FAFF20: Multispectral Imaging

From astronomy to microscopy

Multispectral = many spectral bands

Spectral bands from the electromagnetic

spectrum

Aim

The aim of the course is to **provide theoretical and practical knowledge** on the **generation** of and **information extraction** from multi-spectral **images in different wavelength regions** and on **different spatial scales**.

Basic knowledge on **image processing** should be attained.

Basic arrangement for Multispectral imaging

Introductory lectures

Spectroscopic techniques, Stefan Kröll

Molecules, Joakim Bood

Spectroscopic equipment, Sune Svanberg

Data acquisition, Sune Svanberg

Multispectral Imaging

Multivariate analysis

Multispectral Imaging

What is optical spectroscopy? What is it good for? Let us start with our imbedded multispectral imager – the human color vision.

Guess the object...

With colors we can retrieve information regarding chemical composition and classify our surroundings.

Detection of objects and contrast against natural background

Detection of objects and contrast against natural background

Detection of objects and contrast against natural background

Lab Digital Visible & infrared imaging

Detection of objects and contrast against natural background

The RGB color space – a 3D case for trichromatic vision

- Pixels of rowan tree mapped in RGB space
- Assign objects to the clusters
- Intensity is the distance to origo
- Color is the direction in color space, variance is minimal for similar objects

Primary colors and color spaces

- Fox 2D- 4 primary colorsHuman 3D- 8 primary colorsBird 4D- 16 primary colorsInsect 6D- 64 primary colorsShrimp 16D- 65536 primary colors!
- Much more nuances!
- Colors needs names before they can be perceived by humans.

Animal vision/biological imaging Eric Warrant

Royal gala

Red delicious

Granny Schmith

• Orange

Golden delicious

· Lemon

• Lime

Consider seven fruits

In reflectance

In fluorescence, Ex. 375 nm

Wavelength / [nm]

Light intensity measurements in a matrix 7 fruits, 3 pseudo replications, 3648 spectral bands.

Singular Value Decomposition (principle component analysis)

- A matrix factorization method
- A coordinate transform
- Align the first dimension along the largest covariance and so forth
- Projects data on optimal set of base functions
- Random noise are sorted in last components
- Base functions depends on data, e.g. may change if new data is included
- PCA is based on SVD but centers the data, data cannot be reconstructed after PCA.

S, the Eigenvalues

• Eigenvalues from random noise decreases explonentially

Multispectral = many spectral bands

Image analysis *Kalle Åström*

Multispectral Imaging

Multivariate analysis of microscopic imaging Computer exercise/Lab

- Microscopy of red blood cells
- Find which red blood cells that are infected with the malaria parasite

Medical Imaging

Multispectral Imaging

Light in tissue

Scattering of light

No scattering

Scattering due to "small particles"

Scattering "particles" in tissue: cell nuclei, cell membrane, mitochondria

Light photons change direction!

From clear liquid to diffusive media

Cuvette filled with water. HeNe laser beam coming in from left.

Increase scattering by adding droplets of milk-like material.

Spectra from Protoporfyrin IX

Ratiometric imaging fluorescent contrast agents

Real-time multispectral imaging

Dichroic mirrors

https://www.rp-photonics.com/dichroic_mirrors.html

Fluorescence guided cervical tumor resection

View of localized region in peritoneal cavity of an ovarian cancer patient as seen with the naked eye (left) or with the aid of a tumor-targeted fluorescence dye (right).
Fluorescence guided resection

Brain tumor

Reflectance/Transmittance imaging

Magnetic Resonance Imaging Freddy Ståhlberg

Magnetic Resonance Imaging (MRI) National 7-Tesla facility

Spectral bands from the electromagnetic

spectrum

High Energy Imaging

Multispectral X-ray

Positron emission (PET)

- Use radionuclides that emit positron (e.g. ¹⁸F)
- Positron annihilation
 - produces two 511 keV gamma rays
 - gamma rays emitted in 180° opposite directions
- Principle: detect *coincident* gamma rays
- Time window ~2-20 ns (typical 12 ns)
- No detector collimation required – higher sensitivity

PET

PIXE

Particle Induced X-ray Emission or Proton Induced X-ray EmissionC

X-ray production cross-section is high for protons with a few MeV (~3 MeV).

By directing a proton beam towards a sample very sensitive elemental analysis can be performed.

PIXE Jan Pallon

PIXE

Hair follicle from Tycho Brahe

Microscopy

Microscopy

Functional fluorescent substances

Filled & unfilled symbols correspond to the substance frequency shift

Scanning confocal fluorescence microscope

A confocal configuration improves resolution and in particular longitudinal resolution

It also decreases interference or background from scattered light

A disadvantage is that the object needs to be scanned

http://blogs.brandeis.edu/marderlab/a-practical-guide-for-fluorescent-confocal-microscopy/

Bovine pulmonary artery epithelial cells, with functional markers fluorescing in different wavelengths

Bovine pulmonary artery epithelial cells

Fluorescence microscopy Dyes sensitive to

Ca ion concentration and to pH value

Scanning probe microscopy Anders Mikkelsen

Scanning tunneling microscope (STM)

Invented in 1982 by Binnig and Rohrer, for which they shared the 1986 Nobel Prize in Physics

https://en.wikipedia.org/wiki/Scanning_tunneling_microscope

Astronomical imaging Dainis Dravins

Supernova 1604

Multispectral (X-ray, optical and infrared) representation of the last supernova and the Milky Way in 1604

Coronal temperature diagnostics derived from multilayer observations with the multispectral solar telescope array

Images from the 1216 Å Ritchey-Chrétien telescope Paul Boerner Dissertation thesis Stanford University July 2004

Satellite imaging

Earthrise

Polar and Geostationary Orbits

ISS: 350-410 km Sun-synchroneous: 600-800 km GPS: 20.200 km Geostationary: 39.900 km Moon: 384.000 km

Google Earth

f 🕐 Timefekt Lund: x 🛛 Z Hygesonse - K x 🔞 Doodle: 2015 (x 🔞 Z LUNDS UNWER x 🔞 CheckMyTrip x 🕼 Booking 💿 x 🕼 Donline Check+ X 🖉 LUNDS UNWER x 🚷 CheckMyTrip x 🕼 Booking 💿 x

☆ Ξ

← → C ff 🏻 https://www.google.se/maps/@55.7008333,13.1959221,5184m/data=!3m1!1e3

🗒 Apps 🖉 Proceedo Login 📋 Imported From IE 💷 Atomic Physics | We... 🚦 Google 🧟 Google Maps 👸 Google Översätt 🚾 LU - E-rekrytering 💿 GUIDE TO ACADEML..

Hyperion imaging spectrometer

Figure 1-1- A view of the Earth with EO-1 above showing instrument swath widths

OLI Landsat 8

The Fluorescence Explorer mission will provide global maps of vegetation fluorescence, which can be converted into an indicator of photosynthetic activity to improve our understanding of how much carbon is stored in plants and their role in

AND REPORTED

the carbon and water cycles

https://phys.org/news/2015-11-satellite-health.html#jCp

Active remote sensing

Active remote sensing

Long-path absorption measurements

Light detection and ranging (LIDAR) a.k.a. laser radar

Active remote sensing

Combustion imaging Joakim Bood
Combustion processes are very complex

The chemistry is extremely complicated...

then there is also interaction between the chemistry and the turbulent flow

Combustion diagnostics: Non-contact temperature measurements

Combustion diagnostics: Laser-induced fluorescence CH OH Excitation (nm) ~387 ~283 Detection (nm) ~310 ~430 CH OH 78 60 50 Height (mm) Height (mm) 20 20 10 20 -10 10 -10 0 10 20 -20 -20 Distance from center (mm) Distance from center (mm)

Simultaneous PLIF imaging of CH and CH₂O

Li et al. Comb. and Flame, 2010

Multispectral imaging – from astronomy to microscopy

