and "Zeeman effect"
Course week 5 and 6.18/2-1/3: Laboratory sessions continued.
Course week 7. $4-8 \operatorname{March}(4 \mathrm{~h}+4 \mathrm{~h})$
March 4 and 7 Problem-solving exercises.
Molecular structure and spectra. SP: 5 and 6.1 and 6.2.
Course week 8. Monday 11/3 (2 h):
Monday 11/3: Deadline optional hand-in 2 kl 17.00
Monday 11/3: Prof. Joachim Schnadt: Atomic physics at synchrotrons
Course week 9. 18-22 March: (4h+4h+exam)

Summary lecture.

March 19. Problem-solving exercises.
Friday 22/3. Written exam. Monday 25/3 10-12 Lab visits Atomic Physics

