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Steady State Diffusion
In steady state diffusion the time dependence
is equal to zero and the equation for a point
source is

This yields a solution for a infinite
homogenous medium as:
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Solution to steady state
diffusion
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Steady-state solution

A simple check that this expression satisfies
the steady-state diffusion equation follows:
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Example 1: PDT dosimetry

During PDT, assume that 2.15
J/cm3 need to be absorbed to kill
the tissue. Calculate the volume
killed for a 15 minutes treatment
from an isotropic interstitial
fibre-tip emitting 160 mW light
at 635 nm. Assume the optical
properties to be (µa=1 mm-1,
µs’=100 mm-1)
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Interstitial PDT
geometry

Tissue
µa = 1 mm-1

µs’ = 100 mm-1

Optical
fibre

Treated 
volume

r1

160 mW
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Guidelines for solution of Ex 1

First, consider the solution to the steady-state
diffusion equation as valid for this problem.
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Guidelines cont’d (II)

Secondly, consider the absorbed power density
a(r) (mW/mm3) to be:

Thirdly, the absorbed energy density A(r)
depends on the treatment time T as

Insert all values in the equation:

)()( rr φµaa =

)()( rr φµ aTA ⋅=
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Guidelines cont’d (III)

This will result in an equation of the form:
1
r

e Ceff r− =µ

where C is a value calculated from all
parameters given. It is difficult to find an
expression for r from this equation, and it is
easier to solve the problem graphically or
iteratively.
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Diffusion Equation
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Source term in Diff. Eq.

ä If we consider a pencil beam incident
perpendicular on a semi-infinite volume of
tissue, a useful source term in the diffusion
equation would be en exponential decay
from the surface. Incident light

Intensity
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Source term for narrow
beam incident light

To simplify the problem, we first assume that all the
incident photons are initially scattered at a single depth of

The reduced scattering coefficient µs’ can be regarded as
an effective isotropic scattering coefficient that represents
the cumulative effect of several forward-scattering events.
Thus, zo corresponds to an isotropic source at the depth of
one reduced scattering coefficient
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Boundary Condition

ä In solving the diffusion equation for anything
else than for an infinite homogenous medium,
the boundary conditions must be met.

ä A simple condition for the boundary that
frequently provides accurate results is to
assume that the fluence rate is zero at a
boundary between the turbid and a non-
scattering medium
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Introduction of Dipole sources

ä To treat the boundary conditions, mirror sources are
introduced. They are positive and negative and
positioned above and below the slab in a configuration
giving zero fluence rate at the boundaries.

ä In reality, there is usually a refractive index mismatch
between the turbid medium (tissue) and the medium
outside (air) which gives rise to Fresnel reflection at the
boundary. A significant fraction of the radiant energy
incident upon the boundary from inside will be reflected
back. In this case it is unphysical to have zero radiance at
the boundary.
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Point source geometry

ρρ

Incident light

z = -zo

z = zo

z

φφ(ρρ,z)

z = 0
-

+
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Extrapolated Boundary
Condition

ä One model to correct for the Fresnel reflection is to use
an so called Extrapolated-Boundary condition. In this
approach the boundary, where the fluence rate is zero,
is located some distance outside the tissue.

ä This distance is a function of the effective Fresnel
reflection coefficient and z0. It varies from 0.7z0 for the
same refractive indices of the two media to 2z0 for a
tissue (n=1.4): air (n=1.0) boundary. This boundary
condition model has been shown to yield good results.
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Extrapolated Boundary

ρρ

Incident light
z = -zo-2zb

z = zo

z

φφ(ρρ,z)

z = 0
Extrapolated boundary z = -zb
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Use of Extrapolated
Boundary Condition

ä When the observation of the radiance is made at a
distance from the source that is considerably larger than
the extrapolated boundary length, the zero radiance at
the physical boundary is a valid approximation.

ä However, at shorter distances the use of an extrapolated
boundary may be necessary to obtain accurate results.

ä Note though, at too short distances the diffusion
approximation is not valid anyway.
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Fluence Rate in a Semi-
infinite Homogenous

Medium
The fluence rate in a semi-infinite medium can be written
as a sum of two contributions, one from the real source
and one from the artificial negative mirror source
introduced to meet the boundary condition. Neglecting
the extrapolated boundary effect, this gives:
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Boundary Conditions in the
Slab Geometry

If we now consider a slab geometry instead of a semi-
infinite medium, it is more complex to fulfil the boundary
condition for both surfaces. The laser illumination gives
rise to a point source located at z0 along the z-axis into the
slab of tissue. One now need to mirror the source in
multiple planes. This means that the source term in the
diffusion equation is now a sum of positive and negative
sources located above and below the slab.
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Mirror sources in the
slab geometry

z = -d

z = zo

z

z = 2d

z = -2d

z = 3d
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Diffuse Reflectance from
a Semi-infinite Medium

We had earlier that ,                                 and
                     giving the power reaching the
surface (in cylindrical co-ordinates):
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Time-dependent factors in
the diffuse reflectance
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Final slope of Diffuse
Reflectance Curve

Under the assumption that                 the final
slope for the diffuse reflectance can be calculated
to be:
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Total Diffuse Reflectance from a
Semi-infinite Homogenous

Medium
To obtain the total diffuse reflectance from a
semi-infinite homogenous medium one can
integrate the function R(,t) over the surface:
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Diffuse Reflectance from a
Homogenous Slab

In the same way as described previously following
the derivation of the fluence rate, the diffuse
reflectance from a slab illuminated with a short
laser pulse at t=0 at (ρ,z)=(0,0) can be calculated
to be:
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Observations for the Diffuse
Reflectance

ä The loss of photons from the back surface
causes the diffuse reflectance to decrease
more rapidly with time.

ä The total diffuse reflectance R(t) has a
slightly different time-dependence than
R(ρ,t)
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Total Diffuse Reflectance
from a Homogenous Slab

By integrating R(ρ,d,t) over the surface area
one gets the total diffuse reflectance:
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Diffuse Transmittance
through a Homogenous Slab

In the same way as described for the diffuse reflectance, the
diffuse transmittance through a slab of thickness d illuminated
with a short laser pulse at t=0 at (ρ,z)=(0,0) can be calculated:
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Total Diffuse
Transmittance through a

Homogenous Slab
By integrating T(ρ,d,t) over the surface area
one gets the total diffuse transmittance:
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The Time-independent
Diffusion Equation
The time-independent diffusion
approximation can be written as:

With the source in r=0, this equation has the
solution
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The Time-independent
Fluence Rate

This solution would yield the following fluence
inside a semi-infinite homogenous medium:
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