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1 Introduction

This document serves as a manual for CUDAMCML and also contains some implementation details
that hopefully will be of interest to anyone hoping to write custom Monte Carlo programs for
execution on GPU’s.

CUDAMCML is a software for Monte Carlo simulation of photon migration in multilayered
media. The code is designed to solve the same problems as the original MCML as written by
Wang and Jacques [1]. While MCML is run sequentially on a CPU, CUDAMCML is executed on
a graphics processing unit, taking advantage of the parallelism of photon migration Monte Carlo.

The concept of General Purpose computing on Graphics Processing Units (or GPGPU) for
photon migration Monte Carlo simulations was introduced to the field of Biomedical Optics in
the paper by Alerstam et al.[2]. There, a simple case of time-of-flight Monte Carlo simulations in
a semi-infinite homogenously scattering media was studied and it was found that GPGPU could
help accelerate the simulations by about three orders of magnitude. Although being of great
importance in time-domain photon migration, this work covers only a very specific (simple) problem
in biomedical optics. In order to demonstrate the use of GPUs for more general (complex) photon
migration problems, we have now implemented MCML using CUDA. Doing so, we show that GPUs
can speed up simulations even in the more complex case of multilayered structures. Since MCML
is a de facto standard in photon migration modelling, we believe this is a very good illustration
of the usefulness of GPGPU for photon migration Monte Carlo. We anticipate that GPU-based
Monte Carlo will become an important tool in the field of Biomedical Optics. To promote this
development, our code is publicly available at our webpage, and should be easy to understand and
modify by a large group of scientists and students.

This document is divided into two major parts: The first part, 2. CUDAMCML for users, is sim-
ply a users manual for anyone interested in using CUDAMCML for standard MCML-simulations.
Since MCML has its own manual [3], covering most aspects of photon migration Monte Carlo, this
manual covers only the issues where CUDAMCML differs from MCML. This first part, covering
installation and execution of CUDAMCML, will also describe some of the limitations of CUDAM-
CML, compared to traditional MCML induced by the execution on a GPU instead of a CPU. This
part will also briefly describe the performance benefit of using CUDAMCML and show some vali-
dation results.

The second part, 3 CUDAMCML for programmers, is intended for the experienced GPGPU
programmers who would like to understand the implementation details of CUDAMCML in order
to be able to modify the program to perform other kinds of simulations. The content of this part
is supported by three appendices, describing different technical aspects. As the source-code for
CUDAMCML is supplied on our webpage, the best way to understand the implementation is of
course to read the code, but this document will explain some of the GPGPU-specific implementation
details and hopefully make the code easier to understand and modify. Once again, MCML specifics
are not covered in this document as the MCML-manual covers all those issues [3].

The authors would like to clarify, that the current version of CUDAMCML is not the final
version and several improvements over the current implementation can be expected in the future.
With this said, use CUDAMCML at your own risk, and make sure to validate the results produced
by CUDAMCML for your own applications.
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2 CUDAMCML for users

2.1 What is CUDA and GPGPU?

General Purpose computing on Graphics Processing Units (GPGPU) is the concept of performing
calculations on your graphics processing unit (GPU) instead of your CPU. The major benefit of
doing so is that the GPU is much faster than the CPU when dealing with parallizable problems, i.e.
problems that can be divided into many smaller and independent parts. Photon migration Monte
Carlo is an excellent candidate for GPGPU and the user can expect several orders of magnitude
faster simulations when performed on a GPU compared to a CPU.

CUDA, on the other hand, is nothing but a software and hardware architecture that allows users
to perform GPGPU on Nvidias graphics cards.

2.2 Installation

First, to run CUDAMCML you need a computer with a modern Nvidia graphics card supporting
CUDA, and CUDA compute capability 1.1. Such cards are most of the Nvidia GeForce 8xxx series
and all better cards (including mobile versions) as well as all Tesla cards. For a specific list, see the
Nvidia website: http://www.nvidia.com. Our software executable, as well as source code, can be
found at our webpage:

www.atomic.physics.lu.se/biophotonics/

or directly at:

www.atomic.physics.lu.se/fileadmin/atomfysik/biophotonics/software/CUDAMCML.zip

2.2.1 Windows

Please unpack the zip-file in a directory of your choice. Make sure you have the latest Nvidia
drivers installed. Currently the 180.xxx drivers are recommended. Drivers are available at the
Nvidia website:

http://www.nvidia.com

Also, CUDAMCML requires a CUDA library contained in a file called cudart.dll. This dll file
is distributed via the CUDA toolkit. However, if you don’t have the CUDA toolkit installed, just
unzip the file cudart.zip, included in the CUDAMCML.zip-file and make sure the file cudart.dll

ends up in the same directory as the CUDAMCML.exe-file.

2.2.2 Linux

CUDAMCML includes a makefile which should make compiling straightforward on any Linux sys-
tem with the CUDA toolkit and SDK installed in the default directories. CUDAMCML have so
far been successfully tested on Ubuntu 8 and 9.
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2.2.3 Mac OS X

CUDAMCML is written to be platform independent and should therefore run and compile without
any problems on Mac OS X. An OS X compatible makefile is in the works for future releases.

2.3 Running CUDAMCML

Running CUDAMCML is very similar to running ordinary MCML, although a few more options is
given the user. First of, the input and output files of CUDAMCML are fully compatible with the
MCML standard with some very minor exceptions (see section 2.4).

To start CUDAMCML the user is required to supply the name of the MCML-input file as the
first argument. For example if the name of the MCML-input file is sample.mci, CUDA MCML is
started by the command:

> CUDAMCML sample.mci

CUDAMCML provides two optional arguments, -S and -A. The -S argument is related to
the seed of the initial state of the random number generator used. If no seed is supplied by the
user CUDAMCML will use the current time to seed the generator, similar to MCML. If the user
would like to provide a seed, for example the seed 12 the command to start CUDAMCML would be:

> CUDAMCML sample.mci -S12

Any seed can be used, although the program will only read a 64-bit unsigned integer. Not all
seeds are acceptable (see Appendix C and section C.1.4 in particular) and the program will quit if
the seed is not valid. The -A argument is used if the used is not interested in the internal photon
distribution (denoted the A-matrix in MCML). This will give a significant additional performance
boost due to reasons related to GPGPU programming (see section 3.7). CUDAMCML will still
give an ordinary output file, but the A-matrix and all related physical quantities will be set to zero.
The Reflectance and Transmittance quantities will still be recorded in an ordinary fashion. See
section 2.5 for more details on performance boost using the -A option. As an example, running the
same simulation as above using the -A option, the command would be:

> CUDAMCML sample.mci -S12 -A

When running CUDAMCML, the feedback on the screen will be slightly different from MCML.
The major reason for this is that simulations are much faster, and hence the time to completion
does not have to be predicted with great accuracy. The program will often, about every second,
report three numbers: The number of the current run, the number of photons terminated and the
number of active threads. An example of this output is shown here:

Run 201, Number of photons terminated 98298780, Threads active 17920

Run 202, Number of photons terminated 98787964, Threads active 17920

Run 203, Number of photons terminated 99276397, Threads active 17920

Run 204, Number of photons terminated 99765265, Threads active 17920

Run 205, Number of photons terminated 99995514, Threads active 4486

Run 206, Number of photons terminated 100000000, Threads active 0
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Simulation done!

Simulation time: 72.44 sec

Each tread simulates one photon propagating through the medium in an MCML style manner
(Hop, Drop and Spin). Whenever a photon is terminated, a new photon is launched for that
thread, assuming there are photons left to launch (so that the total number of simulated photons
exactly add up to the specified number). In this case (code optimised for a Nvidia 8800GT card)
17920 (or 16128) threads are invoked on the GPU. During the last few runs, some threads are
deactivated as there are no more photons to simulate. Each run comprise a predefined number of
photon steps (currently 1000), where each step is a finite step of the photon, either to the next
point where some weight is dropped and a new direction is determined or a step to a boundary,
where it is determined of the photon is reflected or not. The reason for dividing the simulation
into batches of 1000 steps are part to provide feedback to the user and part of technical nature, see
section 3.2 for details. For the experienced MCML user, please note that a ”run” in CUDAMCML
is not the same as a ”run” in MCML. The former is, as described above, 1000 steps for all threads,
and the latter is an entire simulation.

2.4 Limitations

This section describes some limitations of the current CUDAMCML implementation, of interest
to the ordinary user. Most of these are implementation specific and could be implemented rather
easily (and probably will be in future versions). However some limitations are due to CUDA and/or
GPGPU programming specifics and may be very hard to correct.

2.4.1 Deviations from MCML

CUDAMCML exhibits a few minor deviations from the standard MCML program:

• The binary output is currently not supported. CUDAMCML will simply ignore a request to
have the output in binary instead of ASCII.

• CUDAMCML does currently not support having the first layer made out of glass. The
program will still execute, but the specular reflection due to the first glass/tissue boundary
will be reported as diffuse reflectance.

• The maximum number of photons per simulation is currently limited to 232− 1 ≈ 4.294× 109

(see section 3.7.3). We recommend to keep the number of photons per simulation at or below
4× 109. Also, the number of photons cannot be fewer than the number of threads (currently
fixed to 17920 or 16128).

• CUDAMCML does currently not perform all the testing of the input data that MCML does
to make sure the data makes sense. Hence, it is up to the user to make sure the input data
is actually correct.

• The maximum number of layers is currently set to 100 (including the non-optional above and
below layers). For details, see section 3.3
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• As previously stated, all calculation are performed using 32-bit floating point precision (single)
as compared to the 64-bt precision (double) used by MCML. This may affect the results
slightly. See section 2.6 for more details on validation.

2.4.2 Limitations related to CUDA/GPGPU

• Currently, CUDAMCML does not optimize the number of threads automatically. This will
not have a major effect on the performance of plain CUDAMCML simulations, but if the -A

option is used, the effect will be significant.

• CUDAMCML only supports one GPU and will not make an effort to select the most appro-
priate one if several are present.

• The simulation results are not guaranteed to be deterministic, even if the same seed is used.
This is due to the fact that the order of execution of all the treads is undefined [4].

2.5 Performance

The major motivation of using CUDAMCML over the traditional CPU based implementation is
of course speed. The exact performance of CUDAMCML over traditional MCML will depend on
the problem definition and the GPU/computer used. As a rule of thumb, CUDAMCML is roughly
two orders of magnitude faster when comparing a high-end GPU to a high end CPU or comparing
low-end GPU’s and CPU’s and so on. As a second rule of thumb, using the -A option gives another
order of magnitude of speedup.

In the comparisons below, a lower mid-end (∼$100) GPU (Nvidia 9800GT) running CUDAM-
CML was used and compared to a low-end CPU system and a high-end CPU system, both running
MCML recompiled for the current system with maximum optimisation (which in itself gives a ma-
jor performance boost over the distributed executables). The low end system comprised an Intel
Pentium 4 HT 3.4 GHz CPU while the high-end system featured an Intel Core i7 2.66 GHz CPU.
In the case of the multi-core high-end system a single core was used.

To illustrate the performance boost given by CUDAMCML over traditional MCML, two baseline
simulations were defined and run

To exemplify the performance variations with respect to problem definition, two baseline simu-
lations were performed using traditional MCML:

• Simulation 1 : A simulation in a homogenous, very thick slab: n = 1.4, µa = 0.1 [cm−1],
µs = 90 [cm−1], g = 0.9 and d=100 [cm]. The detection window was fixed to 5x2 cm while
the grid resolution was varied.

• Simulation 2 : A simulation in a slab made out of two different materials: Material 1: n = 1.5,
µa = 0.1 [cm−1], µs = 90 [cm−1], g = 0.9. Material 2: n = 1.2, µa = 0.2 [cm−1], µs = 50
[cm−1], g = 0.5. Five layers of each material, alternating (Material 1, Material 2, Material 1
and so on), each layer 1 mm thick (total thickness 1 cm). The detection window was fixed to
5x1 cm while the grid resolution was varied

All simulations were performed with 107 photons. The results of simulation 1 and 2 performed on
the two different CPUs and the GPU (with and without the -A option) are presented in Table 1
and 2 respectively.
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dr, dz MCML (Core i7) MCML (P4) CUDAMCML CUDAMCML -A

0.01 cm 3736 s 7667 s (0.5x) 63.9 s (58x) 13.7 s (273x)
0.05 cm 3751 s 7614 s (0.5x) 31.9 s (117x) 13.5 s (276x)
0.1 cm 3781 s 7635 s (0.5x) 27.6 s (137x) 13.9 s (272x)

Table 1: The time in seconds to perform Simulation 1 with different grid size resolutions for MCML (on the two
different CPU’s) and CUDAMCML, with and without the -A option. The number within the parenthesis shows the
corresponding speed-up compared to traditional MCML on a single core of the Core i7 CPU.

dr, dz MCML (Core i7) MCML (P4) CUDAMCML CUDAMCML -A

0.01 cm 843 s 1724 s (0.5x) 15.2 s (55x) 6.9 s (122x)
0.05 cm 836 s 1746 s (0.5x) 13.4 s (62x) 6.7 s (124x)
0.1 cm 835 s 1751 s (0.5x) 13.6 s (61x) 6.7 s (124x)

Table 2: The time in seconds to perform Simulation 2 with different grid size resolutions for MCML (on the two
different CPU’s) and CUDAMCML, with and without the -A option. The number within the parenthesis shows the
corresponding speed-up compared to traditional MCML on a single core of the Core i7 CPU.

From the results presented in Table 1 and 1, several conclusions can be drawn regarding the
performance of CUDAMCML vs. traditional MCML. In all simulations, it is obvious that traditional
in MCML the simulation time is independent on the detection geometry, while CUDAMCML
features strong dependence on the grid resolution in particular. This result is very important
to the user, as the a coarser grid gives better performance. The reason for this is discussed in
section 3.7.3. Similarly, a smaller detection window also gives better performance (results not
shown here). Simulation 2 illustrates that CUDAMCML gives a major performance boost, even
in case of complex structures. The performance boost is, however, reduced due to the increased
divergence among the threads. Looking at the results of using the -A option we can see that this
gives a significant performance advantage. In simulation 2 the reason for the smaller speed-up is
probably due to overhead, noticeable due to the short simulation time. The explanation for the
huge performance gain when using the -A option is given in section 3.7. However, keep in mind
that when using -A CUDAMCML does not record the absorbed photon weight inside the tissue
which makes this comparison slightly unfair.

2.6 Validation

While validation for Monte Carlo code is very important, it is also a very difficult task to do vali-
dation for all cases of interest. At this stage, we choose to have a closer look at the two simulations
performed in the previous section. We would like to emphasize that the current CUDAMCML
version is development stage code. For critical applications, please perform validate your own
results!

For validation we choose the method used by Lo et al. during validation of their FPGA-
accelerated Monte Carlo model [5]. In good agreement with their results we found that the default
pseudo-random number generator (PRNG) in MCML, ran3 introduced odd biases in the internal
photon absorption probability maps. Hence the PRNG in MCML was exchanged for a fast and
high quality PRNG, the Multiply-With-Carry PRNG [7]. The MCML results with the new PRNG
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were cross validated with results using several other high quality PRNG’s, ensuring no biases were
present due to the PRNG choice. This problem was the source of the minor deviations found
during validation of the previous CUDAMCML code. Thanks to William Lo for suggesting that an
inappropriate PRNG could give rise to problems like these! Throughout this document, all MCML
results are results produced with the updated PRNG.

2.6.1 Simulation 1

Figure 1 illustrates the relative difference in the internal photon absorption probability. Looking
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Figure 1: Illustrations of the relative difference in the internal photon absorption probability when comparing two
simulations. (a) shows the relative difference between a CUDAMCML and a traditional MCML simulation. (b)
shows the relative difference between two traditional MCML simulations. The simulation performed was Simulation
1 as defined in the previous section. The colorbar illustrates the relative difference in percents [%]. If the relative
difference was greater than 10%, the color is the same as for 10 %.

at figure 1, it is evident that the relative difference in CUDAMCML vs. MCML (a) is very similar
to that of MCML vs. MCML (b), suggesting that the results produced by CUDAMCML are
statistically equivalent to those produced by traditional MCML, despite the lower (32- vs. 64-
bit) numerical precision as well as the precision used during photon detection calculations (see
section3.7). Similarly, comparing the other detected quantities, no significant deviations between
CUDAMCML vs. MCML could be found.

2.6.2 Simulation 2

Figure 2 illustrates the relative difference in the internal photon absorption probability. Looking at
figure 2, it is evident that the relative difference in CUDAMCML vs. MCML (a) is very similar to
that of MCML vs. MCML (b). Looking at the data carefully, extending the detection window to
5x2 cm, it is evident that a few detection events (”drop”’s) have occurred outside of the medium.
The reason that this can happen is once again the limited precision used in the simulations, and
the calculation of the coordinates of the detection in particular. However, the error is very small.
The fraction of the weight detected outside the medium to the total detected weight is 2.2× 10−9.
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Figure 2: Illustrations of the relative difference in the internal photon absorption probability when comparing two
simulations. (a) shows the relative difference between a CUDAMCML and a traditional MCML simulation. (b)
shows the relative difference between two traditional MCML simulations. The simulation performed was Simulation
1 as defined in the previous section. The colorbar illustrates the relative difference in percents [%]. If the relative
difference was greater than 10%, the color is the same as for 10 %.

Hence the issue can be neglected.

Similar to the results of Simulation 1, no deviations in the other detected quantities could be
found
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3 CUDAMCML for programmers

This section will give details on the implementation of CUDAMCML and discuss issues related
to the implentation of Monte Carlo simulations using GPGPU and CUDA in particular. This
section is indeed intended for programmers, and in particular programmers with some experience
of Nvidia’s CUDA technology. Some sections will assume prior knowledge of CUDA and a thorough
read of the CUDA programming manual [4] is highly recommended. This document will serve as
a help for people interested in how to write efficient GPGPU Monte Carlo code, in particular for
the specific problem of photon migration. It will also provide vital information and as a starting
point for anyone interested in writing their own CUDA Monte Carlo software. As stated in section
4 modification and use of the provided code is encouraged.

3.1 Parallel programming using CUDA

Writing code for GPGPU, using CUDA is rather simple for the experienced C programmer. CUDA
provides a minimal set of extensions to the C programming language, which together with the
CUDA toolkit provide a simple, yet powerful, architecture for GPGPU. However, programming
for parallel execution of code, as well as for an environment where the programmer is in charge of
managing memory access, imposes some rules on how to write efficient code. While these rules and
limitations are described in the CUDA programming manual [4], the implications of those rules for
a specific problem are not always clear. This section aims to highlight some of the performance-
limiting barriers one may run into when writing a GPGPU Monte Carlo simulation program.

3.1.1 CUDA computational considerations

Comparing GPU’s and CPU’s it’s evident that GPU’s can provide several orders of magnitude
better raw computing power in terms of operations per second. To unlock this potential perfor-
mance one has to keep several things in mind when designing a parallel algorithm. Here are a few
of those computational considerations listed, as they are imperative to the understanding of the
implementation:

• First of, current GPU’s excel in 32-bit floating point computations only! Hence all integer-
and double precision (64-bit) floating point calculations should be avoided whenever possible.
(In fact 64-bit floating point precision is not even supported in many GPU’s). The limited
precision of 32-bit floating point representation may impose a problem in some calculations
but in many cases these problem can be solved. To fully utilize the computational power
of the GPU, CUDA provides a set of faster GPU-specific functions for some floating point
operations. The price one has to pay for the increased performance is reduced computation
accuracy, when using numbers in certain ranges. For example when doing a simple floating
point division of two variables, a and b, this can be done either by a/b or by __fdividef(a,b).
The later is significantly faster and the two methods deliver the same result as long as b< 2126.

• Keeping in mind that some operations are more costly (take longer time) than other opera-
tions, one should try to minimize the use of slow operations whenever possible. For example,
division, either by / or __fdividef() is more costly than a simple multiplication. / takes 36
clock cycles, __fdividef() takes 20 clock cycles and a floating point multiplication takes 4
clock cycles. In many cases it is possible to exchange a division with a multiplication. For ex-
ample when determining the step length, s, in an MCML-style simulation one has to perform
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the calculation:
s = − log(ξ)/µt

where ξ is a random number between 0 and 1 and µt is the sum of the scattering- and the
absorption coefficient. Instead of storing µt in memory and performing the costly division
each step it is beneficial to store µt,r = 1/µt and instead doing the calculation:

s = − log(ξ) × µt,r

each step. This method can be applied to many calculations within the code, and the only
cost is reduced clarity of the code.

• Thread divergence is a potential performance killer and should be avoided if possible. This
means that the entire structure of the original MCML code is ill-suited for execution in a
parallel environment. An excellent pedagogical example of this is the dual functions for
taking a step in MCML, one for taking a step in tissue and one for taking a step in glass.
Since the calculations in the two functions are basically the same, a common function for the
two should be employed. All divergent functions, such as reflection calculations should be
kept as brief and fast as possible and aim to return to the main execution path with minimal
delay.

• To maximize the use of the GPU computing potential, one must make sure to efficiently
use the available resources. The number one resource to keep track of is the number of
registers the kernel uses. This can be done by analyzing the .cubin files produced by the
compiler (using the -keep-flag) or simply by having the compiler print the used resources
when compiling (using the -Xptxas -v-flag). The current implementation of CUDAMCML
(64-bit Linux) uses 25 registers and a GPU of compute capability 1.1 has 8192 registers
per multiprocessor. This means that 8192/25=327.7 threads can run simultaneously on a
multiprocessor. Since the warp size is 32 threads, we set the block-size to 320 to maximize
the use of the registers and hence have as many threads running as possible. For a compute
capability 1.3 GPU, which has 16384 registers per multiprocessor, the best block-size would
still be 320. However, in this case two blocks can run simultaneously instead of just one.
According to the CUDA programming manual, the number of threads per block should always
be 192 or more (and of course a multiple of 32). The number of blocks should be used to
provide software scalability. As a guideline, it is often advantageous to use a multiple of the
number of multiprocessors on the GPU and the number of blocks that can run simultaneously
on each multiprocessor. Also, there are other things to consider, such as memory limitations,
execution time of a single kernel call and the total number of threads. One should also keep
in mind that the exact register useage may vary with platform. For example, CUDAMCML
requires 25 registers when compiled on 64-bit Linux and requires 26 registers when compiled
on 32-bit Windows XP. Hence the block-size on Windows should be 288, and the total number
of treads 56 × 288 = 16128.

3.2 Program overview

The CUDAMCML source code was written with two objectives in mind. 1. To optimize per-
formace and 2. to be clear and easy to read for anyone interested in modifying CUDAMCML
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to do non-standard simulations. In contrast to MCML, which featured a flora of sub-functions,
CUDAMCML instead has just a few, more general sub-functions. Keeping the functions general
helps the interpretation of the code, and makes it much easier to modify, as there is little of no
overlap in calculations between functions. Also, this approach is advantageous from a divergence-
minimization point of view. This section will provide an overview of the code, and perhaps explain
some of the GPGPU/CUDA specific implementation details. More info on the structures and the
different sub-functions can be found in Appendix B and A respectively. This section is intended as
a complement to reading the actual source code to help the user/programmer better understand
the implementation details.

Simplistically, CUDAMCML is built up of three layers. The first layer is the main()-function,
which will handle all the global, i.e. non-simulation specific tasks. This includes reading all the
simulation data from the MCML-input file, an storing this as an array of SimulationStruct-
structures, initializing and seeding all the RNG’s (one per thread), allocating and freeing memory
etc. The heart of the main()-function is a loop, which runs once per defined simulation. Inside this
loop, the next layer is called, the DoOneSimulation()-function.

The DoOneSimulation() handles all the simulation-specific host tasks. The main argument of
the DoOneSimulation()-function is a pointer to a single SimulationStruct-structure which defines
the current simulation. DoOneSimulation() allocates memory structures in device memory and
copies all the data from the SimulationStruct (and the RNG-data) to the structures in device
memory (both global and constant memory space). When all data is copied, the first CUDA kernel
is called, LaunchPhoton_Global(), which initializes all photons i.e. stores their initial state in
global memory. At this stage, the device is fully set up to do the simulation.

The simulation is performed by running a loop calling the main kernel MCd(), each time. The
MCd()-function is the third and last layer of CUDAMCML, and is executed on the GPU. The
kernel, containing the main Monte Carlo transport loop (Hop-Drop-Spin) is very simple and should
be self explanatory. Briefly, MCd() copies the simulation state (photon and RNG data) from global
memory to Multiprocessor registers, performs 1000 photon steps for each tread and then copies the
simulation state back to global memory. After each MCd()-call, the loop in the DoOneSimulation()
makes a check, counting the number of active threads. When all treads are inactive i.e. they
don’t have more photons to simulate, the simulation is done and the loop is exited. After this,
all the interesting data (the detection matrices and the RNG state) is copied back from the global
memory and written to the simulation output file. All memory that was allocated earlier in the the
DoOneSimulation()-function is freed and the program returns to the main()-function.

There are multiple aspects of the solution to call the MCd()-kernel multiple times, performing a
limited number of photon steps each time. The main reason for this solution, is a Windows-feature,
called the Watchdog timer. This timer makes sure no programs may use the GPU for more than
approximately 5 seconds if Windows has the desktop extended to a monitor connected to a GPU,
as such an execution time for most applications would indicate an error. Hence, the calculations
has to be divided into smaller parts for most systems (in fact the watchdog timer sometimes also
prevents longer execution time on secondary, non-utilized GPU’s). Second, this give the program
a chance to give updates to the user regarding the progress of the simulation. There may also
be further advantages of this solution, that are currently being investigated and hopefully will be
implemented in future CUDAMCML versions.

The downside of this solution is slightly increased simulation time. Since register memory only
has the lifespan of the kernel, the entire photon state has to be copied to global memory (which
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has the lifetime of the host program) in between executions of the MCd()-kernel. This copying data
back and forth takes some time, in particular for non-coalesced memory operations. The RNG-state
can be copied in two coalesced memory operations (one for x and one for a), but unfortunately the
PhotonStruct-structure does not currently allow coalesced memory access as the structure contains
mixed field (integers and floats). This will hopefully be fixed in future CUDA versions. However,
the delay related to these memory operations is very small and can, along with the time to initiate
a kernel, be neglected.

3.3 Memory structure

CUDAMCML uses three different memory spaces in its current form. The motivation for placing
different types of information in those different memory spaces, as well as explanation of the advan-
tages and disadvantages of using the different memory spaces are provided below. A more detailed
explanation of the different structures used to group variables can be found in appendix B

3.3.1 Global device memory space

The global device memory is the only way to communicate information between the host and device
(apart from the arguments to any device kernel, usually used to pass pointers to memory structures
in global memory space). Also, as stated in section 3.2 the global device memory works as a non-
volatile memory space, where device data can be stored in between kernel (MCd()) executions. Hence
the the global memory must be set up to be able to store the entire simulation state. A summary
of all the memory allocated in global memory space is available in appendix B.5. This section
describes the MemStruct-structure, which is provided as only argument to the MCd()-function and
contains pointers to all the arrays, matrices and scalars stored in global memory.

The advantage of the global memory space is that the amount of memory available is rather
large (hundreds of Megabytes), and that the GPU-global memory bandwidth is very good, as long
as the memory access is done in an ordered, or coalesced, fashion. CUDA devices of compute
capability 1.1 or higher also provide the option of atomic memory operations on global memory
which is a crucial feature for CUDAMCML (see section 3.6 and 3.7).

3.3.2 Constant device memory space

The constant memory space, is a small (64KB part of the device memory) part of the global device
memory. While the host can both read and write to this memory space, it appears as read-only to
any device code. The major feature of this small space is that the memory access is cached using
a 8KB cache per multiprocessor. As long as the code can predict the memory access (make use of
the cache) access to the constant memory space is virtually as fast as reading from a register. Since
both the memory space and the cache, are small this memory space is suitable for all data that is
shared among all the threads. In the current CUDAMCML implementation, this space is occupied
by 4 scalars, one structure and one array of structures:

• num_photons_dc is a pointer to an unsigned int scalar stating the total number of photons to
be simulated.

• n_layers_dc is a pointer to an unsigned int scalar stating the total number of layers in the
simulation.
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• start_weight_dc is a pointer to an unsigned int scalar stating the start weight of each photon
i.e. the full photon weight, minus the specular reflection. See sections 3.7.3 and 3.7.5 for an
explanation on why this is an unsigned integer instead of an expected float.

• det_dc is a pointer to a DetStruct-structure, containing all the data on the detection grid.
See appendix B.2 for more details on this structure.

• layers_dc is a pointer to an array of LayerStruct’s. Since the constant memory does not
allow dynamic allocation, the layers_dc array is preallocated to contain MAX_LAYERS number
of layers, currently 100. More info on the LayerStruct can be found in appendix B.3.

Note that all pointers to the constant memory space uses the suffix _dc (device constant). This
naming convention is used to clarify the code, since the pointers to the constant memory space are
global pointers by default. All the above described data is copied from the host SimulationStruct.
See appendix B.1 for more info on this structure.

3.3.3 Multiprocessor registers

The multiprocessor registers are the precious resources which determine how many threads each
multiprocessor may have running simultaneously. Registers are by definition used when doing
calculations, and this aspect of register usage cannot be directly influenced. One can however
determine the amount of data actually stored in the registers. Storing data in the registers is
advantageous as no memory operation has to be performed before executing any operations on the
data. The data stored in the registers should hence be data that is used frequently, such as the
RNG data (a and x), all the the photon data (PhotonStruct) etc. The lifetime of the register
storage is however limited to the kernel execution time and to transfer data between kernel runs
the data has to be copied to global memory space.

3.4 Handling layers

The MCML-way of handling layer transitions and photon transport in clear layers, is a very diver-
gent solution, and hence not suitable for GPGPU. In CUDAMCML these calculations have been
re-written to be minimally divergent and to minimize the use of resources (such as registers).

The MCd()-kernel threats all photon propagation steps in the same way, instead of using a flora
of different sub-functions. The ”Hop-Drop-Spin” procedure in MCd() is briefly explained below:

First the step length is randomized and stored in the variable s. In case the current layer is
glass (no scattering) the step length is set to 100 cm. Next the new z-position (z + dz × s) is
checked, whether this new position causes a layer interaction. If that is the case, the steplength
to reach the boundary is calculated and stored in s. Next the ”Hop” is performed using the step
s. If there was an layer interaction, the reflection calculations are performed using the Reflect()-
function which also updates the current layer and the propagation direction of the photon. In
case the photon is transmitted through the boundary checks are made if the photon exits the slab
and the transmittance and reflectance are recorded accordingly. If the photons exit the slab, the
remaining photon weight is set to 0, indicating the termination of the photon. Also, in case of a
layer interaction, the step length, s, is set to 0 to indicate that there was a layer interaction. Next,
a check is made whether there was a layer interaction or not, i.e. of s is greater than 0. In this
case the ”Drop” and ”Spin” procedures are performed. This method has a few advantages but also
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introduces two deviations from the MCML-way of doing Monte Carlo simulations. The advantages
are:

• The code does not have to go into divergent branches when there are photon-boundary inter-
actions.

• A photon-boundary interaction does not require a special flag to indicate, to the next loop
iteration, that there was an interaction. The photon state is independent of the photon
history, which is crucial for efficient use of the methods descried in section 3.2, where the
photon simulation is divided into several kernel calls.

• Layers of clear material can be treated as any other material, as the next step will be a new
layer interaction due to the very long step length in clear media.

Deviation from the MCML standard:

• This algorithm does not store the remaining step length after a boundary interaction as MCML
does. However, as the photon propagation is independent of its history, this is valid from a
photon propagation point of view. Hence the CUDAMCML way of handling is equivalent to
the MCML way.

3.5 Massively parallel random number generation

The first problem one runs into when writing Monte Carlo code for parallel execution is the heart
of all Monte Carlo based methods, the random number generation. If one uses the same (pseudo)
random number generator RNG with the same seed, all parallel instances of the code will perform
exactly the same calculations, voiding the advantage of the multiple of processing units. A naive
solution to this problem would be to seed the RNG’s for the different instances differently. This
would appear as a solution to the ordinary user, as the different instances would provide results
that were different. However, how would one make sure that the results are truly independent? One
would have to put great effort into seeding the different instances with seeds that made sure that
the sequences of random numbers didn’t overlap during the simulations. This solution also requires
an RNG algorithm with very long period to ensure this. For GPGPU, this solution has one major
disadvantage (assuming we could somehow calculate the different seeds needed), RNG’s with long
periods often requires quite a bit of memory to store the state of the generator (see for example the
Mersenne Prime Twister [6]). For GPGPU one would like to avoid having to use the slow global
memory to store the RNG state and the number of registers per thread is limited. Hence we are
limited to rather simple RNG’s in order to avoid global memory-based solutions.

The solution used in CUDAMCML, is based on the lightweight and simple RNG by George
Marsaglia called Multiply-With-Carry (MWC) [7]. The entire state of the MWC RNG can be
stored in 64 bits (8 Bytes) or two 32-bit registers and it features a period of > 260. The main
advantage is that the different instances of the RNG can be set up to use multipliers, a number
defining the sequence of random numbers generated by the MWC algorithm. Hence the different
RNG’s will generate completely independent sequences of random numbers, with no risk of over-
lapping sequences. More details on the MWC RNG and the CUDA implementation can be found
in Appendix C.
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3.6 Simulating an exact number of photons

Simulating an exact number of photons is a trivial matter when doing sequential simulations as
MCML does. For parallel environments, this is not a trivial problem since it requires communication
between all the treads running on the GPU. The only medium provided by CUDA to perform this
task is via global memory and by synchronizing all threads by dividing the computation into several
kernel calls. While both mehods are used in CUDAMCML, only the first one is used for the task
to simulate an exact number of photons. Whenever a photon is killed by the PhotonSurvive()-
function a memory position in global memory space (num_terminated_photons, see Appendix B.5)
is atomically incremented by one. If the resulting number is larger or equal to the total number of
photons to be simulated (minus the active photons in all the other treads) no more photons should
be launched. When this condition is reached the thread indicates that it is done by flagging its
corresponding position in the thread_active-array with a 0 (as opposed to a 1, which means the
thread is active). The thread also exits the main for-loop of MCd() by increasing the loop counter ii
to NUMSTEPS_GPU. These two actions has two implications. 1. The next time the program returns
to the host, and the number of active threads are counted, the main loop in DoOneSimulation()

can tell if there are any active threads left. If there are active treads left, MCd() will be called again
as usual. At this stage, we would like to avoid starting to simulate photons with the inactive thread
again. This is ensured by having each thread check its corresponding position in the thread_active-
array. If the thread is flagged as inactive, the for-loop counter is once again set to NUM_STEPS_GPU,
making sure the thread skips the main loop.

This solution ensures that an exact number of photons are simulated. However, the solution
has two side-effects. First, it’s very inefficient for the last photons, as the warps become less and
less populated by active threads, instead of sorting the threads to ensure full warps. The second,
and perhaps more severe effect is that the possibility of deterministic simulations is lost. Since the
order of execution of the different threads (or warps) is undefined, and the solution relies on an
atomic update of a position in global memory it is not guaranteed that the same thread will get to
simulate the same number of photons, even if the sequence of random numbers for all threads are
exactly the same.

3.7 Photon detection

3.7.1 Basic problem

The problem of efficiently implement a parallel code for photon detection calculations is the major
bottleneck in CUDAMCML. The problem of generating the map of the internal photon absorption
probability distribution is unfortunately a fundamental problem in GPGPU computing. The prob-
lem can be seen as a problem of generating a weighted histogram, where each individual photon
step generates a histogram index and a weight to be added to the histogram bin corresponding to
the index position. Looking at current solutions for simple histogram generation [8, 9] it is evident
that current parallel histogram generation algorithms are limited to histograms with a very small
number of bins (≤256 bins) for superior performance. In a typical MCML simulation the Arz

matrix is sized hundeds times hundreds of elements, i.e. tens or hundreds of thousands of bins.

3.7.2 Current solution

The current solution to the photon detection problem is described in the section ?? below. It is
an improved scheme to update the dection matrices (Rd_ra, A_rz and Tt_ra) in a way that is
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safe in a massively parallel environment. It replaces the naive solution to atomically update the
detection matrices every step of each photon, which understandably yields very poor performance,
as the bandwidth for atomic memory access is very poor. Using the naive solution, the photon
detection of the A_rz matrix alone takes up to 10x the time of the rest of the simulation, i.e. all
the calculations and the detection of reflected and transmitted photons. This is the motivation for
providing the -A option when running CUDAMCML.

An alternative solution that was tested was to write the index and weight data coalesced to
global memory and then passing all this data to the CPU, to do the histogram calculation while
the GPU did the simulation calculations. This solution would work very well for a simple GPU
as a standard CPU would be able to handle the stream of data. The major problem with this
solution is scalability. Such a solution would once again be limited by the histogram generation
when using a higher end GPU (or several GPU’s). Also, the PCI-express buss bandwidth would be
a limiting factor as a moderately advanced GPU can generate data much faster than the PCI buss
can transfer this data to a host.

3.7.3 Atomic float operations

The solution of using atomics has several problems and implications itself. First, none of the
current generation Nvidia GPU’s support the necessary atomic floating point operations natively.
An option is to emulate atomic floating point add using atomic Exchange and Compare-and-Swap
functions. This is an inefficient solution, as it requires more than one atomic operation per emulated
atomic floating point operation. Instead, a solution where the weight is stored as unsigned integers
have been used. The conversion to unsigned integers from float has a drawback in itself. If the
initial weight of the photon is set to 0xFFFFFFFF (the largest number representable using a 32-bit
unsigned integer), adding weight from millions of photons, will cause some bins to overflow as the
deposited weight in the bin may exceed the weight of a single photon. Reducing the starting weight
of a photon is not a good solution to this problem, as it reduces the precision of the calculations.
The solution is to store the bins as 64-bit unsigned integers, and limiting the number of photons to
232-1. Using this solution all photons can deposit their entire initial weight (0xFFFFFFFF) in the
same bin without the risk of overflow. However, not all GPU’s support 64-bit atomic operations.
The good news is that atomic 64-bit unsigned integer add can be emulated rather efficiently. See
appendix A.2.6 for implementation details.

3.7.4 Fast memory caching

A rather straightforward way of speeding up the photon detection (weighted histogram) problem is
to cache the most used part of the detection matrix(/histogram) in a faster (but smaller) memory
space, such as the the shared memory space, in a per thread or per block fashion. The solution of
per block caching, however, requires atomic operations on shared memory, a feature currently only
available in GP’s with CUDA Compute Capability 1.3 or better. Hence, to keep compatibility with
the most common GPU’s on the market, and to leave the shared memory free for the user to use
for custom applications, this scheme is not used in CUDAMCML, albeit it’s significant speedup
potential. However, using a per-tread single bin caching scheme is possible at the cost of just one
register per thread and a slight loss in code clarity. This is potentially very beneficial as each tread
often will write to the same bin many steps in a row, especially if the grid resolution is not to fine.
The algorithm simplistically goes like this: Take a step and calculate the index and weight to be
dropped. Compare the index to the cached index. If they are equal increase the cached weight by
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the calculated weight. If they are not equal deposit the cached weight atomically into the global
memory bin at the position corresponding to the cached index and store the calculated index and
weight in the corresponding caches. Also, after each run (1000 photon steps), deposit the cached
weight into global memory so that the cache state does not have to be transferred back and forth
to the global memory in between runs.

3.7.5 Implication of the current solution

The solution to the photon weight detection problem has several very important implications:

• The performance of the current solution is not very good. The problem lies with the nature
of GPGPU, i.e. the poor performance of random memory access, and with the fact that all
threads may want to write data to the same position in memory at the same time, forcing us
to use atomic memory write functions. Currently the photon detection alone takes the same
time (or more than) the time of the actual Monte Carlo simulation calculations, as shown in
section 2.5, depending on the grid coarseness.

• Due to the single-bin caching, the photon weight detection solution is strongly dependent on
the detection grid size and resolution. As seen in section 2.5 the performance of CUDAMCML
increases with a coarser detection grid as well as a smaller detection window.

• The use of 32-bit unsigned integers for photon weight and 64-bit integers for the detection
matrices can be seen throughout the source code of CUDAMCML. One of the most striking
differences from MCML when using this approach, is the definition of WEIGHT, which in MCML
typically was set to 0.0001. In CUDAMCML, this define is renamed to WEIGHTI to indicate
the (unsigned) integer value. The value of WEIGHTI is set to 0.0001×0xFFFFFFFF=429497u

4 Licence

CUDAMCML is released as open source software and is licensed using the GNU General Pubic
Licence version 3, a free software licence. Briefly, this gives the user the freedom to use the pro-
gram and code for any purpose and to change the program to suit their needs. It also gives the
user the freedom to share the software with others and to share modified versions of the software to
others. It also states than there is no warranty for the software. Please see the file copying.txt,
distributed along with CUDAMCML for the full licence.

In general we encourage the use, and modification of this code, and hope it will help users/
programmers to utilize the power of GPGPU for their simulation needs. In order to rapidly and
efficiently communicate and spread our work on GPU Monte Carlo, we have chosen to publish our
work on our web page rather than in a scientific journal. We would, however, appreciate if you cite
our original GPGPU Monte Carlo Letter if you use this code or derivations thereof for your own
scientific work:
E. Alerstam, T. Svensson and S. Andersson-Engels, ”Parallel computing with graphics processing
units for high-speed Monte Carlo simulations of photon migration”, Journal of Biomedical Optics
Letters, 13(6) 060504 (2008).
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A CUDAMCML functions

This appendix describes the function of many of the functions used in CUDAMCML. All the device-
and global device functions are covered. The appendix intends to briefly explain the functions, and
in the case of the device functions, highlight any deviations from their MCML equivalents.

A.1 Global device functions

Global device functions, or kernels, are functions executed on the device, callable from the host code.
CUDAMCML uses two such global device functions. One to initiate all photons in a simuation,
and one to perform a predefined number of step of photon migration Monte Carlo propagation.

A.1.1 LaunchPhoton Global()

Definition: __global__ void LaunchPhoton_Global(MemStruct DeviceMem)

This function is used to initiate all photons in the simulation, prior to starting the simulation
using the MCd()-function. The function simply creates a PhotonStruct per thread (in registers)
and calls the device function LaunchPhoton() to launch each photon (done in parallel). This has
two advantages. It eliminates the need for a divergent branch in the MCd()-function, checking if
the photons have been launched or not. Also, it makes sure all photon launching is done using
the Launch_Photon() device function. Hence, if one would like to modify the way photons are
launched, this function would be the only place where one has to apply changes.

A.1.2 MCd()

Definition: __global__ void MCd(MemStruct DeviceMem)

This is the main kernel, doing all the Monte Carlo calculations. It only takes a single argument, a
MemStruct-structure containing pointers to all the data of interest in the global device memory. A
brief overview of the MCd()-function and it’s role in CUDAMCML is given in the Program Overview,
section 3.2.

An important aspect of the MCd()-function is the use of templates to implement a separate kernel
for simulations with the -A option. The if-statement involving the variables from the template will
be evaluated at compile-time and consequently generate two separate kernels. Since the kernel
ignoring the internal photon absorption probability distribution detection is simpler, the register
usage is slightly lower. Also, both version benefit from this solution in terms of pure speed.

A.2 Device functions

A.2.1 rand MWC oc() and rand MWC co()

Definition: __device__ float rand_MWC_oc(unsigned long long* x, unsigned int* a)

Definition: __device__ float rand_MWC_co(unsigned long long* x, unsigned int* a)

These two functions are used to fetch (pseudo) random numbers from the MWC random number
generator. The _oc-version provides a random number in (0,1] and the _co-version in [0,1). See
Appendix C for more details on the MWC RNG and implementation specifics.
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A.2.2 LaunchPhoton()

Definition: __device__ void LaunchPhoton(PhotonStruct* p,

unsigned long long* x,

unsigned int* a)

This function is used to set the initial state of a photon (by setting all the fields of the correspond-
ing PhotonStruct to suitable values). The function uses the constant device memory variable
start_weight_dc to set the initial weight of the photon, taking the specular reflection into ac-
count. The two variables used for the RNG are provided as arguments for future applications
where the initial photon state is in any way randomized.

A.2.3 Spin()

Definition: __device__ void Spin(PhotonStruct* p,

float g,

unsigned long long* x,

unsigned int* a)

This function calculates a new direction for the photon, based on the anisotropy-factor g, provided as
an argument. The function is very similar to the MCML equivalent with one minor, but potentially
important addition. After the spin calculation, the direction is normalized. Since 32-bit floats
has worse precision than the double precision floats used in MCML, the numerical accuracy in all
calculations are reduced. When performing several operation on a set of floats, the numerical error
will accumulate and after a while the length of a previously normalized vector will differ from unity.
This problem isn’t to bad for ordinary MCML simulations, but for future applications this might
be an issue and hence the normalization is provided.

A.2.4 Reflect()

Definition: __device__ unsigned int Reflect(PhotonStruct* p,

int new_layer,

unsigned long long* x,

unsigned int* a)

This function calculates whether the photon is reflected or not. The PhotonStruct-pointer p

contains the information on the current layer index (the field layer) and the argument new_layer
carries the index of the second layer. The function is very similar to it’s MCML equivalent but
the actual calculations have been rewritten. This, less clear, implementation of the calculations is
slightly faster and requires fewer registers. The function returns 1 if the photon is reflected and 0
if it is transmitted. Regardless, p is updated with the new photon direction and layer.

A.2.5 PhotonSurvive()

Definition: __device__ unsigned int PhotonSurvive(PhotonStruct* p,

unsigned long long* x,

unsigned int* a)
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This function performs a check whether the photon survives or not. If the photon weight is larger
than the defined value WEIGHTI, no roulette is needed and the function returns 1. On the other
hand, if the weight is equal to 0, his indicates that the photon has exited the medium, meaning
that the photon should be killed and the function hence returns 0. If the weight is smaller than
WEIGHTI a roulette is performed, in the same way as described for MCML. If the photon survives
the roulette, the function updates the photon weight accordingly and returns 1, else the function
returns 0. To do this roulette the function relies on the the defined value CHANCE.

The function will handle the update of the photon weight if the photon s

A.2.6 AtomicAddULL()

Definition: __device__ void AtomicAddULL(unsigned long long* address,

unsigned int add)

This function will emulate 64-bit unsigned integer atomic add on compute capability 1.1 devices.
It will add the 32-bit unsigned integer add to the 64 bit unsigned integer located at address

atomically.The need for this function is described in section 3.7
The function is implemented as:

if(atomicAdd((unsigned int*)address,add)+add<add)

atomicAdd(((unsigned int*)address)+1,1u);

It works, by first adding add atomically to the least significant half of the 64-bit unsigned integer
at position address. The atomicAdd function returns the value at the address before the add
operation, lets call this value old. If old+add is smaller than add we know that there was an
overflow in the addition and hence we should increment the most significant half of he 64-bit
unsigned integer by one.
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B Structures

B.1 SimulationStruct

The basic structure, containing all the data needed to define a single simulation is the SimulationStruct:

typedef struct

{

unsigned long number_of_photons;

int ignoreAdetection;

unsigned int n_layers;

unsigned int start_weight;

char outp_filename[STR_LEN];

char inp_filename[STR_LEN];

long begin,end;

char AorB;

DetStruct det;

LayerStruct* layers;

}SimulationStruct;

The program main()-function keeps an array of SimulationStructs and passes them one at a time
to DoOneSimulation(), which in turn makes sure that the defined simulation is performed. The
fields of a SimulationStruct are rather self explanatory.

• ignoreAdetection is a flag, describing whether or not ignore the detection of the internal
photon absorption distribution, as defined by the -A option when running CUDAMCML.exe

(see section 2.3). 1 means CUDAMCML will igonore the detection of the internal photon
absorption distribution, i.e. the -A flag was provided and any other value (0) means the
CUDAMCML execution will be equivalent to traditional MCML.

• start_weight describes the start weight of each photon (Total photon weight minus the
specular reflection). This field is defined as an unsigned integer, not a float as perhaps
expected. The explanation for this can be found in section 3.7.

• The field, n_layers is descibed below, together with the des

• The structure also contains one DetStruct-structure and a LayerStruct-pointer. Both these
structures are described below.

B.2 DetStruct

The DetStruct-structure is a structure gathering all the data related to the photon detection grid.
It is defined as:

typedef struct __align__(16)

{

float dr; // Detection grid resolution, r-direction [cm]

float dz; // Detection grid resolution, z-direction [cm]

int na; // Number of grid elements in angular-direction
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int nr; // Number of grid elements in r-direction

int nz; // Number of grid elements in z-direction

}DetStruct;

The DetStruct is present both in host and device memory. The fields should be self explanatory
to anyone familiar with traditional MCML. Since the data contained by the structure is common
for all thread, the DetStruct is later contained in device constant memory as det_dc (pointer).

B.3 LayerStruct

The LayerStruct is used to contain all the data to describe a single layer:

typedef struct __align__(16)

{

float z_min; // Layer z_min [cm]

float z_max; // Layer z_max [cm]

float mutr; // Reciprocal mu_total [cm]

float mua; // Absorption coefficient [1/cm]

float g; // Anisotropy factor [-]

float n; // Refractive index [-]

}LayerStruct;

The fields z_min and z_max are expressed in absolute coordinates, i.e. the absolute depth at which
the layer begins and ends. The total attenuation coefficient µt = µs + µa is stored as the reciprocal
value µt,r = 1/µt. The other field are self explanatory.

The entire simulation geometry is stored as an array of LayerStruct’s, The first element (struc-
ture) in this array contains the data for the refractive index of the above layer only! Similarly, the
last layer contains only the refractive index of the layer below, both as defined in the MCML-input
file. The other fields are undefined. The SimulationStruct-structure provides a pointer to the
array of Layestruct’s The number of elements in the array is given by the SimulationStruct-field
n_layers. Both the LayerStruct array and the number of layers are information shared by all the
threads and are therefore copied to the constant device memory space. The corresponding pointers
are layers_dc and n_layers_dc respectively. Since dynamic allocation of constant memory is
currently not allowed in CUDA, the LayerStruct-array is pre-defined as an array of MAX_LAYERS
elements, where MAX_LAYERS is defined in CUDAMCML.h, currently as 100.

B.4 PhotonStruct

The PhotonStruct-structure contains all the data describing the state of a single photon i.e. the
position, (normalized) direction, weight and current layer:

typedef struct __align__(16)

{

float x; // Global x coordinate [cm]

float y; // Global y coordinate [cm]

float z; // Global z coordinate [cm]

float dx; // (Global, normalized) x-direction

float dy; // (Global, normalized) y-direction
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float dz; // (Global, normalized) z-direction

unsigned int weight; // Photon weight

int layer; // Current layer

}PhotonStruct;

An array of PhotonStruct’s is allocated in global device memory. The array has one element per
thread The number of threads is defined in CUDAMCML.h as NUM_THREADS, (currently 17920 or
16128). When running the main Monte Carlo photon transport function MCd(), each thread will
copy its corresponding PhotonStruct to its registers since a the fields of the structure are used
frequently. In the end of the MCd()-function each tread will copy its PhotonStruct-data back to
global memory. This means that the entire state of the simulation (of all threads) is stored in
between calls of the MCd()-function. Hence, a long simulation can, with little penalty, be split up
into several calls of the MCd()-function. The advantage of this feature is described in section 3.2
Note that the photon weight is stored as an unsigned integer. This is explained in section 3.7.

B.5 MemStruct

The MemStruct-structure is used to store all the pointers to global memory. The this structure is
used as the only argument to the MCd()-function and new pointers can thus easily be added without
major changes to the code.

typedef struct

{

PhotonStruct* p;

unsigned long long* x;

unsigned int* a;

unsigned int* thread_active;

unsigned int* num_terminated_photons;

unsigned long long* Rd_ra;

unsigned long long* A_rz;

unsigned long long* Tt_ra;

}MemStruct;

• The pointer p points to the array of PhotonStruct’s. The array-lenght is the same as the
number of threads, NUM_THREADS so that each thread can store it’s photon state in global
memory.

• The pointers x and a points to arrays of RNG states and multipliers respectively. Since both
are thread specific, both arrays are of length NUM_THREADS.

• thread_active points to an array of length NUM_THREADS, keeping track of whether a specific
thread is active or not. For details, see section 3.6.

• num_terminated_photons is a pointer to a scalar unsigned int in global memory, keeping
track of the total number of terminated photons at any given time. As the above field, this
is related to the issue of simulating an exact number of photons, see section 3.6.

• The three pointers Rd_ra, A_rz and Tt_ra points to the three detection matrices, used to store
reflected, absorbed and transmitted photon weights. The names were chosen in accordance
with the MCML-standard. More information on this topic is available in section 3.7
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C Multiply-With-Carry Random Number Generator

This appendix describes details on the (pseudo) random number generator (RNG) used in CUD-
AMCML, namely the Multiply-With-Carry (MWC) RNG by George Marsaglia. Marsaglia provides
an excellent overview of MWC and related RNG’s in [7]. A short description of the problem of
massively parallel random number generation is given in section 3.5. A basic implementation of
MWC for CUDA was first provided by Steven Gratton [10] and parts of the code presented here is
based on his work, in particular the idea of how to seed all the generators.

The file mwc1.ps of [11] gives an early description of the MWC RNG and explains why it’s
particularly suitable for computer implementation.

C.1 MWC basics

The WMC pseudo random number generator is very simple. Mathematically it can be written as:

xn+1 = (xn × a + c)mod b,

where x is the sequence of random numbers, a is a multiplier, c is the carry from the previous
modulus (mod) operation and b is the base for the mod operation. The sequence of random
numbers is determined by the multiplier used, hence if one uses different multipliers for each thread
in a parallel environment (such as CUDA) each thread will have access to a unique and independent
sequence.

C.1.1 Base

On modern binary computers it is of course advantageous to use a base b = 2p, where p is a positive
integer. In this case the mod operation can be executed by a simple bitwise-AND operation. In
practical applications one should use a base such as b = 216 or b = 232. Thinking about CUDA
applications one might for example try b = 224 for faster integer multiplications, although the
period of the generator will be shortened (see the next section).

C.1.2 Multiplier

Some restrictions apply to the multiplier a for the theory behind MWC to apply. A good multiplier
should be one where a × b − 1 is a safeprime, that is both a × b − 1 and (a × b − 2)/2 are prime
(a number q is a safeprime when both q and (q − 1)/2 are prime). The choice of the multiplier
and base determines the period of the generator; Using a suitable multiplier, the period of a MWC
RNG is a× b − 2 [7]. For a base b = 232 and multipliers a just slightly smaller than 232 the period
is close to 264.

C.1.3 Finding suitable multipliers

Using a base b = 232 and limiting ourself to multipliers a < 232, one must be able to test numbers
q < 264 for primality to be able to select suitable multipliers. To create a list of suitable multipliers
(remember, we need as many multipliers as we have threads in CUDA), one can use a package such
as the GNU MP Bignum Library[12] designed to handle arbitrary precision arithmetics. It also
has a fast implementation of the probabilistic MillerRabin primality test for large numbers. Using
GMP, writing a program to find suitable multipliers is very easy.

26



While the Miller-Rabin primality test is probabilistic certain measures can be taken to make
sure the primes found are true primes. [13] (http://www.trnicely.net/misc/mpzspsp.html) provides
an analysis of the pseudo-prime problem of the Miller-Rabin algorithm, and the GNU GMP imple-
mentation in particular. It is shown that for numbers representable by a 64-bit unsigned integer
(< 264) the problem of pseudoprimes can be completely eliminated using a Miller-Rabin test of
order 13 or greater, that is, use the bases 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 and 41.

The Miller-Rabin test was used to find 150000 good multipliers a < 232 (base b = 232). The
results were stored in a file, safeprimes_base32.txt in ASCII format, provided along with the
CUDAMCML program. Each line of this file contains three numbers; first the multiplier a followed
by the two primes, a× b− 1 and (a× b− 2)/2. The reason for this format, is compatibility with the
list (and WMC implementation) by Steven Gratton [10]. Gratton also provides a list of suitable
multipliers, but this list only contains 16028 entries which are exactly the 16028 first entries in
safeprimes_base32.txt. While this makes the list file unnecessarily large, this will allow anyone
to verify the multipliers and their corresponding primes.

The program for finding the multipliers is provided below (Assuming the GNU GMP libraries
are properly installed):

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include "gmp.h"

int main()

{

FILE* file;

mpz_t n1,n2,a;

unsigned long long i=0;

mpz_init(n1);

mpz_init(n2);

mpz_init(a);

mpz_set_str(a,"4294967118",0);

file = fopen("safeprimes_base32.txt","w");

while(i<150000)

{

mpz_mul_2exp(n2,a,32);

mpz_sub_ui(n2,n2,1lu);

if(isprime(n2))

{

mpz_sub_ui(n1,n2,1lu);

mpz_fdiv_q_2exp(n1,n1,1lu);

if(isprime(n1))

{

//We have found our safeprime, calculate a and print to file

mpz_out_str (file, 10, a);
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fprintf(file," ");

mpz_out_str (file, 10, n2);

fprintf(file," ");

mpz_out_str (file, 10, n1);

fprintf(file,"\n");

printf("%d\n",i++);

}

}

mpz_sub_ui(a,a,1lu);

}

fclose(file);

exit (0);

}

int isprime(mpz_t n)

{

int i;

int class;

int alist[]= {2,3,5,7,11,13,17,19,23,29,31,37,41};

for(i=0; i<13; i++)

{

class = mpz_probab_prime_p (n, alist[i]);

if(class==0) return 0;

}

return 1;

}

C.1.4 Seeding the generator

While giving each thread on the GPU a unique multiplier to make sure all the threads experience
unique sequences of pseudo random numbers, one still has to seed all those parallel generators
properly, to enure that two consecutive simulations will not give the exact same results. Seeding
the MWC RNG is done by setting initial values for x and c. For the MWC theory to be valid, some
restrictions apply to the seeds: any pair [x, c] is valid as long as 0 ≤ c < a, 0 ≤ x < b, excluding
[0, 0] and [b−1, a−1]. Since manually seeding thousands of generators with valid seeds is a tedious
task, a trick is applied to generate proper seeds. As described in section 2.3, the CUDAMCML
user is given the option to provide a 64-bit seed, via the -S option, or a 32-bit seed from the C
clock()-function (providing the current time) is used. This initial seed is used to seed a single
MWC RNG (using the first multiplier in the list provided in safeprimes_base32.txt). This the
sequence of random numbers from this RNG is in turn used to provide valid seeds for all the other
MWC generators.
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C.2 Implementation

C.2.1 Setting up the generators

Setting up the generators is started by declaring two arrays of the same length as the number of
threads used in CUDA. The first one, x, is ana array of 64-bit unsigned integers and the second
one, a, an array of 32-bit unsigned integers. Each of the 64-bit unsigned integers of x is set
up so that the upper 32-bit house the 32-bit unsigned integer representing the carry, c, and the
lower 32-bits represent the random number, x. The a-array is filled with multipliers from the
safeprimes_base32.txtfile and the x-array is filled with suitable c’s and x’s for each corresponding
multiplier (as described in C.1.4).

Prior to each simulation performed in CUDAMCML, the a and x arrays are copied to global
device memory. Each kernel tread then copies the corresponding multiplier and RNG state (x)
each kernel execution. At the end of each kernel execution, the RNG state is copied back to global
memory to store the current state of the RNG. When all kernel executions are done, the x-array
is copied back to host memory to store the state of all the RNG’s. Hence, if CUDAMCML was
run with an input file defining multiple simulations of the exact same problem, the results of the
individual simulations would not be exactly the same.

C.2.2 CUDA MWC implementation

Below is the current CUDA implementation of MWC. For good performance the two pointers, a
and x, are assumed to point at multiprocessor registers containing the multiplier and RNG state
respectively.

__device__ float rand_MWC_co(unsigned long long* x,unsigned int* a)

{

//Generate a random number [0,1)

x=(*x&0xffffffffull)*(*a)+(*x>>32);

return __fdividef(__uint2float_rz((unsigned int)(*x)),(float)0x100000000);

}//end __device__ rand_MWC_co

This function requires some explanation. First, we remember that the actual random number,
x is housed in the lower 32 bits of the 64-bit variable x as a 32-bit unsigned integer. Hence one
can access x, either by typecasting (unsigned integer)*x (the * is there as x is a pointer) or
by doing a bitwise AND operation with a 64-bit number containing 32 zeros followed by 32 ones:
*x&0xffffffffull. Likewise, c is stored in the upper 32 bits and can be accessed by *x>>32.
Hence, performing the operation x=(*x&0xffffffffull)*(*a)+(*x>>32); updates both x and c.
Now, the sought after random number, x is an unsigned integer uniformly distributed in [0, 232−1].
To convert this to a floating point number (32-bit) [0, 1) we perform a floating point division:
x/232. While this is mathematically correct, it is not numerically correct. This, since the typecast
(float)((unsigned int)*x) would yield 232 when x = 232 − 1 due to the limited numerical
accuracy of the 32 bit floating point standard for large exponents. Hence the built in typecasting
function __uint2float_rz() is used to ensure towards-zero rounding, i.e. x = 232 − 1 will be
rounded down to the largest number < 232 that the 32 bit floating point standard allows.
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The reason for this entire manoeuver is the possibility to have access to random numbers, both
[0, 1) and (0, 1] (the latter, simply by taking 1-the former). The (0, 1] interval is of particular interest
when using operations taking the log of a random number, to avoid undefined answers.
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D How to compile

Linux

A simple makefile is provided which should work, provided that the CUDA Toolkit and CUDA
SDK is installed correctly. This has only been tested on Ubuntu 9.04 (64-bit) with CUDA 2.1.

Mac OS X

No support yet. A makefile will hopefully be provided in the future.

Windows

I recommend Microsoft Visual Studio 2005 Express (2008 should work as well but is untested)
available for free on http://www.microsoft.com/express/download/. For VS2005 I recommend the
CUDA VS Wizard (http://cudavswizard.sourceforge.net/) to create a VS project. If you create your
own project, remember that CUDAMCML requires the 1.1 Architecture for the atomics-functions.
Hence, pass -arch=sm_11 to the compiler.
Alternatively the Visual Studio Command Prompt can be used. Go to the CUDAMCML folder
and type (as a single line):
nvcc -Xptxas -v ./src/CUDAMCMLmain.cu -I "C:\Documents and Settings\All Users\Appl

ication Data\NVIDIA Corporation\NVIDIA CUDA SDK\common\inc" -arch=sm_11 -O3 -o CUD

AMCML.exe Once again, this assumes that the CUDA Toolkit and SDK has been successfully in-
stalled in the default locations.
CUDAMCML has been successfully compiled and used on Windows XP (32-bit) with CUDA 1.1-2.2
using Visual Studio 2005 Express.
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E Release Notes

July 6, 2009

Bugfixes:

• Output filenames are now allowed to start with numbers, for example: 1.mco, Thanks to
William Lo for finding this bug.

• The call to the sincos()-function in the Reflect()-function is now correct. Thanks to Terence
Leung for finding this bug.

• Hopefully fixed a bug where the simulation would stall when using many (> 2× 109) photon
packets. Thanks to Can Xu for noting this bug.

New CUDAMCML features:

• Better performance thanks to the per-tread single bin caching.

• Changed the -A implementation to a more elegant template-solution.

• Added a makefile for Linux.

New document features:

• Solved the minor deviation in the validation.

• Updated performance comparison with optimised MCML on both a low-end (P4) CPU and
a high-end (Core i7) CPU.

• Added the Release Notes Appendix

• Added a brief description on how to compile CUDAMCML on differnt platforms

April 3, 2009

Original release.
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