Exact QM solution in one-electron atoms.

McMurry Ch 7.1 and 7.2. SP Ch 2.1, Foot Ch 2.
Exercises: 12 - 15. (H4 and H5)
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One-electron atoms in spherical coordinates
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Effective potential in H
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In atomic physics the value of £is always given as a letter:
(=0—-s,1-p,2 >d,3 -1 4—-ghi (k..

A p electron with an energy of -5 eV is classically
constrained to oscillate hetween 1.4 < < 4 ag whereas with
an energy of about -6.8 eV it can only move in a circular
orbit with a radius of 2a,.

Note, only s-electrons can move close to the nucleus.
Very important later on!!



Series solution of the radial differential equation.
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Ansatz:

f(p)=p°-D cp* ¢ #0.
k=0

Calculate the derivatives and collect terms with similar powers in (8)
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The lowest order term arise from the first sum with k = 0. If we write that term separately the
first sum will start with k = 1 and both sums will be in powers of s + k — 1. If we change
summation index in the first sum from k to k + 1 we can write everything as a single
summation:

Co-[s(s=D) -1t +D]p° 2 +

3 40y (s +k+2)(5+K) — £(£ +1)]+ 26, [~ (s K)T}p** =0
k=0 aOK‘

If the polynomial is zero for all values of p then each coefficient must be zero individually.
Since we assumed ¢, = 0 the first term gives s=/¢+1o0r s=—/. The last possibility must be
ignored since it leads to a non-normalizable function P(p) when p —0.
To make everything within the curly brackets equal to zero in the remaining summation the
c - coefficients must satisfy the recursion relation (using s=/¢+1)
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For large k the ratio of the coefficients will be ¢, ,, /¢, = 2k /k? = 2/k. This ratio is the same

as that between successive terms in the expansion of
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Hence, for large p the two functions behave similar and P(p) ~e™” -e*” — co when p — .
Thus it is not normalizable and the series must be truncated, i.e. for some
k=N=012..(Z/ayx)-(/+N+1)=0.

Introducing the main quantum number n=/+N +1=1,2,3,... we obtain finally x =Z /ayn

and hence a quantized energy:
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Thus the reasonable demand that the wavefunction is normalizable leads to a quantized
energy!!
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3.2 Energy-level diagram for atomic hydrogen.



Table 2.2 Radial hydrogenic wavefunctions R, ; in terms of the variable p =
Zr/(nag), which gives a scaling that varies with n. The Bohr radius ao is defined in
eqn 1.40.
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i 2. Number of zero crossings (» > 0) is n-£-1. -




Radial probability distribution in H.
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Forls, 2p, 3d.... 1.e.
nt=n-1

the most probable distance 1
15 given by:

”2

b, =ty 7
1.e. the same result as in the
Bohr model!

Number of minima:
N=n-£-1



Summary one-electron atoms.

Bohr:
nt

=G s a,=0.529 A.

VA 1
1.’H:a.c._, a:_

7. 137

b m -1
E.= R R — -109737 cm
” i 7

Ouantum mechanics
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Only for the Coulomb potential is £ independent of £.
n=12,3..... £=012,.(n—1) m=—f,—£+1,. £

¥, nm(r-0.0)=R, (r)Y,,(0.0)
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¢, =0 determined from the normalization condition.

R(p) has n—£—1 zeros for r > 0
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