
Advanced Courses Offered by the Atomic Physics Division.

All are open for Science faculty students and given in English

Fall 1	Fall 2	Spring 1	Spring 2	
> Engineering				
Optics and Optical Design FAFF01, FYST43, 7.5 hp	Lasers FAFN01, FYSN14, 7.5 hp	Optoelectronics Optoelectronics FFFN15 / FYST48 7.5 hp	Advanced Optics and Lasers FAFN10, FYST32 7.5 hp	
Atomic & molecular spectroscopy FAF080, FYST14, 7.5 hp	Medical Optics Will be given in 2019 for the first time, 7.5 hp	<u>Laser-based combustion</u> <u>diagnostics</u> FBR024, FYST28, 7.5 hp	Quantum Information (odd years) FAFN40, FYST30 7.5 hp	
	1	Light-Matter Interaction FAFN05, FYST21, 7.5 hp	Quantum Optics (even years) (no course code yet) 7.5 hp	

You may take individual courses or any combination up to a Masters program in Photonics. This education program is coupled to world-leading research activities in optics, lasers and their applications, performed at the <u>Lund Laser Centre</u> (LLC). LLC is the largest unit in the Nordic countries within the field of lasers, optics and spectroscopy, and a large scale facility of the European Union, part of <u>Laserlab-Europe</u>. It has recently been selected as one of the 20 best research environments in Sweden, receiving a prestigious Linné grant.

• One electron atoms, H-like.

Bohr model

Exact quantum mechanical results

• Hydrogenic-, Rydberg-atoms. Quantum defect Accurate semi-empirical results

• Many electron atoms.

Approximations CFA + LS/jj- coupling

Magnetic interactions

Spin-orbit, Hyperfine and External mag. fields

Transitions

Selection rules and line widths

Molecules

The Bohr atom.

Results in a quantized one-electron (H-like) system

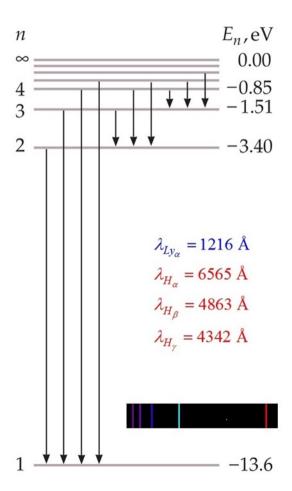
$$r_n = a_0 \frac{n^2}{Z}, \quad a_0 = 0,53 \text{ Å}.$$

$$v_n = \alpha \cdot c \cdot \frac{Z}{n}, \quad \alpha \approx \frac{1}{137}.$$

$$E_n = -R \cdot \frac{Z^2}{n^2}, \quad R = 109677 \text{cm}^{-1} \text{ for H}$$

$$\frac{1}{\lambda} = E_{n_1} - E_{n_2} = R \cdot Z^2 (\frac{1}{n_1^2} - \frac{1}{n_2^2}). \quad \text{Rydberg formula}$$

$$1 \text{ eV} = 8066 \text{ cm}^{-1}$$


Spectral series:

Lyman, Balmer, Paschen, Brackett, Pfund, Humphreyes.....

Mass dependence of the Rydberg constant for an element with nuclear mass M and massnumber A:

$$R_M = \frac{1}{1 + \frac{m}{M}} R_{\infty} = \frac{1}{1 + \frac{1}{1836 \cdot A}} R_{\infty}, \quad R_{\infty} = 109737 \text{ cm}^{-1}$$

Spectral series in H

Quantum mechanical treatment of one-electron systems

 $H\Psi = E\Psi$

$$H = -\frac{\hbar^2}{2\mu} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) - \frac{Ze^2}{4\pi\varepsilon_0 r}$$

The Hamilton operator in spherical polar coordinates:

$$\hat{H} = -\frac{\hbar^2}{2\mu} \left[\frac{1}{r} \frac{\partial^2}{\partial r^2} r + \frac{1}{r^2 \sin(\theta)} \left(\frac{\partial}{\partial \theta} \sin(\theta) \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2(\theta)} \frac{\partial^2}{\partial \phi^2} \right] - \frac{Ze^2}{4\pi\varepsilon_0 r}$$

 L^2 in spherical polar coordinates

$$\hat{L}^2 = -\hbar^2 \left[\frac{1}{\sin(\theta)} \left(\frac{\partial}{\partial \theta} \sin(\theta) \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2(\theta)} \frac{\partial^2}{\partial \phi^2} \right]$$

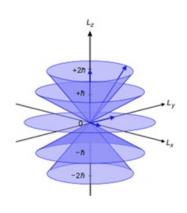
thus

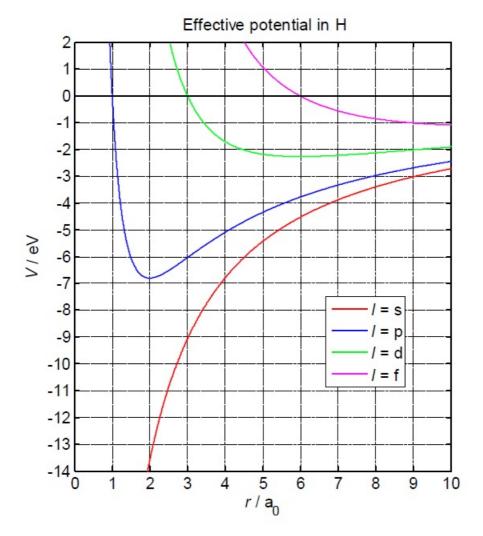
$$\hat{H} = -\frac{\hbar^2}{2\mu} \frac{1}{r} \frac{\partial^2}{\partial r^2} r + \frac{\hat{L}^2}{2\mu r^2} - \frac{Ze^2}{4\pi\varepsilon_0 r}$$

Spherically symmetric

Used again in the central-field approximation

Since L^2 only contains angular coordinates $[H, L^2] = 0$, i.e. H and L^2 have common eigenfunctions that we may write as:

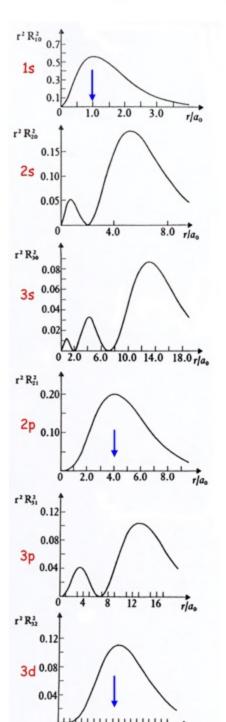

$$\Psi_{n,\ell,m_{\ell}}(r,\theta,\varphi) = R_{n,\ell}(r) \cdot Y_{\ell,m_{\ell}}(\theta,\varphi)$$


where

$$L^{2}Y_{\ell,m_{\ell}}(\theta,\varphi) = \hbar^{2}\ell(\ell+1) \cdot Y_{\ell,m_{\ell}}(\theta,\varphi)$$

$$L_{2}Y_{\ell,m_{\ell}}(\theta,\varphi) = \hbar m_{\ell} \cdot Y_{\ell,m_{\ell}}(\theta,\varphi)$$

and ℓ is an integer, $\ell = 0, 1, 2... n-1$ and $m_{\ell} = -\ell, -\ell+1, ..., \ell-1, \ell$



$$V_{\text{eff}} = \frac{\hbar^2 \ell \cdot (\ell+1)}{2\mu \cdot r^2} - \frac{Ze^2}{4\pi \varepsilon_0 \cdot r}$$

Note, only s-electrons can move close or into the nucleus.

- **⇒** Large quantum defect for s-electrons
- **⇒** Large hyperfine structure for unpaired s-electrons
- ⇒ Only s-electrons experience the charge distribution <u>inside</u> the nucleus giving rise to the so-called volume shift.

Radial probability distribution in H.

12 16

For 1s, 2p, 3d,... i.e. $n, \ell = n - 1$ the most probable distance r_n is given by:

is given by:

$$r_n = a_0 \frac{n^2}{7}$$

i.e. the same result as in the Bohr model!

Number of minima: $N = n - \ell - 1$

• One electron atoms, H-like.

Bohr model

Exact quantum mechanical results

• Hydrogenic-, Rydberg-atoms. Quantum defect

Accurate semi-empirical results

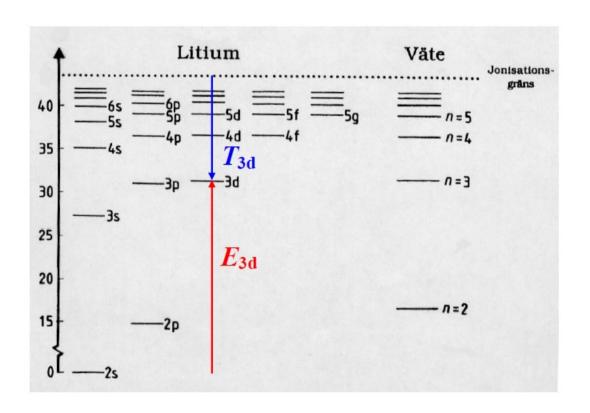
• Many electron atoms.

Approximations CFA + LS/jj- coupling

• Magnetic interactions

Spin-orbit, Hyperfine and

External mag. fields


• Transitions

Selection rules and line widths

• Molecules

Term values in Li and H.

$$T = E_{jon} - E$$

	$T_{\rm exp}$ / cm ⁻¹	$T_{\rm H} = R_{\rm Li}/9 / {\rm cm}^{-1}$	% fel
$1s^23s$	16281	12192	33
$1s^23p$	12562	_"_	3
$1s^23d$	12204	_"'_	0.1

Quantum defect in F VII

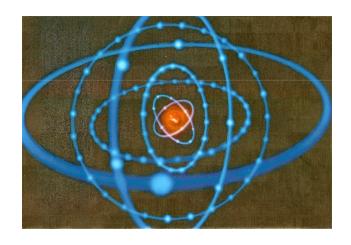
$$T = R \cdot \frac{Z^2}{n^2}$$
$$T = R \cdot \frac{\zeta^2}{n^2}$$

H-like

$$=R\cdot\frac{\zeta^2}{n^2}$$

Completely screened nucleus

$$\zeta = Z - N_{\text{iner}}$$


$$T = R \cdot \frac{\zeta^2}{(n-\delta)^2}$$

 δ = quantum defect

- experimentally determined
- strongly dependent of ℓ
- approximately independent of n.

Quantum defect in F VII (Li-like)

n	S	p	d	f	g
2	0.1026	0.02660			
3	0.0992	0.02693	0.001295		
4	0.0983	0.02711	0.001794	0.000262	
5	0.0979	0.02718	0.002030	0.000466	0.000181
6	0.0976	0.02782	0.002016	0.000529	0.000266
7	0.0975		0.002147	0.000455	-
8			0.002665	0.000528	0.000304
9				0.000530	

• One electron atoms, H-like.

Bohr model

Exact quantum mechanical results

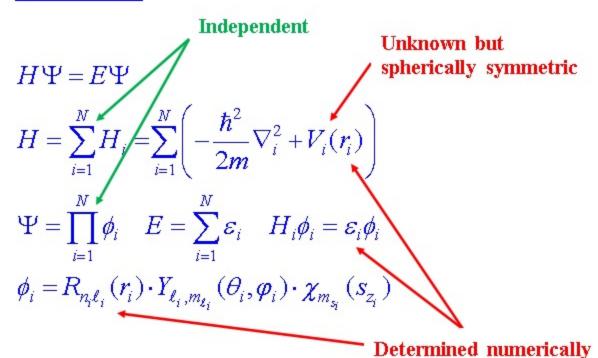
• Hydrogenic-, Rydberg-atoms. Quantum defect Accurate semi-empirical results

• Many electron atoms.

Approximations CFA + LS/jj- coupling

• Magnetic interactions

Spin-orbit, Hyperfine and External mag. fields


• Transitions

Selection rules and line widths

• Molecules

The central field approximation

- Each electron moves <u>independently</u> of the other in the electrostatic field from the nucleus and the other N - 1 electrons.
- This field is assumed to be <u>spherically</u> <u>symmetric</u>.

Configurations in Ne I

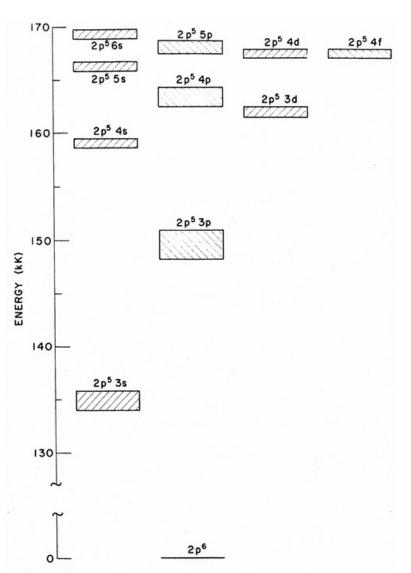


Fig. 4-1. Block diagram of the lowest configurations of Ne I. The levels of each configuration lie within the limited energy range shown by the corresponding shaded block. (There is one level in 2p⁶, and there are four levels in each p⁵s configuration, ten levels in each p⁵p, and twelve levels in each p⁵d or p⁵f configuration.)

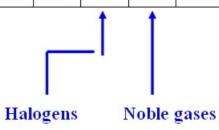
The physical background to the periodic table of the elements.

1. Number of quantum states N:

the quantum defect

- a) Given n and ℓ . Orbital / subshell $N = 2 \cdot (2\ell + 1)$ due to m_s and m_{ℓ} .
- b) Given n. Shell $N = 2n^2$

2. Highest binding energy for low
$$n$$
 and ℓ due to


 $N = \sum_{\ell=0}^{n-1} 2(2\ell+1) = \sum_{\ell=0}^{n-1} 4\ell + \sum_{\ell=0}^{n-1} 2 = 4\frac{n(n-1)}{2} + 2n = 2n^2$

3. Pauli principle, i.e. antisymmetric wavefunctions, demanding that no 2 electrons have all 4 quantum numbers identical

Periodic System (first four rows)

H 1s																	He 1s ²	Filled K-shell
Li 2s	Be 2s ²											В 2р	C 2p ²	N 2p ³	O 2p ⁴	F 2p ⁵	Ne 2p ⁶	Filled L-shell
Na 3s	$\frac{\text{Mg}}{3\text{s}^2}$											Al 3p	Si 3p ²	P 3p ³	S 3p ⁴	Cl 3p ⁵	Ar 3p ⁶	8 outer electrons $3s^23p^6$
K 4s	Ca 4s ²	Sc 3d	Ti 3d ²	$\frac{V}{3d^3}$	Cr 3d ⁴	Mn 3d ⁵	Fe 3d ⁶	Co 3d ⁷	Ni 3d ⁸	Cu 3d ⁹	Zn 3d ¹⁰	Ga 4p	Ge 4p ²	As 4p ³	Se 4p ⁴	Br 4p ⁵	Xe 4p ⁶	8 outer electrons 4s ² 4p ⁶
1	1									1	1							

Alkali metals Alkaline earths

Configurations in Ne I

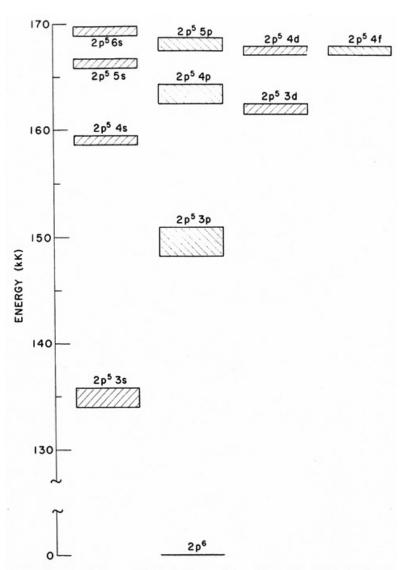
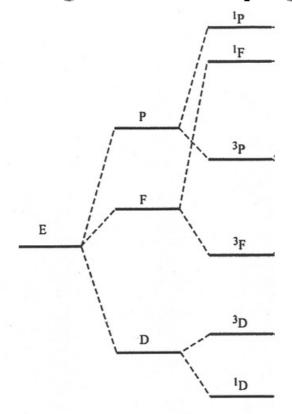


Fig. 4-1. Block diagram of the lowest configurations of Ne I. The levels of each configuration lie within the limited energy range shown by the corresponding shaded block. (There is one level in 2p⁶, and there are four levels in each p⁵s configuration, ten levels in each p⁵p, and twelve levels in each p⁵d or p⁵f configuration.)

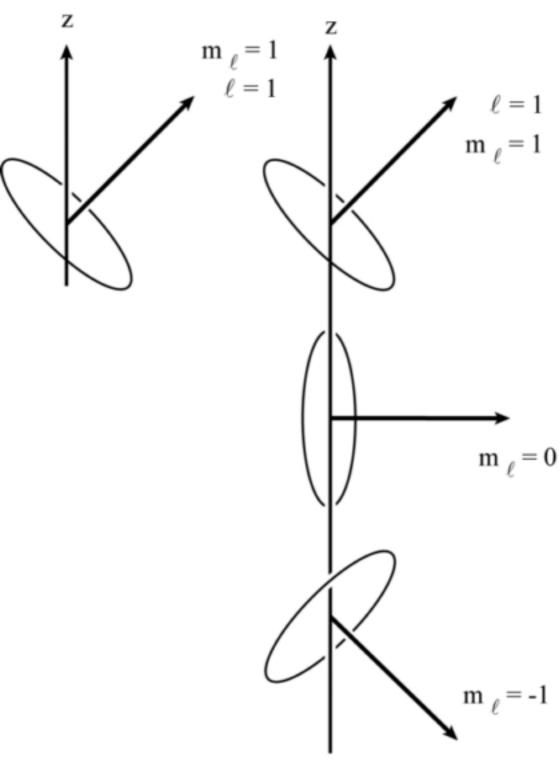

LS-coupling

$$\hat{L} = \sum_{i=1}^{N} \hat{\ell}_i, \quad \hat{S} = \sum_{i=1}^{N} \hat{s}_i$$
(Note NOT $\hat{J} = \hat{L} + \hat{S}!!$)

Assume no spin-dependent terms in \hat{H} i.e. no spin-orbit interaction, then $[\hat{H},\hat{J}] = [\hat{H},\hat{S}] = [\hat{H},\hat{L}] = 0$. Thus all energy levels must be characterized by the quantum numbers, L, S and J.

Notation: $^{2S+1}L_{J}$

pd-configuration LS-coupling


Configuration Term
Central field Repulsion

Numerical example for 2p3d in O V, energies in cm-1

E(2p3d) = 701810 Kinetic and central part of electrostatic

 $\Delta E (P - D) = 8980$ Direct part of electrostatic repulsion

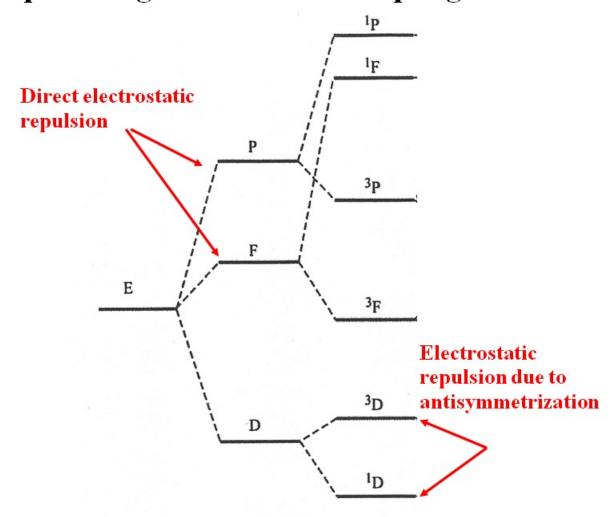
 ΔE (¹F - ³F) = 15074 Exchange part of electrostatic repulsion

Direct electrostatic interaction in a pp'config. pp' contains a S, P and D term ($\ell_1 = \ell_2 = 1 \Rightarrow L = 0, 1, 2$)

L D; L = 2:
$$M_L$$
 | M_ℓ |

P; L = 1:

$$\begin{aligned} &|1\ 1\ 1\ 1> = \frac{1}{\sqrt{2}}|1\ 1> |1\ 0> -\frac{1}{\sqrt{2}}|1\ 0> |1\ 1> \\ &|1\ 1\ 1\ 0> = \frac{1}{\sqrt{2}}|1\ 1> |1\ -1> -\frac{1}{\sqrt{2}}|1\ -1> |1\ 1> +0\cdot |1\ 0> \\ &|1\ 1\ 1\ -1> = \frac{1}{\sqrt{2}}|1\ 0> |1\ -1> -\frac{1}{\sqrt{2}}|1\ -1> |1\ 0> \end{aligned}$$

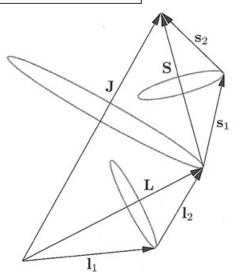

S:
$$L = 0$$
:

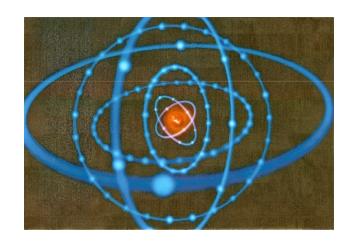
$$|1 \ 1 \ 0 \ 0> = \frac{1}{\sqrt{3}}|1 \ 1>|1 \ -1> -\frac{1}{\sqrt{3}}|1 \ 0>|1 \ 0> +\frac{1}{\sqrt{3}}|1 \ -1>|1 \ 1>$$

Combinations with maximum overlap between the charge distributions are marked in blue. Max overlap means max repulsion means less binding energy means higher excitation energy.

Thus, S and D terms tend to lay higher than P in pp'-configurations Generally highest and lowest L terms tend to lay higher.

Details of the electrostatic interactions in a pd-configuration in LS-coupling


Angular momentum couplings of two electrons in open subshells


Energy structure	Angular momentum coupling	Wavefunctions	Eigenfunctions to		
Configuration	-	$ \ell_i, m_{\ell_i}\rangle \cdot s_i, m_{s_i}\rangle$	$\hat{\ell}_i^2$, $\hat{\ell}_{iz}$, \hat{s}_i^2 , \hat{s}_{iz}		
Term ^{2S+1} L	$\hat{L} = \hat{\ell}_1 + \hat{\ell}_2, \hat{S} = \hat{s}_1 + \hat{s}_2$	$ L, M_L, S, M_S\rangle$	\hat{L}^2 , \hat{L}_z , \hat{S}^2 , \hat{S}_z		
Level ^{2S+1} L _J	$\hat{J} = \hat{L} + \hat{S}$	$ L, S, J, M_{_J}\rangle$	$\hat{L}^2, \hat{S}^2, \hat{J}^2, \hat{J}_z$		

$$\left|\ell_{i}, m_{\ell_{i}}\right\rangle \cdot \left|s_{i}, m_{s_{i}}\right\rangle = R_{n_{i}\ell_{i}}(r_{i}) \cdot Y_{\ell_{i}m_{\ell_{i}}}(\theta_{i}, \varphi_{i}) \cdot \chi_{m_{s_{i}}}(sz_{i})$$

Example of $\hat{L} = \hat{\ell}_1 + \hat{\ell}_2$ coupling using Clebsch-Gordan coeff.

$$\left|\ell_{1},\ell_{2},L,M_{L}\right\rangle = \sum_{m_{\ell_{1}}} C(\ell_{1},m_{\ell_{1}},\ell_{2},M_{L}-m_{\ell_{1}}:L,M_{L}) \left|\ell_{1},m_{\ell_{1}}\right\rangle \left|\ell_{2},M_{L}-m_{\ell_{1}}\right\rangle$$

• One electron atoms, H-like.

Bohr model

Exact quantum mechanical results

- Hydrogenic-, Rydberg-atoms. Quantum defect Accurate semi-empirical results
- Many electron atoms.

Approximations CFA + LS/jj- coupling

Magnetic interactions

Spin-orbit, Hyperfine and External mag. fields

• Transitions

Selection rules and line widths

• Molecules

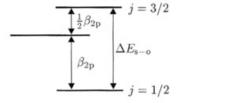
Magnetic interactions - internal

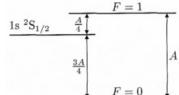
$$E = \left\langle -\hat{\mu} \cdot \hat{B} \right\rangle_{\Psi}$$

Spin-Orbit interaction

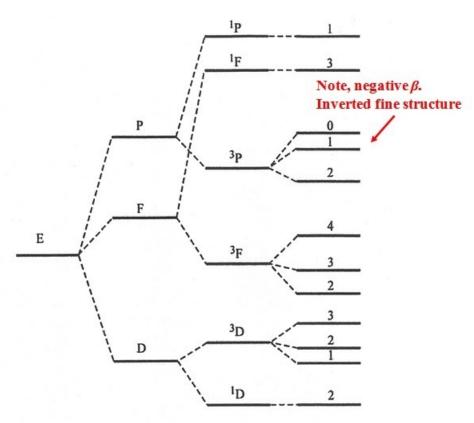
$$\begin{split} \hat{\mu} &= \hat{\mu}_{S} = -2 \frac{e}{2m} \hat{S} \\ \hat{B} &\sim \hat{L} \\ \Psi &= \left| L, S, J, M_{J} \right\rangle \end{split} \\ \Rightarrow E_{SO} = \sim <\hat{L} \cdot \hat{S} >_{\Psi} = \beta \cdot \frac{1}{2} \left[J(J+1) - L(L+1) - S(S+1) \right]$$

Landé: $E_{SO}(J) - E_{SO}(J-1) = \beta \cdot J$


Hyperfine interaction (Note $m_p \approx 2000 \cdot m_e$)


$$\begin{split} \hat{\mu} &= \hat{\mu}_{I} = +g_{I} \frac{e}{2m_{p}} \hat{I} \\ \hat{B} &\sim \hat{J} \\ \Psi &= \left| J, I, F, M_{F} \right\rangle \end{split} \\ \Rightarrow E_{\text{MS}} = \sim <\hat{J} \cdot \hat{I} >_{\Psi} = A \cdot \frac{1}{2} \left[F(F+1) - J(J+1) - I(I+1) \right]$$

Landé: $E_{hfs}(F) - E_{hfs}(F-1) = A \cdot F$


Scaling:
$$\beta_{\rm H} \sim \frac{Z^4}{n^3 \cdot \ell^3} \to \frac{\zeta^4}{(n^*)^3 \cdot \ell^3}, \quad n^* = n - \delta, \ \zeta = Z - N_{\rm core}$$

$$A_{\rm H}(s) \sim \frac{Z^3}{n^3} \to \frac{\zeta^3}{(n^*)^3}$$

pd-configuration LSJ-coupling

Configuration	Term	Level
Central field	Repulsion	Spin-orbit

Numerical	example	for	2p3d	in	O	V,	energies	in	cm ⁻¹	

E(2p3d) = 701810 Kinetic and central part of electrostatic

 $\Delta E (P - D) = 8980$ Direct part of electrostatic repulsion

 ΔE (¹F - ³F) = 15074 Exchange part of electrostatic repulsion

 $\Delta E (^{3}F_{4}-^{3}F_{3}) = 235$ Spin-orbit magnetic energy

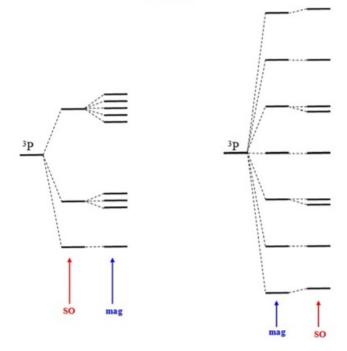
Magnetic interactions - external

Zeeman effect. (B ~ 1 T)

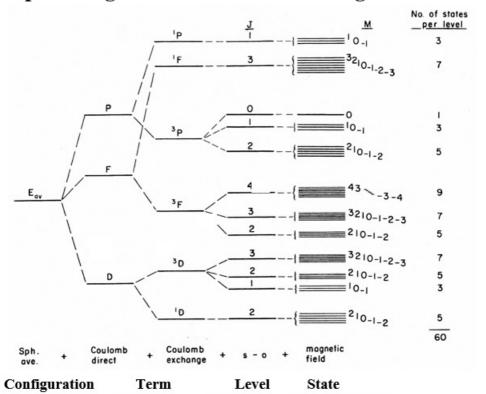
Weak field, i.e. much less energy than that of the SO-interaction

$$\begin{aligned} \hat{\mu} &= \hat{\mu}_{L} + \hat{\mu}_{S} = -\frac{e}{2m}(\hat{L} + 2\hat{S}) \\ \hat{B} &= B_{\text{ext}} \cdot \hat{e}_{z}, \Psi = \left| L, S, J, M_{J} \right\rangle \end{aligned} \\ \Rightarrow E(L, S, J, M_{J}) = E(L, S, J) + \mu_{B} \cdot B \cdot g_{J} \cdot M_{J}$$

Paschen-Back effect. (B ~ 1000 T)


Strong field, i.e. much more energy than that of the SO-interaction.

$$\hat{\mu} = \hat{\mu}_{L} + \hat{\mu}_{S} = -\frac{e}{2m}(\hat{L} + 2\hat{S})$$


$$\hat{B} = B_{\text{ext}} \cdot \hat{e}_{z}, \ \Psi = |L, M_{L}, S, M_{S}\rangle$$

$$\Rightarrow E(L, M_{L}, S, M_{S}) = E(L, S) + \mu_{B} \cdot B \cdot (M_{L} + 2M_{S})$$

Then SO as the next perturbation, $\beta \cdot M_L M_S$

pd-configuration with external magnetic field

Numerical example for 2p3d in O V, energies in cm-1

Repulsion

Central field

E(2p3d) = 701810 Kinetic and central part of electrostatic $\Delta E (P - D) = 8980$ Direct part of electrostatic repulsion $\Delta E (^{1}F - ^{3}F) = 15074$ Exchange part of electrostatic repulsion $\Delta E (^{3}F_{4} - ^{3}F_{3}) = 235$ Spin-orbit magnetic energy $\Delta E_{mag} = g_{J} \cdot \mu_{B} \cdot B = 0.5$ $B = 1 \text{ T}, g_{J} = 1, \Delta M_{J} = 1.$ Indep. of atom

Spin-orbit

External B-field

Magnetic interactions

General:

$$E = \langle -\mathbf{\mu} \cdot \mathbf{B} \rangle_{\Psi}$$

Where μ is a magnetic moment and **B** the magnetic field strengt

Spin-Orbit interaction. J = L + S

$$\mathbf{\mu} = \mathbf{\mu}_{S} = -2 \frac{e}{2m} \mathbf{S}$$

$$\mathbf{B} \sim \mathbf{L}$$

$$\Rightarrow E_{SO} \sim \langle \mathbf{L} \cdot \mathbf{S} \rangle = \beta \cdot \frac{1}{2} \left[J(J+1) - L(L+1) - S(S+1) \right]$$

Hyperfine interaction (Note $m_p \approx 2000 \cdot m_e$). F = J + I

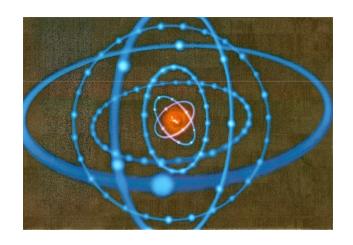
$$\mathbf{\mu} = \mathbf{\mu}_{I} = +g_{I} \frac{e}{2m_{p}} \mathbf{I}$$

$$\Rightarrow E_{hfs} \sim \langle \mathbf{J} \cdot \mathbf{I} \rangle = A \cdot \frac{1}{2} \left[F(F+1) - J(J+1) - I(I+1) \right]$$

Zeeman effect. (B ~ 1 T)

Weak field, i.e. much less energy than that of the SO-interaction

$$\mu = \mu_L + \mu_S = -\frac{e}{2m}(\mathbf{L} + 2\mathbf{S})$$


$$\mathbf{B} = \mathbf{B}_{\text{ext}}, \Psi = |L, S, J, M_J\rangle$$

$$\Rightarrow E(L, S, J, M_J) = E(L, S, J) + \mu_B \cdot B \cdot g_J \cdot M_J$$

Paschen-Back effect. (B ~ 1000 T)

Strong field, i.e. much more energy than that of the SO-interaction.

Then SO as the next perturbation, $\beta \cdot M_L M_S$

• One electron atoms, H-like.

Bohr model

Exact quantum mechanical results

- Hydrogenic-, Rydberg-atoms. Quantum defect **Accurate semi-empirical results**
- Many electron atoms.

Approximations CFA + LS/jj- coupling

• Magnetic interactions

Spin-orbit, Hyperfine and External mag. fields

Transitions

Selection rules and line widths

• Molecules

E1 Selection Rules

jj-coupling

 $\Delta j_2 = 0, \pm 1 \text{ not } 0 \text{ to } 0$

 $\Delta j_1 = 0$

Only one electron may change n and ℓ quantum numbers, i.e. orbital.

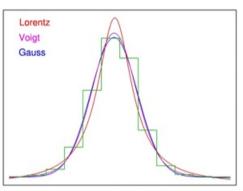
$$\Delta \ell = \pm 1$$

$$\Delta J = 0, \pm 1 \text{ not } 0 \text{ to } 0$$

LS-coupling $\Delta S = 0$

 $\Delta L = 0, \pm 1 \text{ not } 0 \text{ to } 0$

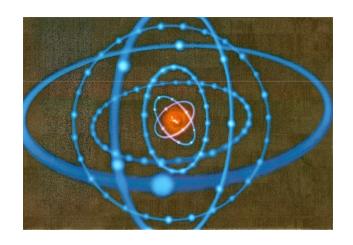
 $\Delta F = 0, \pm 1 \text{ not } 0 \text{ to } 0$


$$\Delta F = 0, \pm 1 \text{ not } 0 \text{ to } 0$$

In an external magnetic field

In an external magnetic field
$$\Delta M_J = 0, \pm 1 \text{ not } 0 \text{ to } 0 \text{ if } \Delta J = 0$$

Line widths and profiles


In the atom	Natural	Lorentz
In the light source	Collisional Power Self absorption Doppler	Lorentz Lorentz Gauss

Voight = convolution of Lorentz and Gauss

Na-example (3s - 3p 5890 Å, lifetime 16 ns)

Broadening	$\Delta f / \text{GHz}$	Δλ / Å
Natural	0.01	0.0001
Power, $I = 170 \text{ mW/cm}^2$	0.054	0.0006
Pressure, $p = 0.1$ atm	0.084	0.0009
Doppler (600 K)	1.86	0.022
Instrument. Fabry Perot: $d = 1$ cm, $R = 0.9$	0.25	0.003
Instrument. Grating 1200 ℓ/mm, 50 μm slit	30	0.35

• One electron atoms, H-like.

Bohr model

Exact quantum mechanical results

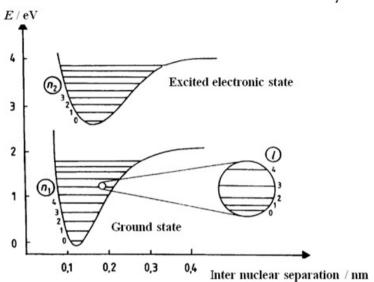
- Hydrogenic-, Rydberg-atoms. Quantum defect Accurate semi-empirical results
- Many electron atoms.

Approximations CFA + LS/jj- coupling

• Magnetic interactions

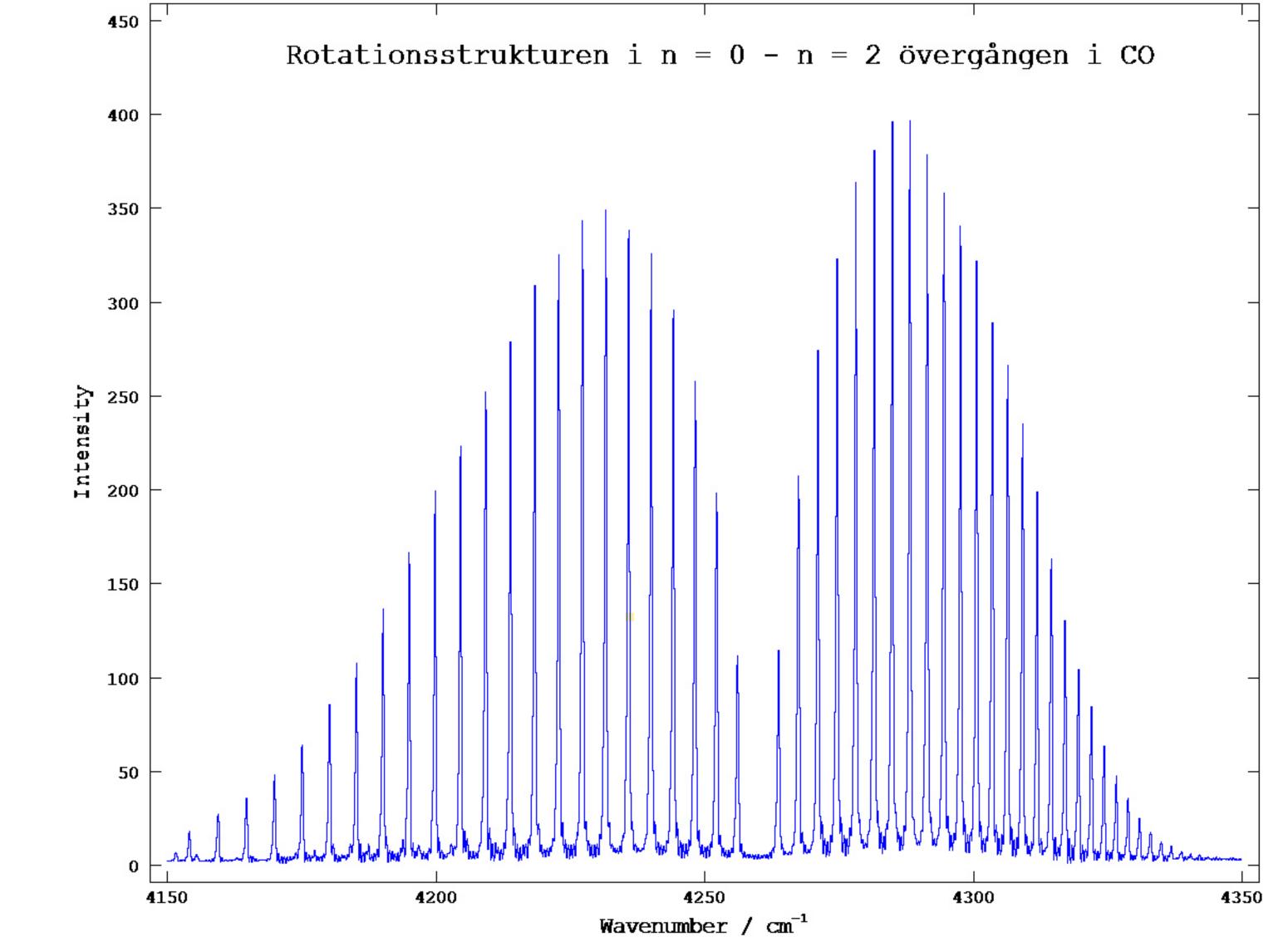
Spin-orbit, Hyperfine and External mag. fields

Transitions

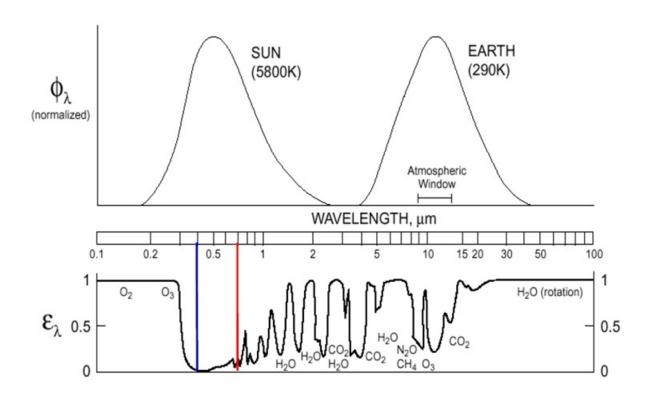

Selection rules and line widths

Molecules

Energies in a Diatomic Molecule - Summary.


$$E = E_{elektron} + E_{vib} + E_{rot} = E_{elektron} + \hbar \omega_0 (\nu + \frac{1}{2}) + \frac{\hbar^2}{2\mu r^2} \cdot \ell(\ell + 1)$$

Orders of magnitude


	Electron	Vibration	Rotation
E / cm-1	40000	1500	10
E/eV	5	0.2	0.001
$\lambda/\mu m$	0.3	6	1000
T/K	40000	1500	10

(Note the coincidence that energies expressed in cm⁻¹ and as a temperature in K has almost the same numerical value, i.e. $1/(100 \cdot h \cdot c) = 5.035 \cdot 10^{22} \approx 2/(3 \cdot k) = 4.83 \cdot 10^{22}$!)

The Greenhouse Effect.

The black-body radiation from the Sun (5500 °C) and the Earth (18 °C) and the absorption in the atmosphere in different wavelength regions

