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The recommended problems below will help you understand the theory, train your problem-

solving skills as well as giving you a very important working knowledge of atomic physics.  

I strongly suggest that you do all (most of) these problems in the given order, since this will 

also prepare you for the hand-ins. 

The problems marked as hand-in are problems that you may solve and hand in to obtain 

credits on the first and second examination opportunity. The exam will consist of 6 problems 

giving at most 4 points each, i.e. a maximum of 24. A passing grade will require 12 and “väl 

godkänd” 19 points. Solving perfectly all optional hand-in problems will give you 3 + 3 = 6 

points on the exam. The deadline for the first hand-in is Monday 4/2 and for the second 

Monday 11/3. 

Rules and regulations regarding the hand-ins 

 The hand-ins must be solved in groups of 2 students (registered for the first time on 

the course), no more and no less! 

 The problems give different points and you may do any number of them but at least 

two in each hand-in. 

 Each problem must be solved on a separate paper. 

 The complete hand-in should be stapled together, with a cover page containing your 

names, e-mail and personal identification number. 

 In addition to a correct solution it is required that you write carefully in a clear and 

pedagogical manner. Every numerical answer must have the appropriate unit. 

 All diagrams must have descriptive captions and axis labels with the appropriate 

units. 

 It is allowed and encouraged that you discuss the physics in general with other 

students, but it is absolutely essential that each group individually solves the actual 

problems and writes the report. Note that, if you do them, the hand-ins are part of the 

exam and all official rules conserning plagiarism, with possible severe repercussions, 

applies. 

 

1. The wavenumber for a transition between two levels is 50000 cm-1. 

a) What is the wavenumber in the unit 1 m-1? 

b) What is the wavelength of the transition? 

c) What is the energy difference in the unit 1 eV? 

d) How many cm-1 is 1 eV? 

2. Two spectral lines both have an estimated wavelength uncerainty of 0.05 Å. What is the 

frequency and its uncertainty if the measured wavelength is 100 and 1000 Å, 

respectively? What is the relative uncertainty /f f  at the two wavelengths? 

  



3. Hand-in 1 (0.5 point) 

 The figure shows a 4-level system starting from the ground 

state. Assume the following wavelengths, in Å, and their 

estimated uncertainties (one standard deviation).  

λ1 = 3000 ± 0.8, λ2 = 1800 ± 0.2 and λ3 = 4500 ± 5. Derive 

the energy, in cm-1, of all levels and the wavelength λ4. 

Include an estimated one standard deviation uncertainty in 

all the quantities. Assume all uncertainties to be 

independent. (If needed, you may download from the home 

page a short document (in Swedish) describing the 

handling and propagation of uncertainties in experimental 

data.) 

4. Bohr’s theory of the H-atom. 

a) Show that the energy of transitions between two shells with principal quantum 

numbers n and n’= n + 1 is proportional to n-3, for large values of n. 

b) Calculate the frequency of the n = 50 – 51 transition. 

c) What is the size of an H-atom in the n = 50 shell? 

d) Treat the electron as a classical particle and calculate the rotation frequency of the 

electron in the n = 50 shell. Compare your result with 4b 

5. What is the shortest and longest wavelength, respectively, that can be emitted from an H-

atom? 

6. The table gives observed wavelength (in standard air with a refractive index of about 

1.0003) from H and He+, respectively. Explain the data, particularly which transitions 

these wavelengths correspond to?  

Wavelength / nm 

H 656.28 486.13 434.05 410.17  

He+ 656.01 541.16 485.93 454.16 433.87 

7. Commutator relations.  

a) Prove one of these important commutator relations

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,x y z y z x z x yL L i L L L i L L L i L       
       

b) Prove that 
2ˆ ˆ, 0,  iL L  

  i = x, y or z. 

8. Hand-in 1 (0.5 point) 

1, 1 1,0 ,

A particle is described by the wavefunction :

1
( , ) ( 3 ),  where ( , ) is an orthonormal spherical harmonics.

10
mY Y Y     

 

a) ˆIs this an eigenfunction of ? If so, what is the eigenvalue?zL  

b) 2̂Is this an eigenfunction of ? If so, what is the eigenvalue?L  

c) ˆWhat is the expectation value of  in the state described by ?zL   

d) What is the expectation value of 2L̂  in the state described by ? 

  



9. Use a table or the net to look up all spherical harmonics with ℓ = 0, 1 and 2 and motivate, 

by direct calculation, the general result that for each ℓ-value the sum over all possible m-

values is spherically symmetric, i.e. show that: 

2

,

2 1
( , ) ,

4
m

m

Y  





  independent of the angles. 

 This statement, called Unsöld's theorem, shows that filled orbitals are spherically 

symmetric, and hence contributes nothing to the angular momentum couplings. 

10. Hand-in 1 (0.5 point) 

 For two electrons we have  ℓ1 = 1 and ℓ2 = 1. Make a table of all possible z-components 

that arise when the angular momentum (vectors) ℓ1 and ℓ2 are added. Show that this 

exactly corresponds to the components you would get from a quantized momentum  

L = ℓ1 + ℓ2 with the quantum number L = 0, 1 and 2. 

 

11. Let 2
,

ˆ ˆ be an eigenfunction of  and  for 1,2
i i im i zY i   in a two electron atom. The total 

orbital angular momentum is given by 1 2
ˆ ˆL̂   and the eigenfunction of

2ˆ ˆ and ,zL L

1 2, , ,L M , can be expressed as linear combinations of those for the individual angular 

momenta, , ,
i imY using the Clebsch-Gordan coefficients, C. 

1 2 1 1 2 1

1

, , , 1 1 2 1 , ,( , , , : , )L M m M m

m

C m M m L M Y Y      

a) Make a table of all possible combinations of 
1
,m

2
m and the resulting  

 
1 2LM m m   when we couple a p and a d-electron. How many combinations give 

 LM = 1 and how many give LM = 2? Which L-values are involved in these states? 

b) Write down the complete wavefunctions corresponding to these L-values and  

LM  = 1  and 2. For clarity, use  the notation 1 2 L, , ,L M . A Clebsch-Gordan 

calculator may be found at: http://personal.ph.surrey.ac.uk/~phs3ps/cgjava.html to 

obtain the analytical values of the Clebsch-Gordan coefficients. For clarity, use  the 

notation , ,
i imY m  to denote the spherical harmonics, do not write them out 

explicitly 

 c) Chose one of the LM = 1 functions and show that it is normalized and orthogonal to 

 all the others with LM = 1. Use the relation 
, ', ' , ' , 'm m m mY Y     

12. The radial wavefunctions, Rnℓ(r), for a one-electron system with nuclear charge Z and  

n = 3 are:  
2

3/ 2 / 3
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3 / 2 / 3
31

3 / 2 2 / 3
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2 2( )
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
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  

 

where the distance, r, from the nucleus is measured in the unit 1 a0. 

a) Use e.g. MatLab and plot the functions for Z = 1 and Z = 2. What happens as Z 

increases? 

b) Which orbital (nℓ) is 0 at the nucleus, r = 0? 

c)  Verify that the number of nodes, i.e. zero-crossings, for r > 0 is given by n - l – 1.   

http://personal.ph.surrey.ac.uk/~phs3ps/cgjava.html


13. Hand-in 1 (0.5 point) 

 The probability of finding the electron at a distance r, independent of the angles θ and φ, 

is given by the radial distribution function ( )nD r .  

22( ) ( )n nD r r R r
 

a) Plot ( )nD r  for Z = 2 for the 3s, 3p and 3d orbitals above.  

b) Use the figures to estimate the distance corresponding to the maximum probability 

for 3d and compare with the value calculated using the Bohr formalism.  

 

14. In quantum mechanics the mean radius (in units of 1 a0) is calculated as the expectation 

value: 

 
* 2

0

n n nr R r R r dr



       

Use e.g. MatLab to numerically calculate < r > for the 3 orbitals above for Z = 2 and 

compare with the general quantum mechanical expression. 21
[3 ( 1)]

2
nr n

Z
      

15. Hand-in 1 (0.5 point) 

In Hydrogen the complete wavefunction for the ground state is: 

 0/
1 3

0

1
( , , )

r a
s r e

a
 




    

Calculate analytically the probability of finding the electron inside a sphere of radius rb 

centered on the nucleus. Assume rb << a0 so that you may make convenient 

approximations. 

 

16. Calculate the internal magnetic field experienced by a 2s and a 2p-electron in He+ and in 

F8+. Use the general quantum mechanical result for a one-electron system 

 3

3
0

1 1
( ) , 0

( 1/ 2)( 1)
n

Z

nar
    

 
 

17. Motivate the selection rule j = 0, 1, not 0  0. Assume that the atom makes a 

 transition from a level with j = 3/2 to a lower level j' through the emission of a photon 

 with spin s  = 1. Calculate all possible z-components that arise when the angular 

 momenta (vectors) j and sare subtracted. Show that this exactly corresponds to the 

 components from a quantized momentum (vector) j’ with the quantum number j =1/2, 

 3/2 or 5/2.  

 

18. Calculate the wavelengths for 1s 2S1/2 – 2p 2P1/2,3/2 in He II including the 3 relativistic 

corrections (mass, spin-orbit and Darwin). Compare with the accurate experimental 

results available in the data base at NIST (National Institute of Standards and Tech-

nology) in Washington, USA https://physics.nist.gov/PhysRefData/Elements/index.html  

(Click on the element symbol in the periodic table, then choose ”Lines” among the database 

icons that appear.) Which effect is responsible for the small, but significant, remaining 

discrepancy in the absolute energies? 

 

  

https://physics.nist.gov/PhysRefData/Elements/index.html


19. The configuration 1s23d in Li I has the (excitation) energy 31283.10 cm-1. The ionization 

energy in Li is 43487.19 cm-1.  

a) What is the term value of the ground state 1s22s? 

b) What is the binding energy of 1s22s? 

c) What is the term value of 1s23d? 

d) What is the term value of 3d in H? 

20. In He I there is a state with the energy 166271 cm-1 and the term value 32034 cm-1. What 

is the ionization energy? 

21. Use the database at NIST (National Institute of Standards and Technology) in 

Washington, USA https://physics.nist.gov/PhysRefData/Elements/index.html to obtain 

level energies in F VII and the ionization limit for F+6 

 (Click on the element symbol in the periodic table, then choose ”Levels” among the database 

icons that appear. For the ionization limit, scroll down the NIST table!) 

a) Calculate the term value of 1s23s. 

b) Calculate the quantum defect for the 4s, 4p, 4d and 4f states. Use the center-of-

gravity energies (2j+1 weighted mean) for the 4p 2P and 4d 2D terms. 

 

22. In He-like Carbon, C V, the excitation energy of 1s3s 1S is 2851180 cm-1 and for 1s4s 1S 

it is 2988246 cm-1. Estimate the ionization energy. Compare with the value in the NIST 

database! 

 

23. Hand-in 1 (0.5 point) 

 The spectrum shows the series  

3p - nd, n = 4 - 7 in Na as well 

as the resonance line 3s - 3p, 

with the experimental vacuum 

wavelengths in Å. 

  

a) Why does the 3p - 5s 

 transition (6160 Å) occur 

 at a much longer 

 wavelength than 3p-5d? 

 b) Calculate the quantum 

 defect for the nd 2D  

 n = 4-7 terms. Estimate, as 

 accurately as possible, the wavelength for 3p - 8d. The ionization  energy in Na  I is 

 41449.6 cm-1. Neglect all finestructure. 

24. Ionization energy in He-like C, C V.  

An accurate experimental value is (3162408 ± 20) cm-1. 

a) Estimate the ionization energy by completely neglecting the repulsion between the 

electrons. 

b) Now refine your value by making a semi-classical estimate of the repulsion energy 

by simply assuming that the two electrons always are on the opposite side of the 

nucleus from each other, i.e. separated by the diameter of the first Bohr orbital. 

c) Use first order perturbation theory to calculate the ionization energy in C+4. Note 

that the repulsion energy, to first order, is a linear function of Z given by

rep 1.25E R Z   for 1s2 in a two electron system, see e.g. AP eq. 3.24. 

http://physics.nist.gov/PhysRefData/Elements/index.html


25. Hand-in 2 (1 point) 

 Derive the electrostatic repulsion potential felt by an outer electron in Li, e.g. a 4f 

electron being attracted to the nucleus and repelled by the two inner 1s electrons. This 

calculation gives an indication of how a self-consistent-field solution in the central field 

approximation is obtained. 

a) Write down the total charge density of the two 1s electrons, i.e.  
2

100( ) 2 ( , , )r e r        

 Here we rather crudely assume that both electrons move independently and feel the 

full charge, +3e, from the nucleus. 

b) To obtain the corresponding electrostatic potential you have to solve Poisson's 

equation: 

 
2

2

0 02

1
( ) ( ) / ( ( )) ( ) / .

d
V r r rV r r

r dr
          

 Where we have used the radial part of 2 in polar coordinates, as we did when 

solving the one-electron problem. Derive V(r) by direct integration. This requires 

some partial integrations and a bit of work!  

 Hint: Introduce new help variables to get nice looking equations without any 

explicit fundamental constants and do not forget the integration constants. Use 

reasonable boundary conditions (at r = 0 and r = ∞) to determine the integration 

constants. 

c) Plot the final repulsion energy ( ) ( )U r e V r   , the Coulomb energy from the 

nucleus, and the sum in the same plot frame. Use eV as the energy unit and a0 as the 

unit for distance. 

 

26. The table gives the energies in the 3s3p configuration in Mg I and in Mg-like Fe XV. 

a) Give the LSJ-designations for the levels. 

b) Is the Landé interval rule valid in the two atoms? 

c) A line at 417.26 Å in the solar spectrum has been 

identified as emanating from the 3s3p configuration in 

Fe XV. Which transition is it? Would you expect an 

analogous line in Mg I? 

 

27. Prove that the number of fine structure levels in an LS-term is Min(2 1,2 1).S L   

28. sp – pp’ transitions. 

a) What LSJ-levels do these configurations give rise to? 

b) Which transitions are (LS) allowed between these configurations? 

 

29 p2 – pd transitions. 

a) What LSJ-levels do these configurations give rise to? 

b) Which transitions are allowed between these configurations in LS-coupling? 

  



30. The table below gives J-values and energies for the levels in the 3p4s and 3p7s configu-

rations of Si I. 

    E / cm-1 

J 3p4s 3p7s 

0 39683.163 61538.05 

1 39760.285 61595.43 

2 39955.053 61823.55 

1 40991.884 61881.60 

a) Give the LSJ-designation for the levels. 

b) Why do the two configurations have nearly the same ∆E (2 - 0) but quite different 

∆E (1 - 1)? 

c) Give the jj-designation for the levels in 3p7s. 

31. Hand-in 2 (0.5 point) 

 A 125 cm3 gas cell contains lithium vapor with a pressure of 135 Pa at a temperature of 

970 K. The total radiated power from the 2s-2p transition at 760.8 nm is 34.7 mW.  

a) What is the ratio of the population in 2s and 2p, i.e. 
2p

2s

N

N
. 

 b) Calculate the lifetime of the 2p term in Li I. 

 

32. We are investigating hydrogen in a plasma with the temperature 4500 ºC. Calculate the 

probability per atom and second for stimulated emission from 2p to 1s if the lifetime of 

2p is 1.6 ns 

33. Hand-in 2 (0.5 point) 

 The table gives the theoretical relative intensities in LS-coupling for all possible 3F – 3F 

transitions.  

a) Use this data to verify the sum rules for  

LS-intensities in a multiplet. 

b) Use the sum rules to derive the relative intensities 

in a 2D – 2F multiplet.  

Hint: denote the intensities a, b and c and solve a 

system of equations. 

34. Hand-in 2 (0.5 point) 

 Line widths in wavelength units. 

a) The 3p level in Na I has a lifetime of about 16 ns. Calculate the natural line width 

(in Å) of the 3s – 3p transition at 5890 Å.  

b) If the Na-atoms are created in an oven with a temperature of 700 K what is the 

Doppler width of the 5890 Å transition. 

c) Assume the spectrum is analyzed in the first spectral order using a 5 cm wide 

grating with 2400 lines/mm. What is the smallest possible observed line width? (In 

practice it will most likely be much larger!)  

d) In the spectrum of He there is a line at 2578 Å that corresponds to the transition  

2s2p 3P – 2p3p 3D, i.e. a transition between two doubly excited configurations. The 

excitation of both electrons in He requires so much energy that these configurations 

are situated above the first ionization limit. This also means that the states have a 

probability to decay through the emission of an electron, so called autoionization. If 



possible, this process is very probable and leads to very short lifetimes. Assume that 

both terms have a lifetime of 1 ps and calculate the natural line width of the 2578 Å 

transition. 

35. Zeeman effect in Na. 

a) Calculate the 
Jg -value for the levels 2S1/2, 

2P1/2, 
2P3/2. 

b) Derive the splitting of the 2S1/2 -  
2P3/2 line in a weak magnetic field when viewed 

perpendicular to the field. 

c) What is the polarization of the different components?  

d) What is the spacing, in units of 1 cm-1 and in 1 eV, between the closest-lying 

components if the magnetic field is 1 T? 

e) Look up the wavelengths of the two fine structure lines 3s – 3p in Na I. What 

magnetic field would produce a Zeeman splitting, as in 32d), equal to the energy 

difference between these lines?  

 

36. Zeeman vs. Paschen-Back effect. 

With a weak magnetic field we first couple L and S to J and use JLSJM  coupled 

wavefunctions to calculate the magnetic contribution as a perturbation. If, on the other 

hand, the external magnetic field becomes sufficiently strong (e.g. in a white dwarf star) 

the order should be reversed, i.e. we first evaluate the magnetic interaction using the 

wavefunctions L SLM SM  (which is much easier) and then take the spin-orbit 

interaction <βL·S> = β·<Lz·Sz> into account. Make a clear and easily understandable 

table of the energies, and draw an energy diagram showing the splittings of a 3P term in 

the 2 cases: 
1

Zeeman: ,
10

BB  and Paschen-Back: 10 .BB   (Strictly, the factor 

should be larger than 10 for the perfect extreme cases, but then it will be difficult to draw 

nice diagrams!) 

 

37. The figure below shows the hyperfine structure in the transition 6s 2S1/2 - 8p 2P3/2 in 115In 

(I = 9/2). The measurement is made using a narrow-band tunable laser and a collimated 

atomic beam; hence the Doppler width is greatly reduced. The 6 components shown 

have the following frequencies 31, 112, 210, 8450, 8515 and 8596 MHz. Draw a 

schematic figure of the energy levels with the appropriate quantum numbers and show 

the allowed transitions. Determine the hyperfine constants, in MHz, for the two fine 

structure levels 

 

 

  



38. A high-resolution scan over the resonance line 4s 2S1/2 - 4p 2P1/2 in K I is shown in the 

figure below, where the relative positions and intensities of the observed hyperfine 

components are given. Naturally-occurring potassium is a mixture of the isotopes 39K 

and 41K in the ratio 14:1. Identify the lines in the figure and deduce the nuclear spin of 

the two isotopes. 

 

39. The observed spectrum of  F6+ (F VII) contains, among many other lines, the following 

wavelengths with their estimated relative intensities corresponding to transitions among 

levels with n 3. The intensities are not calibrated, and can hence only be compared 

between closely spaced lines. Use this data to derive the energies (in cm-1) for all 

observed levels with n  3 in F VII.  

λvac / Å   Rel. Int. 

112.941 806 

112.977 410 

127.653 950 

127.799 1600 

134.707 430 

134.882 870 

883.11 1700 

890.79 800 

3247.48 130 

3277.90 60 

Hint: Start by drawing a term diagram with roughly the correct relative energies of all 

the possible terms 1s2nl with n  3 and indicate their fine structure levels. Then solve the 

“puzzle”, making good use of the relative intensities. The better your relative energies 

are the easier it will be to solve the problem. Check as much as you can that the solution 

is consistent. 

  



40. The Ca spectrum below, recorded using a Fourier Transform Spectrometer (FTS), shows 

the resolved 3d4s 3D - 3d4p 3D multiplet. The wavenumbers and their relative intensities 

are given in the table. Identify all the lines and determine the fine structure constants in 

the two triplets (both are positive). 

 

σ / cm-1 Rel. Int. 

17841.88 106 

17847.70 101 

17856.50 353 

17869.12 414 

17883.32 250 

17887.54 1074 

17909.46 160 

 

 

 

41. A classical model for the vibration of the Oxygen- and Carbon-atom in a CO molecule 

can be obtained as follows. The potential energy of the binding force between the atoms, 

as a function of their separation, r, is quite accurately given by the Morse potential: 

 0 02 ( ) ( )
( ) ( 2 ).

a r r a r r
U r D e e

     
    

 Here D = 11.36 eV is the binding energy. The equilibrium distance between the atoms is  

r0 = 1.15 Å and the empirical constant a = 2.29 Å-1 for CO. 

a) Draw a diagram of the Morse potential between e.g. 0.8  5 Å.r   

b) Assume that the kinetic energy due to the vibration is 9.36 eV. What is then the 

smallest and largest possible separation between the atoms in a classical picture? 

c) To simplify the calculations we approximate the Morse potential by a harmonic 

oscillator. This approximation should be quite accurate if we are close to the 

minimum in the real potential (r ≈ r0). Calculate a number of values for the Morse 

potential very close to r0 and fit a second order polynomial to the data. Draw the 

polynomial in the same figure as in a). In what range would you say that the 

approximation is reasonable? 

d) Use the general expression  

dU
F

dr
 

  
to show that the ”spring constant” [k in the expression for the force in a harmonic 

oscillator
0( )F k r r    ] is twice the coefficient for the second order term in the 

polynomial approximation.  

e) Use your value of k together with the reduced mass μ of the CO-molecule to 

calculate the vibrational frequency from the harmonic oscillator model: 

 0 .
k




  

Compare with the experimental result ω0 = 3.97·1014 rad/s => f  =  6.32·1013  Hz. 

 Hint: make sure that you get the unit of k correct for this calculation.  

 

  



42. The rotation fine structure in the n = 0 - n = 1 vibration transition in HCl is shown in the 

figure. The wavenumbers for the 4 central lines are given in the table. Chlorine has two 

isotopes 35Cl (76%) and 37Cl (24%), with mass 34.968852 and 36.965903 u, 

respectively. Use the data in the table to: 

a) Determine the equilibrium 

distance between the H and Cl 

atoms in the two isotopes.  

b) Determine the resonance 

frequency for the vibration of 

the atoms in the two isotopes.  

σ / cm-1 Rel. Int. 

2862.8404 216 

2864.9120 511 

2903.9340 231 

2906.0693 532 

 

 

 

43. Hand-in 2 (0.5 point) 

 The wavenumbers for the first 3 members of the R and P branch in the 0 - 2 vibrational 

transition in CO are given in the Table below. 

 

Wavenumbers of the R and P branch in CO 

 

σ / cm-1 

4248.13 

4252.13 

4256.06 

4263.65 

4267.37 

4271.01 

  

a) Determine the energy difference between the vibrational levels 0 and 2 and the 

rotation constant, B, (in the unit 1 cm-1) assuming that the moment of inertia is the 

same in both states.  

b) Repeat the analysis but this time take into account that the rotation constants,  

B'' (ν = 0) and B' (ν = 2) are not exactly equal. 

  



 

44.  The lines in the table below are identified as transitions to a quartet P from two higher-

lying quartets (S and D) in F V. 4P - 4S have wavelengths around 2250 Å while the 4P - 
4D transitions occur around 2700 Å. All possible transitions in the latter multiplet, shown 

in the figure, could not be resolved in the experiment. Identify all the lines! 

 

λvac / Å Rel. Int. 

2241.14 320 

2253.75 610 

2277.73 820 

2703.10 710 

2707.97 990 

2713.68 200 

2721.87 270 

2737.72 240 

2756.99 50 

 

Hint: All the terms involved have a positive fine-structure constant. Furthermore, in pure 

LS-coupling the relative intensities in a 4P - 4D multiplet is given in the table below. 

Even if a real term system is not perfectly described in LS-coupling these relative 

intensities is often of great qualitative help.  

   4D   

  7/2 5/2 3/2 1/2 

 5/2 120 27 3  
4P 3/2  63 32 5 

 1/2   25 25 

 

  



45. In the Zeeman laboratory exercise you study the multiplet 5s5p 3P - 5s6s 3S in Cd I in a 

magnetic field. Here we investigate another multiplet in Cd, with no external field. The 

figure below shows the observed 5s5p 3P - 5s5d 3D multiplet, where the inset gives a 

magnified picture of the three rightmost lines. 

 
 Table 1 list the wavelengths and relative intensities obtained in the spectrum and Table 2 

gives the experimental energies for the 3P levels. 

 

       Table 1. 

λvac / nm Relative Intensity 

340.4629 2183 

346.7193 3363 

346.8648 2566 

361.1538 4824 

361.3903 2615 

361.5484 389 

 

 

  Table 2 

5s5p3PJ E / cm-1 

0 30113.99 

1 30656.09 

2 31826.95 

 

 

 

 

a) Identify the six transitions. 

b) Derive the energies of the 3D levels, as accurately as possible from the given data. 

c) Check the Landé interval rule in both 3P and 3D. Is this consistent with LS-

coupling? If not, what could be the reason(s)? 

d) Check the sum rules using the experimental intensities. Is this consistent with LS-

coupling? If not, what could be the reason(s)? 

e) The barely noticeable peak at 350 nm is the so-called forbidden transition 5s5p 3P1 - 

5s5d 1D2. How does such a line arise? 

 

  



46. Neutral indium has atomic number 49 and the ground configuration [Kr]4d10 5s2 5p (or 

just 5p), and nuclear spin I = 9/2. Figure 1 shows the spectral lines between 6p 2P1/2 and 

7s 2S1/2 and Figure 2 those between 6p 2P3/2 and 7s 2S1/2. Both Figures shows (parially) 

resolved hyperfine structure, and are produced in a hollow cathode and measured with 

the Lund FTS. The table gives all observed wavenumbers. 

 

 

 Figure 1. 6p 2P1/2 - 7s 2S1/2       Figure 2. 6p 2P3/2 - 7s 2S1/2  

 

Wavenumber / cm-1 Intensity / a.u. 

4484.810 585 

4484.852 214 

4484.900 390 

4484.942 583 

4186.562 417 

4186.575 622 

4186.585 647 

4186.635 1173 

4186.652 629 

4186.665 248 

 

a) Identify the lines and draw an energy diagram of the hfs structure in all levels  

involved.   

b) Derive the hyperfine constants for the levels (all are positive).  

 


