Roadmap transitions

- Einstein coefficients A_{21}, B_{12} and B_{21} (H2, #31)
 Foot Ch 1.7, SP 7.4, 7.5
- Basic conditions for laser action
- Much more about lasers (not covered here):
 Spectrophysics Ch. 14
 Wikipedia,
 Atomic Physics Home page (Popular description in Swedish)
 http://www.atomic.physics.lu.se/research/,
 Lecture by Prof Anne L'Huillier (Monday 11/2)
 Many elective courses given by the division

- Lifetime and Intensity

- Selection rules
 Foot Table 5.1, SP 2.4.4

- Relative intensities in LS multiplets
 (H2, #33) and two-electron lab
Boltzmann population distribution at thermal equilibrium

\[\frac{N_2}{N_1} = \frac{g_2}{g_1} \cdot e^{-\Delta E/kT} \]

\(g = \) statistical weight
\(g = 2J + 1 \) or \(2F + 1 \)

\(T_1 \)
\(T_2 > T_1 \)
Degeneracy – statistical weight, \(g \), in a pd-configuration.

\[
\begin{align*}
g(E) &= 60, \\
g(\ ^3D) &= (2L + 1) \cdot (2S + 1) = 15 \\
g(\ ^3D_3) &= 2J + 1 = 7
\end{align*}
\]
Planck’s Radiation Law

Assume that light can only be absorbed or emitted in discrete quantities (photons) where the energy depends on frequency as:

\[E = h \cdot f = h \cdot \frac{c}{\lambda}, \quad h = 6,62 \cdot 10^{-34} \text{ Js} \]

The energy density per frequency interval, \(\rho \), is then given by:

\[
\rho(f) = \frac{8\pi hf^3}{c^3} \cdot \frac{1}{e^{hf/kT} - 1},
\]

\[[\rho] = 1 \text{ J/(m}^3\times\text{Hz)} = 1\text{Js/m}^3 \]
Einstein coefficients

\[\rho(f) \]

\[A_{21}N_2 + \rho B_{21}N_2 = \rho B_{12}N_1 \Rightarrow \quad \begin{cases} g_2 B_{21} = g_1 B_{12} \\ g_2 A_{21} = \frac{8\pi hf^3}{c^3} g_1 B_{12} \end{cases} \quad \text{(Exercise 32)} \]

If \(g_1 = g_2 \) then

\[\begin{cases} B_{21} = B_{12} \\ A_{21} \sim f^3 \cdot B_{21}, \sim f^3 \cdot B_{12} \end{cases} \]

Consequences:

- Drive hard and saturate a transitions, i.e. \(N_1 = N_2 \)
- Laser actions requires \(N_2 > N_1 \) i.e. an inverted population
- Difficult to obtain laser action at short wavelengths due to the \(f^3 \) scaling
Selection rules and metastable levels in He

Fig. 2.9. The energy level structure of He.

Observations of so-called spin forbidden transitions, i.e. where $\Delta S \neq 0$, is one sign of intermediate coupling effects. The $1s^2 \, ^1S_0 - 1s2p \, ^3P_1$ has indeed been observed in all He-like systems.
Laser problem 1: Inverted population

Always some ”trick”.
For example optical pumping or the HeNe-scheme. The latter uses a near coincidence in energy between $2s^1,3S$ in He and $4s$ and $5s$ in Ne which opens a selective collisional excitation of the latter levels in Ne, thereby obtaining an inverted population relative to lower lying levels.

Diagram:
- **Helium**
 - Ground State: 1^1S
 - Metastable: 2^3S
 - Collision:
 - 2^1S to 2^3S

- **Neon**
 - Ground State: $1S^22S^22P^6$
 - $3S$ to $3P$
 - $5S$ to $4S$ with $100\,\text{ns}$
 - $4S$ to $1152\,\text{nm}$
 - $3S$ to $3391\,\text{nm}$
 - $3391\,\text{nm}$ to $632.8\,\text{nm}$ Laser light
 - Wall collisions:
 - $1S^22S^22P^6$ to 1^1S
 - Rapid deexcitation channel: $10\,\text{ns}$
Laser problem 2: High intensity
(Fabry-Perot lecture in lab preparation)

\[\Delta \sigma_{fsr} = \frac{1}{2 \cdot L \cdot n}, \]

\[(\Delta \delta)_{\text{min}} = 2 \cdot \frac{1 - R}{\sqrt{R}}. \]
Spectral line intensity.

\[n_{ij} = A_{ij} \cdot N_i \]

Where \(n_{ij} \) is the number of emitted photons per second in \(4\pi \) steradian (full sphere).

The number of \textbf{detected} photons, the \textit{intensity}, is then

\[I_{ij} = \varepsilon(\lambda_{ij}) \cdot A_{ij} \cdot N_i \]

where \(\varepsilon(\lambda) \) takes care of the solid angle subtended by the detector and all, wavelength dependent, detector efficiencies. Here the intensity is measured in \textbf{number of photons per second and unit area}, meaning that the normal unit \(\text{W/m}^2 \) is obtained by multiplying by the energy \(hf \) of one photon.
Almost all information we have about our surroundings comes from the analysis of light.
Chi Lupi is a blue giant star in the constellation Lupus, 195 light years away.

Isotope anomaly of Hg in the atmosphere of χ-Lupi.
Absorption - classical.

The incoming light (electric field) induces an oscillating electric dipole moment $\overline{d} = -q \cdot \overline{E}$

Damped and driven harmonic oscillator

$$\frac{d^2 r}{dt^2} + \frac{b}{m} \cdot \frac{dr}{dt} + \omega_0^2 \cdot r = \frac{qE_0}{m} \cdot \cos \omega t$$

$$r(t) = A \cdot \cos(\omega t - \delta)$$

$$A = \frac{qE_0}{\sqrt{m^2 (\omega_0^2 - \omega^2)^2 + b^2 \omega^2}}$$
Selection rules E1 (electric dipole) transitions

\[\Delta J = 0, \pm 1 \] not 0 to 0

Exercise 17

Only one electron can change orbital, i.e. \(n\ell \)

Highly unlikely that two electrons would rearrange themselves simultaneously

\(\hat{r} = \) one-electron operator

\[\Delta \ell = \pm 1 \]

\(\hat{r} \) has odd parity and \(Y_{\ell,m}(\theta,\phi) \) has \((-1)^{\ell}\)

If perfect LS-coupling, i.e. real states = basis states

\[\Delta S = 0 \]

\(\hat{r} \) does not include spin, thus can't change it

\[\Delta L = 0, \pm 1 \] ej 0 till 0

Follows from \(\Delta J \) and \(\Delta S \)
Li-sequence
\[2s^2 S_{1/2} - 2p^2 P_{1/2,3/2}\]
Relative intensities in the Be-sequence

$2s3s \ ^3S_1 - 2s3p \ ^3P_{0,1,2}$ transitions
Relative intensities in some LS multiplets

The (normally) very intense “diagonal” in the multiplets is shown in red

<table>
<thead>
<tr>
<th></th>
<th>$^2S_{1/2}$</th>
<th>$^2P_{1/2}$</th>
<th>$^2P_{3/2}$</th>
<th>$^2D_{3/2}$</th>
<th>$^2D_{5/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^2P_{1/2}$</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>---</td>
</tr>
<tr>
<td>$^2P_{3/2}$</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$^2D_{3/2}$</th>
<th>$^2D_{5/2}$</th>
<th>$^2F_{5/2}$</th>
<th>$^2F_{7/2}$</th>
<th>$^2G_{7/2}$</th>
<th>$^2G_{9/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^2F_{5/2}$</td>
<td>14</td>
<td>1</td>
<td>20</td>
<td>1</td>
<td>27</td>
<td>--</td>
</tr>
<tr>
<td>$^2F_{7/2}$</td>
<td>--</td>
<td>20</td>
<td>1</td>
<td>27</td>
<td>1</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3S_1</th>
<th>3P_0</th>
<th>3P_1</th>
<th>3P_2</th>
<th>3D_1</th>
<th>3D_2</th>
<th>3D_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3P_0</td>
<td>1</td>
<td>--</td>
<td>4</td>
<td>--</td>
<td>20</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3P_1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>15</td>
<td>45</td>
<td>--</td>
</tr>
<tr>
<td>3P_2</td>
<td>5</td>
<td>--</td>
<td>5</td>
<td>15</td>
<td>1</td>
<td>15</td>
<td>84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3D_1</th>
<th>3D_2</th>
<th>3D_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D_1</td>
<td>81</td>
<td>27</td>
<td>--</td>
</tr>
<tr>
<td>3D_2</td>
<td>27</td>
<td>125</td>
<td>28</td>
</tr>
<tr>
<td>3D_3</td>
<td>--</td>
<td>28</td>
<td>224</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3D_1</th>
<th>3D_2</th>
<th>3D_3</th>
<th>3F_2</th>
<th>3F_3</th>
<th>3F_4</th>
<th>3G_3</th>
<th>3G_4</th>
<th>3G_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3F_2</td>
<td>189</td>
<td>35</td>
<td>1</td>
<td>640</td>
<td>80</td>
<td>--</td>
<td>720</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3F_3</td>
<td>--</td>
<td>280</td>
<td>35</td>
<td>80</td>
<td>847</td>
<td>81</td>
<td>63</td>
<td>945</td>
<td>--</td>
</tr>
<tr>
<td>3F_4</td>
<td>--</td>
<td>--</td>
<td>405</td>
<td>--</td>
<td>81</td>
<td>1215</td>
<td>1</td>
<td>63</td>
<td>1232</td>
</tr>
</tbody>
</table>
Relative intensities in a $^3\text{D} - ^3\text{F}$ multiplet and the LS sum rules

<table>
<thead>
<tr>
<th></th>
<th>$^3\text{D}_1$</th>
<th>$^3\text{D}_2$</th>
<th>$^3\text{D}_3$</th>
<th>Σ int.</th>
<th>$g_L = 2J+1$</th>
<th>$(\Sigma$ int.)/g_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^3\text{F}_2$</td>
<td>189</td>
<td>35</td>
<td>1</td>
<td>225</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>$^3\text{F}_3$</td>
<td>280</td>
<td>35</td>
<td></td>
<td>315</td>
<td>7</td>
<td>45</td>
</tr>
<tr>
<td>$^3\text{F}_4$</td>
<td>405</td>
<td></td>
<td></td>
<td>405</td>
<td>9</td>
<td>45</td>
</tr>
<tr>
<td>Σ int.</td>
<td>189</td>
<td>315</td>
<td>441</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$g_U = 2J+1$</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(\Sigma$ int.)/g_U</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The sum of all intensity TO a given LOWER level is proportional the statistical weight ($2J+1$) of the level. The constant is the same for all levels of the lower LS term.

The sum of all intensity FROM a given UPPER level is proportional the statistical weight of the level. The constant is the same for all levels of the upper LS term.