
 

THE ZEEMAN EFFECT 190529 

Introduction 

Quantum mechanics tells us that angular momenta, J , are quantized both regarding 

magnitude, 2 2 ( 1)J J J  , and direction, 
z JJ M  , as illustrated in Figure 1. The 

directional quantization is normally not noticeable in the energy level structure of an 

atom since the "z"-direction is an arbitrary 

direction (isotropic space), and all states that 

differ only in the value of MJ have the same 

energy. The level is said to be 2J + 1 fold 

degenerate. However, if the atom is placed in an 

external magnetic field the degeneracy is broken 

due to energy differences between states that are 

aligned with the external field and states that are 

not. Thus, the different MJ - states obtain a small 

additional energy: 

mag J B JE g BM .  

Here gJ is the Landé factor for the level, μ𝐵is the 

Bohr magneton, B is the magnetic field strength 

and  M𝐽 is the secondary total angular momentum 

quantum number. Furthermore, light emitted 

from an excited atom becomes polarized with an 

oscillation mode that depends on how the MJ 

quantum numbers change as well as the direction 

of observation relative to the external magnetic 

field. Viewed perpendicular to the B-field light is 

linearly polarized; oscillating parallel to the field for ∆MJ = 0 transitions and 

perpendicular for ∆MJ = ±1. Viewed along the field direction ∆MJ = ±1 transitions give 

rise to circularly polarized light. 

Preparation 

Study carefully the theory of the Zeeman effect in e.g. Thorne et al, Spectrophysics1, Ch. 

3.9.1 or Foot, Atomic Physics2, Ch. 1.8 and 5.5. Since the Zeeman splitting of spectral 

lines is small, we need an instrument with very high spectral resolution to measure it. 

One such instrument is the Fabry-Perot interferometer described in Spectrophysics 13.1 

- 13.4, Pedrotti et al, Introduction to Optics3 and also briefly in Appendix 1, below. You 

must study in detail (at least) the last section of Appendix 1, where the evaluation of the 

experiment is described. Recapitulate the description, production and manipulation of 

polarized light. This is very briefly outlined in Appendix 2. If you are not familiar with 

the concept of polarization, read the section “Linear Polarization” on p. 1115 of 

University Physics with Modern Physics and “Circular and Elliptical Polarization” on p. 

1121 in the same book (e-book available through the physics library at 

https://lubcat.lub.lu.se/).  

 
1  A. Thorn, U. Litzén and Se. Johansson, Spectrophysics, Springer 
2 C. Foot, Atomic Physics, Oxford master series in Physics 
3 F.L. Pedrotti, L.M. Pedrotti and L.S. Pedrotti, Introduction to Optics, Pearson 
4 H.D. Young, R.A. Freedman, A.L. Ford, University Physics with Modern Physics, Global ed., Pearson  

https://lubcat.lub.lu.se/


 

Preparatory exercises (Serious attempts must be made on all exercises) 

1. The ground configuration in neutral Cd is 5s2 and the first excited configuration is 

5s5p. In the experiment you will, among other lines, see the transition  

5s5p 3P - 5s6s 3S.  

a) Give the LS notation for the possible transitions between these terms. 

b) You will find a green ( = 508.582 nm), a turquoise ( = 479.992 nm) and a 

blue ( = 467.816 nm) line. Which of the transitions above correspond to the 

different colors? 

2. This exercise is essential to the lab and a solution must be presented before you 

are allowed to continue.  

 In the experiment you will study the transitions 5s5p 1P1 - 5s5d 1D2,   

5s5p 3P2 - 5s6s 3S1, 5s5p 3P1 - 5s6s 3S1 and 5s5p 3P0 - 5s6s 3S1 in a weak magnetic 

field. 

a) Derive the Landé g factor assuming LS coupling for the levels involved in the 

four transitions. 

b) Draw large and nice diagrams showing the different Zeeman components that 

each of the 4 lines (not levels) split into in the magnetic field in the manner of 

Figure 3.16 in Spectrophysics or Figure 5.13 in Atomic Physics. Thus, choose 

a relative energy scale, with zero at the energy of the transition without 

magnetic field, and show the splittings in units of µBB along the x – axis. Let 

all Zeeman components have the same intensity. 

c) What is the state of polarization of each of the components? (Hint: ΔM is 

positive if MJ of the upper state > MJ of the lower state) 

d) Which components do you expect to see in a direction parallel to the magnetic 

field? 

3. Let B = 0.5 T. How large is the smallest splitting between the components derived 

above? 

a) Expressed in eV 

b) Expressed in cm-1 

c) Expressed in nm 

4. Use Appendix 1 to answer the following. A Fabry-Perot interferometer operating 

in air have mirror surfaces with a reflectance of R = 0.85 and separated by 

3.085 mm. We use a light source with a wavelength of 500 nm. 

a) What is the free spectral range expressed in cm-1 and in nm. 

b) What is the line width expressed in cm-1 and nm. 

c) Does the size of the rings increase or decrease in higher spectral orders? 

5. Use Appendix 2 to answer the following. What is the polarization of light when the 

electric field is described by the expressions below? 

a)  ))cos()sin((0 tkzetkzeEE yx    

b)  )sin(3)2/sin(5 tkzetkzeE yx    

 

 



 

Experiments 

Setup 

Neutral cadmium atoms have the ground configuration 5s2 and the system of excited 

levels 5snℓ. In the experiment you are going to study the 4 lines 

5s5p 1P1 - 5s5d 1D2 643.8 nm (red) 

5s5p 3P2 - 5s6s 3S1 508.6 nm (green) 

5s5p 3P1 - 5s6s 3S1 480.0 nm (turquoise) 

5s5p 3P0 - 5s6s 3S1 467.8 nm (blue) 

The cadmium light is emitted from a spectral lamp placed between the poles of an 

electromagnet, where the field is directly proportional to the current. Light then passes 

through a Fabry-Perot interferometer and the interference pattern is studied either by eye 

or with a CCD camera. The setup is shown in Figure 2. The lenses have focal lengths of 

50, 300 and 50 mm as indicated in the figure. 

 

To isolate a certain wavelength from the Cd-

light (to look at one transition at the time) we 

need external narrow band interference filters. 

Figure 3 shows the transmission curves for the 

filters for the blue and the turquoise light. 

The polarization of the Zeeman components of 

light emitted perpendicularly and parallel to the 

magnetic field is investigated using a polarizer 

and an achromatic λ/4 plate (see Appendix 2).  

 

Qualitative studies (the most important part!) 

Start by viewing the Fabry-Perot interference patterns 

directly by putting your eye immediately behind the 

last lens. Optimize the positions of the lenses to see 

the pattern as clearly as possible. What happens when 

you use different filters or different magnetic field 

strengths? Study the transitions from both the 

transverse and longitudinal direction with regards to 

the magnetic field. Do your observations agree with 

the predictions in preparatory exercise 2? Is 

something missing in one direction and in that case 

why? Then, insert the polarizer and other necessary 
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Figure 3. Transmission curves for the 

interference filters used. Data from 

Thorlabs, http://www.thorlabs.com/. 

f = 50 

Figure 2. The experimental setup.  

CCD-Camera 

f = 300 f = 50 

Figure 4. Fabry-Perot pattern with 

no filters or magnetic field.  



 

instruments and verify the polarization of the σ-components you determined in exercise 

2. 

 

Quantitative studies 

Carefully adjust and center the CCD camera on the pattern.  The software uEye Cockpit 

allows you to capture images with the camera. The brightness can be adjusted by tuning  

certain camera parameters (for example the exposure time) that you can find through: 

tool → camera. 

Perform a set of measurements in the direction that gives you the clearest image of the  

σ - splittings, for each transition. If you use the transverse direction, you need to use one 

additional optical instrument. Take data for several magnetic currents between 0 and, at 

most, 4A (NOTE! For one of the setups the maximum is 3A) and capture the ring pattern 

for each setting to a file. You will need several points in 

order to perform the fitting, so do not take too few values 

for the magnetic current! 

As a preparation for the quantitative analysis according 

to eq. (7) in Appendix 1, use the software Motic Images 

Plus, load an image, then go to the "Measurements" 

menu and choose the  "3-point circle" to determine the 

diameter of the observed rings for each magnetic current, 

as illustrated in Figure 5. Make sure to save these images 

to a USB-stick for the analysis and the report writing!  

Use eq. (7) in Appendix 1 and your measured diameters 

and plot, in the same diagram, the Zeeman splitting, ∆σ, 

as a function of the current through the magnet for the 

different transitions. The magnetic field is directly proportional to the current, as shown 

in Figure 6 for currents up to 5 A.  Verify that the Zeeman splitting is, indeed, directly 

proportional to the magnetic field. To compare the numerical value of the splittings to 

the theoretical prediction you need the approximate proportionality constants which are 

0.1 T/A for the Phywe magnets and 0.058 T/A for the "large magnet".  

 

 

 

 

 

 

 

 

 

  a                                                            b                          

Figure 6. Magnetic field as a function of current for the a) Phywe magnets and 

b) "Large magnet". 

To eliminate also the need to accurately know the thickness of the spacer between the 

plates in eq. (7), show that the ratio of the slopes of the red and blue lines is accurately 

predicted by the quantum numbers and gJ - factors involved, see preparatory exercise 2. 
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Figure 5. Fitting of the Fabry-

Perot rings with the 3-point-

circle tool in Motic Images Plus. 

 



 

Fitting your results 

Since you expect a linear relation between magnetic current and splitting, it is 

recommended to use a linear fit to the data. It is allowed to use built-in functions in for 

example MATLAB for this, but you can also use a manual least-squares method by trying 

out different values on k and m for 𝑦 =  𝑘𝑥 + 𝑚 and see which values minimize 

∑ (𝑦(𝑥𝑖)𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑦(𝑥𝑖)𝑓𝑖𝑡)2𝑁
𝑖 , where N is the total number of data points taken. From 

this you can also find the standard deviation S: 

 

 𝑆 = √
∑ (𝑦(𝑥𝑖)𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑦(𝑥𝑖)𝑓𝑖𝑡)

2
𝑖

𝑁
 

The value of S might be interesting to compare to your own estimation of the size of the 

uncertainty in your method. 

 

Checklists  

Before you leave the lab 

Before you leave the lab, make sure that you have done all of the following required 

steps: 

 Made sure you understand the function and purpose of all instruments used. 

 By eye observed the effect of the longitudinal vs transverse direction of the 

optical bench with regards to the magnetic field and the effect of changes in the 

magnetic field strength. 

 Confirmed the polarization of the σ-lines and fully understand the procedure. 

 Taken enough data points (i.e. enough current values have been used) to measure 

the Zeeman splitting of the σ-lines of all transitions, unless otherwise instructed 

by the supervisor, and properly fit a function to your data. 

 Measured the diameters D1 and D2 for the most appropriate image as well as all 

necessary Da and Db, and saved these values (preferably also all images) to a USB 

stick. 

Before handing in your report  

When writing a report, there are some details that are often overlooked, so take a look 

through the short checklist below to ensure that you have not forgotten any of these 

points: 

 Have you answered all the questions asked in the lab manual? (these questions 

are there to guide your thinking and start your analytic train of thought!) 

 Are your plots easy to understand and do you guide the reader through them and 

point out important features etc? 

 Do all of your figures have figure captions that are independent enough from the 

text that you would be able to interpret the figure without the text? 

 Do all of your facts regarding the background/theory have a correct reference to 

a trustworthy source? 

 



 

 

Appendix 1: 

The Fabry-Perot interferometer, free spectral range, line width 
and data reduction for the Zeeman lab. 

You have most likely discussed the phenomenon of interference in thin films, shown in 

Figure A1-1, in some earlier course. In many cases the reflectance of the surfaces is low 

and only the first two rays have a substantial impact on the output. However, if the 

reflectance is high we must sum the 

contribution from (very) many rays, a 

phenomenon called multiple beam 

interference. This is the basis for the Fabry-

Perot interferometer. A typical 

interferometer is shown schematically in 

Figure A1-3. Two plane glass plates with 

highly reflecting surfaces facing each other 

are separated by a distance d. Light from an 

extended source (see Figure A1-2) pass 

through the system, as in Figure A1-3. The 

light is reflected many times between the 

plates and at each reflection a small part is 

transmitted. Each transmitted wave acquires a phase difference 

of δ relative to the previous one due to the extra "round trip" 

between the plates:  

2
2 cos ,nd


 


    (1) 

where λ is the wavelength in vacuum, d the distance between 

the plates separated by a medium with refractive index n and θ 

is the angle to the optical axis (Figure A1-3).  

 

 

 

Figure A1-2.  An 

extended light source 

emits light from a 

finite area, unlike a 

point source.  

 

Figure A1-3. Light path through a Fabry-Perot-interferometer. 



 

The condition for constructive interference in point P2 is: 

2 cosnd m     (2) 

In an extended light source all rays that are emitted at an angle of θ will contribute to the 

ring pattern at the angle of θ to the optical axis. Different orders (i.e. different values of 

m) will appear with different diameters, as shown in Figure A1-4a.  

 
Figure A1-4. a) Interference pattern for a monochromatic light source. b) For a light 

source with two very close wavelengths. 

 

Transmission and the free spectral range. 

The theory of multiple beam interference shows that the transmitted intensity It through 

a Fabry-Perot interferometer is given by the so-called Airy function. 

  
0 0

2

2

1
( ) ,

4
1 sin

(1 ) 2

tI I A I
R

R




   

 


 (3) 

where R = is the reflectance of the surfaces and  is the phase difference (1). 

The Airy function is illustrated in Figure A1-5, 

for different values of the reflectance R. We note 

both from the figure and from (3) that the 

function is periodic, with a period of 2π. This 

period, expressed in any parameter, is called the 

free spectral range (fsr), and is an important 

parameter since it represents the range over 

which the interferometer is useful. For example, 

two wavelengths differing by Δλfsr will be 

imaged on the same ring and hence impossible 

to distinguish. This is refered to as overlapping 

orders. 

Figure A1-5. The Airy function. 

 

To determine the free spectral range in any parameter other than phase we simply 

differentiate (1) and use Δδfsr = 2. For example, Δλfsr is obtained from 

)cos(4
1

)(
2





nd




.  

With 
fsr 2      and 

fsr     

2 2 2

fsr  for small angels .
4 cos( ) 2 cos( ) 2

fsr

nd nd nd

   
 

  

 
     (4) 



 

 

We may obtain the free spectral range in wavenumbers in the same way:  

fsr

1

2dn
   (5) 

From Example 1 it is clear that such an instrument is not suitable to study large 

wavelength intervals! On the other hand, we show below that the instrument has a very 

high resolving power within its useful range. 

Smallest detectable wavelength difference (Δλ)min.  

According to the so-called Rayleigh criterion two equally strong lines are said to be 

resolved if their wavelength difference (Δλ)min at least equals the full width at half 

maximum (FWHM) of the line profiles. This is illustrated in Figure A1-6. To calculate 

(Δλ)min for a Fabry-Perot interferometer, we start by calculating the FWHM in phase of 

the Airy function. 

2

2

1 1 1
( )

42 2
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(1 ) 2

A
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
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

  

min

1 1
 and ( ) 2
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R R
 

 
    

 

   

  Figure A1-6. Rayleigh criteria 

To express the width in wavelength we proceed as above and differentiate: 

)cos(4
1

)(
2





nd




.  

With min)(   and min)(   we obtain for small angles θ: 

ndR

R

ndR

R

nd 










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2

1

)cos(4

1
2

)cos(4

)(
)(

222
min

min 








  

 

Example 1: Free spectral range 

Consider the central ring (θ = 0) in a Fabry-Perot interferometer in air (n = 1) with 

3 mm between the reflecting surfaces (d) and a wavelength of 500 nm. Then 

Δλfsr = 0.0417 nm and Δσfsr = 1.67 cm-1. This means that the interferometer can only 

be used between 500.0000 and 500.0417 nm before the orders start to overlap. 

Example 2. Smallest detectable wavelength difference. 

We continue example 1 above and assume R = 0.9. Then (Δλ)min = 0.00139 nm, giving 

a resolving power of 357000. Thus very small wavelength differences will give rise to 

clearly separated and measurable rings.  

 



 

 

Wavenumber differences from a measured Fabry-Perot ring system.  

From Figure A1-3 we obtain the following relation between , the focal length f of the 

lens, and the diameter D of a circle: 

2 2
2 2 2 2 1/ 2

2 2

1
cos / (1 / ) 1 1

2 8

R D
f f R R f

f f
          

If we combine this with the condition for constructive interference (2) rewritten in terms 

of wavenumber σ = 1/λ, we obtain: 

2 22 (1 / 8 ) .m d D f   

This expression shows that a larger ring corresponds to a smaller m, i.e. a smaller path 

difference m between adjacent beams. We can estimate the magnitude of m: Suppose 

we have a maximum for   = 0, i.e. D = 0, and that we have d = 3 mm, which is the 

distance we use in this experiment. This gives for red light (  600 nm or  

  16 000 cm-1 ) m  9600. 

Two adjacent spectral lines, e.g. two Zeeman components, give rise to two systems of 

close lying circles, as seen in Figure A1-4b. If we want to determine the wavenumber 

difference between two lines in the same interference order m with the wave numbers a 

and b we get the equations: 

2 2

2 2

2 (1 / 8 )

2 (1 / 8 )

a a

b b

m d D f

m d D f





 

 

 

We can eliminate m and d and get the equation: 

2 2 2 2(1 / 8 ) (1 / 8 )a a b bD f D f      (6) 

Da and Db can be measured. The focal length f cannot be measured with sufficient 

accuracy, but it can be eliminated in the following way. Measure the diameters of the 

circles of two adjacent orders for the same line , e.g. the line we are investigating with 

no magnetic field (Figure A1-3a). The two circles have the diameters D1 and D2 and the 

orders m and m-1. We get the relations  

2 2

1

2 2

2

2 (1 / 8 )

1 2 (1 / 8 )

m d D f

m d D f





 

  

     

This can be transformed into
2 2 2

2 12 ( ) 8d D D f   . Inserting this into (6) and using 

ba    gives finally 

 

2 2

2 2

2 1

1

2

a b
a b

D D

d D D
  


    


.  (7) 

 

Da and Db are in our case the diameters of the circles from two Zeeman components in a 

certain order. In practice we use the highest order, i.e. the innermost circles. D1 and D2 

are the diameters of two circles from the same line - with no magnetic field - in different 

orders. The distance d = 3 mm for the instrument from Phywe (the same instrument that 

has 3A as its maximum magnetic current) and 3.085 mm in the other interferometers.  



 

Appendix 2 Polarized light 

Light can be thought of as an electromagnetic wave consisting of an electric and a 

magnetic field. The polarization describes how the electrical component of the light 

behaves both in space and time. If light is polarized, it means that at a given point z both 

the amplitude and the direction of the electric field vary in a regular and predictable way, 

as opposed to the random variations of unpolarized light. 

The superposition principle gives us a convenient way to describe polarized light as a 

sum of two perpendicular, linearly polarized (along the x- and y-axes) waves with 

relative phase δ. 

)sin()sin(),,,( 00 tkzeEtkzeEtzyxE yyxx     

Figure A2-1 shows the resulting polarization for different values of δ for the special case

yx EE 00  . Note that circularly polarized light only arises when δ = (2m + 1)/2 and 

. 

Components that change the state of polarization 

When light enters a plate of quartz (SiO2), or other so-called anisotropic materials, it is 

transmitted as two perpendicular linearly polarized waves (called the ordinary and extra 

ordinary wave, respectively) that travels with different speeds, i.e. the material has two 

different indices of refraction no and ne. After passing the plate, with thickness d, the two 

waves have therefore traveled a different optical path length 

 
ndndnd oe  

 

This results in a phase difference δ between the two waves.  

2
d n





   

 

After the passage the observable light is a superposition of the two waves. In this 

configuration the plate is called a retarder plate. If the incoming light is linearly 

polarized as in Figure A2-2, i.e. the two oscillations are in phase, the retarder plate can 

transform this into any desired state of polarization depending on its optical properties. 

We note, in particular, the following special cases: 

 

yx EE 00 

Figure A2-1. Polarization states for different δ when . 



 

δ = 2m Full wave plate. No change of the polarization state. 

δ = (2m +1) Half wave plate. The light is still linear but the plane of oscillation has 

been rotated so that the new plane of oscillation is orthogonal to the 

old. 

δ = (2m +1)/2 Quarter wave plate. If the incoming linear light oscillates at 45º to the 

optical axis of the plate, the amplitude of the two internal waves will 

be equal and the emerging light will be circularly polarized. Note that 

the reverse is also true, i.e. if circular light enters then the outgoing 

light will be linear. This will be used in the lab to prove that the 

longitudinal Zeeman light is circularly polarized. 

 

Optical axis 

Figure A2-2. A quarter wave plate (λ/4-plate) 

converts linear light to circular or vise versa. 

 


