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Part I

Abstract

This thesis describes a number of theoretical investigations concerning optical quantum memories
where the implementation is mainly intended for rare-earth-ion-doped crystals. Most of the
theoretical models are based on the Maxwell-Bloch equations which is a semi-classical model for
light-matter interactions.

Quantum information science is a new and rapidly developing field that concerns information
science based on quantum mechanics. Within quantum information science there are a number of
subfields, such as: quantum computing, quantum cryptography and quantum communication. A
quantum memory is an important component for all these subfields, especially in order to realize
long-distance quantum communication. The basic requirements for a quantum memory is the
ability to store qubits for a certain amount of time and release them on-demand.

The development of quantum memories is constantly moving forward and it was former
believed that high optical depth was neccessary to get a high efficient memory. A number of
publications recently published have shown that this is not neccessary. The idea is to include
a cavity to the protocols. With the cavity a moderate optical depth is needed in order to get
efficiency close to unity.

In this thesis three optical quantum memory protocols are considered: transverse/longitudal
CRIB and AFC. A theoretical investigation by simulations of the Maxwell-bloch equations com-
pares the different properties of these protocols. Moreover two different theoretical approaches
to explain recent experimental results concerning a rare-earth-ion-doped crystal inside a cavity is
derived and investigated. And finally a new scheme to improve the sharpness of the edges of a
spectral hole is demonstrated.
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Part II

Populärvetenskaplig sammanfattning

En vanlig dator är uppbyggd av ett antal komponenter. En viktig komponent i en vanlig dator är
minnet. Informationen inuti en vanlig dator best̊ar av bitar, som antingen kan ha värdena 0 eller
1. Minnets uppgift är att lagra bitar under en viss tid, samt skicka informationen vidare till en
annan komponent när det behövs.
En kvantdator är en ny typ av dator som potentiellt har förm̊agan att för vissa problem vara
mycket snabbare än en vanlig dator. Kvantdatorn behöver ett minne, precis som en vanlig
dator. Men för att en kvantdator ska kunna fungera behövs ett nytt typ av minne som kallas
kvantminne. Kvantinformationen inuti en kvantdator best̊ar av kvantbitar. Kvantbitar kan inte
bara ha värdena 0 eller 1, utan ocks̊a ett ”kanske-tillst̊and”. Det är bland annat tack vare detta
”kanske-tillst̊and” som en kvantdator kan bli bättre än en klassisk dator. Kvantminnets uppgift
är mycket likt ett klassiskt minne. Uppgiften är att lagra kvantbitar under en viss tid, samt skicka
kvantinformationen vidare till en annan komponent när det behövs.

P̊a Atomfysikavdelning inom Lunds universitet försöker man utveckla ett optiskt kvantminne.
Tanken med detta optiska kvantminne är att spara ljus inuti en kristall under en viss tid och
efter ett tag skicka ut ljuset igen. Det inkommande ljuset inneh̊aller kvantinformation, och denna
information f̊ar ej förstöras inuti kristallen. Kristallen som utgör kvantminnet best̊ar av bland
annat joner ifr̊an sällsynta jordartsmetaller. Dessa joner har speciella egenskaper som gör det
möjligt att kvantinformationen inte förstörs. Det är viktigt att ett kvantminne har hög effektivtet
s̊a att den mesta kvantinformationen som sparas i minnet kan skickas ut igen.

Denna uppsats handlar om att teoretiskt undersöka olika hög-effektiva optiska kvantminnen.
Uppsatsen är indelad i tre olika delar. I varje del s̊a tas formler fram som beskriver kristallens
växelverkan med det ljus som ska sparas. Dessa formler är i m̊anga fall för komplicerade att lösa
för hand. Av denna anledningen s̊a simulerar man formlerna i en vanlig dator. Med hjälp av
resultaten ifr̊an datorn kan man förutsäga vad som kommer att ske i verkligheten.
I första delen undersöks n̊agra olika typer av protokoll som finns till kvantminnen. Det finns
i huvudsak tre olika protokoll av optiska kvantminnen för de kristaller som används. De olika
protokollens för- samt nackdelar jämförs med hjälp av de resultat som simuleringarna ger.
I andra delen tas en modell fram med för att förklara nya experimentella resultat där man har satt
tv̊a speglar runt en kristall. Speglarna är inga vanliga speglar utan de är halvt genomskinliga vilket
skapar underliga effekter inuti kristallen. Dessa effekter kan förklaras med hjälp av den modell som
tas fram och de simulerade resultaten matchas mot de experimentella värdena.
I tredje och sista delen s̊a tas ett nytt koncept fram för att i framtiden förbättra kvaliten av
kvantminnen baserade p̊a en viss typ av kristall. Detta konceptet förklaras i detalj, dessutom s̊a
bevisas det att den fungerar i teorin.
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Part III

Introduction

1. BACKGROUND

Quantum information science is a new and rapidly developing field. Quantum cryptography
is one application inside this field that uses quantum mechanics to theoretically guarantee secure
communication [1]. A lot of exciting challenges remains in order to realize quantum cryptography
to its full potential in practise. One problem is that long-distance quantum communication needs
some sort of quantum repeater. With a quantum repeater it will be possible to send quantum
information around the globe. A quantum repeater has three main requirements in order to be
realized [2]:

� Distribution of entanglement

� Entanglement swapping

� Quantum memory

In this thesis the focus will be on the quantum memory. A quantum memory is very similar to a
classical memory in the sense that it should be able to reliably store and on-demand release infor-
mation. The difference is that a quantum memory should be able to handle quantum information.
A lot of theoretical proposals as well as experimental realizations for a quantum memory has been
done. Controlled Reversible Inhomogeneous Broadening (CRIB) first proposed by Moiseev and
Kröll in 2001 [3] is one example of a quantum memory scheme. A variation of the CRIB protocol
was experimentally proven to obtain well over 60% efficiency by Hedges et. al. in 2010 [4]. Another
interesting quantum memory scheme is the Atomic Frequency Comb (AFC), it was introduced by
Afzelius et. al. in 2008 [5]. Experimental results of 35% efficiency was shown by Amari et. al.
in the beginning of 2010 [6]. Recently in Lund at the Quantum information group, a quantum
memory based on the AFC protocol together with a cavity has been realized experimentally [7].
The fusion between the AFC protocol together with a cavity has been shown theoretically to give
efficiency close to unity given that the cavity is on resonance [8]. In this thesis a theoretical in-
vestigation of both the CRIB and the AFC scheme with and without a cavity is done as well as
improvements and suggestions around this topic.

2. PROBLEM STATEMENT AND PURPOSE

This thesis is divided into three different problems:

1. Understanding the advantages and disadvantages of the CRIB and the AFC quantum mem-
ory protocols is vital in order to create a high efficiency quantum memory in practise. The
analytical treatment of the quantum memory protocols are often simplified with respect to
the shape of the absorption profile in order to get an analytical solution. The problem is
that the experimental setup isn’t always as simple as the parameters used in the analytical
treatment. One way to extend the analytical treatment is to use numerical simulations with
more complex input parameters.
The purpose of this part is to learn more about the differences of the CRIB and the AFC
quantum memory protocols, compare their advantages and disadvantages and also see how
the shape of the absorption profile effects the efficiency by numerical simulations.

1



2. New experimental result has been obtained at the Quantum information group in Lund
considering a quantum memory realized with a rare-earth-ion-doped crystal inside a cavity
[7]. The goal of the experiment was to get a high efficiency quantum memory. The theoretical
motivation for this kind of experiment, with certain approximations, was made by Mikael
Afzelius and Christoph Simon [8]. But the experimental results where not the expected and
a model to understand the results is needed. For example some approximations made in the
previous theoretical investigation might not hold for this type of experimental setup.
The purpose of this part is to create a model that can explain the experimental results.
Predictions and recommendations can then be made of how to change the experimental
setup in order to get a high efficienct quantum memory.

3. Creating a spectral hole in the inhomogenous profile is a key concept for many applications.
Both the CRIB and the AFC scheme relies on the fact that there is one or several narrow
peak(s) in the absorption profile. Near the peak(s) (in the frequency-domain) there should
be ideally no absorbing ions in order to get a high efficienct quantum memory. Thus there
is a need to get as sharp structures as possible inside the inhomogenous profile.
The purpose of this part is to investigate if improvements can be made to the current hole
burning procedure in the inhomogenous profile in order to get more sharper structures.

3. STRUCTURE OF THIS THESIS

This thesis has seven different parts.

� The first and the second part is an introduction to quantum mechanics and the quantum
repeater.

� The third part is a theoretical derivation of the well-known Maxwell-Bloch equations (MB)
for a 2-level system. This model is a semiclassical model that treats the atoms quantum
mechanically and the light classically by Maxwell’s wave equation.

� The fourth part uses the MB equations in order to simulate the CRIB and AFC protocols,
this part will investigate point 1 in ”Problem statement and purpose”.

� The fifth and the sixth part of this thesis concerns point 2 in ”Problem statement and
purpose” where a rare-earth-ion-doped crystal inside a cavity is modelled in two different
ways. The first model is a simple model that sums all round-trips inside a cavity given a
certain absorption profile. The second model is more advanced and it’s basically an extension
to the MB equations, whereas the quantum memory efficiency can be tested.

� The last part concerns point 3 in ”Problem statement and purpose” where a scheme that
improves the sharpness of the edges of a spectral hole. A proof-of-concept is made with a
simplified model containing the MB-equations.
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Part IV

Quantum mechanics

4. THE DENSITY OPERATOR

The density operator is a vital operator in order to describe an ensemble of atoms. This operator
will be the ground-stone in the quantum mechanical postulate defined in Section 5. In the following
the definition of the density operator will be stated.

Definition 4.1. The density operator ρ can be defined from the spectral decomposition

ρ ≡
n∑
i=0

pi|ψi〉〈ψi| (1)

with the conditions that
∑n

i=0 pi = 1 and |ψi〉 are normalized state vectors in some Hilbert space.

Theorem 4.1. An operator ρ is the density operator associated to some ensemble, iff it satisfies
the conditions:
(1) ρ has trace equal to one.
(2) ρ is a Hermitian positive-semidefinite matrix.

Proof in [9], page 101.

5. POSTULATES

To understand quantum mechanics it is vital to understand the postulates of quantum
mechanics. There are four postulates that are the building blocks of quantum mechanics and
everything else in quantum mechanics are consequences of these statements. The postulates will
be stated in this section and they will be explained a little.

Postulate I
A closed physical system is a projective Hilbert space H that is called the state space. The
physical states of the system are represented as density operators on a state space. Given a state
|ψ〉 ∈ H the corresponding density operator is

ρ := |ψ〉〈ψ| (2)

Postulate II
The evolution of the closed quantum system from time t0 to time t1 is described by a unitary
transformation. This means that there exists a unitary operator U that is unique up to a phase
factor that connects a state ρ(t0) to ρ(t1) by

ρ(t1) = Uρ(t0)U † (3)

Postulate III
Quantum measurements onH whose state are represented as ρ are specified by a Hermitian operator
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O =
∑

x xPx called an observable. The probability of observing an outcome x is

PX(x) = Tr(Pxρ) (4)

given a certain outcome x the resulting density operator is

ρ′ =
1

PX(x)
PxρPx (5)

Postulate IV
Compostion of two state spaces HA and HB is isomorphic to HA ⊗ HB. For two independent
density operators ρA from HA and ρB from HB the joint state becomes

ρAB = ρA ⊗ ρB (6)

The first postulate sets up the world that the states live in. As can be seen the postulates describes
a closed physical system. Now what system is closed? Probably the only system that is closed is
the universe itself. When a model is built to explain some experiment, care has to be taken since
the experiments are not closed systems.
The second postulate says how the density operator changes between two times. The key here
is unitary operators, hence unitary operators are very important (unitary operators preserves the
normalization in order to interpret different outcomes a probability). This postulate is equilvalent
to the Schrödinger equation,

i~
d|ψ〉
dt

= H|ψ〉 (7)

The time evolution of a state of a closed system is described by the Schrödinger equation where H
is a Hermitian operator called the Hamiltonian.
The third postulate tells us how to measure a state. Note that when a measurement has been
performed the density operator is instantely changed. A useful expression for the expectation
value of an observable can be calculated by

〈O〉 =
∑
x

xPX(x) =
∑
x

xTr(Pxρ) = Tr(
∑
x

xPxρ) = Tr(Oρ) (8)

From this postulate the famous Heisenberg uncertainty principle can be derived. The uncertainty
principle states that for example an arbitrary accuracy can’t be obtained for the position and
momentum of an electron simultaneously.
The last postulate tells us how to composite two state spaces. The tensor product is important in
order to build a quantum computer of more than one qubit ([9], p. 80-96; [10], p. 30-32).

6. THE QUBIT

A classical computer have bits to represent information. A bit is like a flash light, either it
is turned on or off. This way a base 2 system is made up to store values. So what is different
in qubits? The answer is that the qubit does not only hold on or off, it also holds a quantum
superposition. The quantum superposition is used when multiple qubits are in use, for instance a
pair of qubits can be in four states and three qubits in eight different states. The important thing
is that the 2n states can be hold at the same time in a quantum computer but a classical computer
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can only hold one of 2n states at one time.
A single qubit is represented by the following notation

|ψ〉 = α|0〉+ β|1〉 (9)

the corresponding density operator is

ρ = |ψ〉〈ψ| = |α|2|0〉〈0|+ αβ∗|0〉〈1|+ α∗β|1〉〈0|+ |β|2|1〉〈1| (10)

The |0〉 and |1〉 can for example be the two different states an electron can have (spin up and spin
down).
The state-vector can be seen as a vector:

|ψ〉 =

(
α
0

)
+

(
0
β

)
=

(
α
β

)
(11)

The state set {|0〉, |1〉} can be seen as an orthonormal basis that spans a 2-dimensional vector
space. The density operator in this representation will then be a 2x2 matrix (the density operator
is called the density matrix due to this reason, in this thesis no difference is made between the
density operator and the density matrix):

ρ =

(
α
β

)(
α∗ β∗

)
=

(
|α|2 αβ∗

α∗β |β|2
)

(12)

α and β in Eq. (9) are complex numbers and the probability to measure the zero-state is |α|2 and
the probability to measure the one-state is |β|2. Note that these are the diagonal elements of the
density matrix. This can be expressed as

{
|α|2 + |β|2 = 1 ⇔

{
α = eiγsin( θ2)

β = eiγeiϕcos( θ2)
(13)

Note that the convention of α and β is chosen differently compared to for example Wikipedia: [11].
Given Eq. (13) we can write Eq. (9) as

|ψ〉 = eiγ(sin

(
θ

2

)
|0〉+ eiϕcos

(
θ

2

)
|1〉) (14)

The eiγ-term in Eq. (14) is taken away, the equation to represent the state is then as follows.

|ψ〉 = sin(
θ

2
)|0〉+ eiϕcos(

θ

2
)|1〉 (15)

The reason to remove the eiγ-term is because it won’t return any physics. This can be understood
by looking at the density operator of Eq. (14),

ρ =

(
sin( θ2)2 e−iϕcos( θ2)sin( θ2)

eiϕcos( θ2)sin( θ2) cos( θ2)2

)
(16)

the term eiγ has been multiplied by its complex conjugate. Since the density matrix contains all
physics that can be seen from an observer there is no loss in removing it. Eq. (15) can be visualized
as a point in the Bloch sphere of a single qubit (for the more general case see Theorem 8.2, there
is also the possibility to be inside the sphere). To visualize quantum mechanics is always a good
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idea since quantum mechanics is not always intuitive (classic mechanics is more understandable
for humans since we live in the ”big world”). But when studying atomic physics I learned to see
the world though the eyes of a child. Figure 1 are visualizing the θ and ϕ as degrees on Bloch
sphere, the degrees are real numbers. The Bloch vector is the vector with initial point in origo and
terminal point to a certain state in the Bloch sphere. In Figure 1 the Bloch vector has a length
equal to one.

FIG. 1: The Bloch sphere. Image taken from [11]. The groundstate is now chosen to be at
z = −1 instead of z = 1 as in [11].

7. MULTIPLE QUBITS

In the following an example with two qubits are shown. When two classical bits are represented
they have four possible states 00, 01, 10 and 11. The qubits has what is called four computational
basis states |0〉 ⊗ |0〉 := |00〉, |0〉 ⊗ |1〉 := |01〉, |1〉 ⊗ |0〉 := |10〉 and |1〉 ⊗ |1〉 := |11〉. This will give
the superposition the following equation

|ψ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉 =


α00

α01

α10

α11

 (17)

The set {|00〉, |01〉, |10〉, |11〉} can be seen as an orthonormal basis that spans a 4-dimensional vector
space. The new basis vectors are obtained by calculating the tensor product between the basis
vectors of two single qubits. Postulate IV states how to composite two state spaces in terms of the
density operator. For Eq. (17) the corresponding density operator is (the density matrix will be
of size 4x4, this matrix will not be stated)

ρ = |ψ〉〈ψ| (18)
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If there are two qubits in two different states we can calculate the tensor product between them to
get the Eq. (17) like this.

|ψ〉 = α1|0〉+ β1|1〉
|φ〉 = α2|0〉+ β2|1〉

|ψ〉 ⊗ |φ〉 = (α1|0〉+ β1|1〉)⊗ (α2|0〉+ β2|1〉)
= α1α2|00〉+ α1β2|01〉+ β1α2|10〉+ β1β2|11〉

In analogy with the single qubit, the sum of the absolute value square of the coefficients is equal
to one.

|α00|2 + |α01|2 + |α10|2 + |α11|2 = 1 (19)

This can be generalized to an arbitrary number of qubits. To understand how much better the
quantum computer potentially can be is to set the number of qubit to for instance n = 500, then 2n

would be a larger value than the estimated number of atoms in the observable universe. To store
all these complex numbers is of course not possible by a classical computer. But as the quantum
world is opening more and more for human, the possibilities are greater than we every can imagine
([9], p. 16-17).

8. PURE AND MIXED STATES

A pure state is a state that can be represented by a state vector, it means that the state is
known exactly. For a single qubit the quantum state can be expressed as in Eq. (9). When the
state vector isn’t enough to describe a quantum state the density operator is used. A pure state
can also be represented by the density operator and hence the density operator is a generalization
of the state vector. For a pure state the density operator looks like

ρ = |ψ〉〈ψ| (20)

where |ψ〉 is exactly known.
The denisty operator representation for a mixed state is a mixture of pure states. The mixed state
can in particular represent an ensemble of atoms, this will be used later in this thesis when deriving
the Bloch equations. When solving the Bloch equations numerically, space will be discretized. Every
discretized point in space contains a lot of atoms in reality. If every discretized point would be
represented by a state vector (a pure state) then the model assumes that there is only one atom
in every discretized point. Using the density operator instead will be a better approximation to
reality since now every discretized point can be described by an ensemble of atoms.
The opposite of a pure state is a completely mixed state ([12], p. 111). The completely mixed
state is represented by the density matrix as

ρ =
1

n
I (21)

where n is the dimension of the state space and I is the identity matrix of dimension n x n.
For example when a single qubit is used the opposite of a pure state is ρ = 1

2I = 1
2(|0〉〈0|+ |1〉〈1|).

Two useful theorems will be stated and proved. The second theorem is important in order to derive
the Bloch equations.
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Theorem 8.1. Let ρ be a density operator, then the following holds

Tr(ρk) 6 1 (22)

where k > 2 is an integer, with equality iff ρ is in a pure state.

Proof. In Theorem 4.1 the second condition is that ρ is Hermitian (this means that the density
matrix is normal, which leads us to use Theorem 12.5 in [13]). It says that a matrix can be
diagonalized by a unitary matrix with the eigenvalues on the diagonal iff the matrix is normal
(that is ρ = UDU † for some unitary matrix U and diagonal matrix D). Lets look at the trace
for one single density operator, and since it is Hermitian all eigenvalues are real (so the diagonal
element of D are all real).

Tr(ρ) = Tr(UDU †) = Tr(UU †D) = Tr(ID) = Tr(D) = 1 (23)

The trace is one according to the first condition in Theorem 4.1. This means that any element in
D is less or equal to one. Now lets look at the density operator to the power k.

Tr(ρk) = Tr(UDU †UDU †UDU †...UDU †) = Tr(UDkU †) = Tr(Dk) (24)

Since any element di in D is less or equal to one.

Tr(Dk) =

n∑
i=1

dki 6 1 (25)

For a pure state the trace is

Tr(ρk) = Tr(|ψ〉〈ψ|ψ〉〈ψ|...|ψ〉〈ψ|) = Tr(|ψ〉〈ψ|) = Tr(ρ) = 1 (26)

Conversely suppose

Tr(ρk) = Tr(Dk) = 1 (27)

for an arbitrary density matrix ρ, then according to Eq. (25) the diagonal elements di is less or
equal to one. If there exists one element equal to one it implies that it comes from a pure state.
And if di is less than one, then k must be equal to one to fulfil Eq. (27) and therefore ρ must be
a pure state.

Theorem 8.2. An arbitrary density matrix for a mixed state of one qubit can be written as

ρ =
1

2

(
1− rz rx + iry
rx − iry 1 + rz

)
(28)

where −→r = (rx, ry, rz) is a real vector that is called the Bloch vector and ||−→r || 6 1, with equality
iff ρ is a pure state.

Proof. For a single qubit the density matrix is of size 2x2.

ρ =

(
a b
c d

)
(29)

Lets start with the conditions in Theorem 4.1 and see what that gives for conditions on the
values of the matrix ρ.
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Hermitian:

ρ = ρ† =

(
a b
c d

)
=

(
a∗ c∗

b∗ d∗

)
(30)

So a and d must be real. And c and b are connected as:

b = g − ih (31)

c = g + ih (32)

where h and g are real.
Trace of ρ must be one which gives a+d = 1.
ρ must be positive semi-definite ⇔ λ ≥ 0 ([13], p. 124). By calculating the characteristic
polynomial and get the eigenvalues of ρ this condition can be used.

det(ρ− λI) =

∣∣∣∣ a− λ g − ih
g + ih 1− a− λ

∣∣∣∣ = λ2 − λ+ x = 0 (33)

where x = a− a2 − g2 − h2.
This gives the eigenvalues

λ1 =
1

2
+

√
1

4
− x (34)

λ2 =
1

2
−
√

1

4
− x (35)

And now applying the condition λ ≥ 0

1

2
−
√

1

4
− x ≥ 0⇐⇒ x ≥ 0 (36)

The density matrix that is stated in the theorem will be set equal to Eq. (30)

ρ =
1

2

(
1− rz rx + iry
rx − iry 1 + rz

)
=

(
a b
c d

)
(37)

This gives a =
1− rz

2
, g = rx/2 and h = −ry/2. Inserting this into Eq. (36) with x = a−a2−g2−h2,

the condition we wanted is obtained:

r2
x + r2

y + r2
z ≤ 1 (38)

The first part of the proof is done.

The density matrix for a single qubit pure state

ρ = |ψ〉〈ψ|
= (α|0〉+ β|1〉)(α∗〈0|+ β∗〈1|)
= αα∗|0〉〈0|+ αβ∗|0〉〈1|+ βα∗|1〉〈0|+ ββ∗|1〉〈1| (39)
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And in matrix form

ρ =

(
αα∗ αβ∗

βα∗ ββ∗

)
(40)

Which gives the following equation-system:


αα∗ = 1

2(1− rz)
ββ∗ = 1

2(1 + rz)
αβ∗ = 1

2(rx + iry)
βα∗ = 1

2(rx − iry)

⇔


αα∗ + ββ∗ = 1

2(1− rz + 1 + rz) = 1
αα∗ − ββ∗ = 1

2(1− rz − (1 + rz)) = −rz
αβ∗ + βα∗ = rx
i(αβ∗ − βα∗) = i(−iry) = ry

Lets look at the three last equations and use Eq. (16),
αα∗ − ββ∗ = sin2( θ2)− cos2( θ2) = −cos(θ) = −rz
αβ∗ + βα∗ = e−iϕsin(θ)/2 + eiϕsin(θ)/2 = cos(ϕ)sin(θ) = rx
i(αβ∗ − βα∗) = i(e−iϕsin(θ)/2− eiϕsin(θ)/2) = sin(ϕ)sin(θ) = ry

⇔


rx = cos(ϕ)sin(θ)
ry = sin(ϕ)sin(θ)
rz = cos(θ)

The above equation is called spherical coordinates with the radius one ([14], p. 27), this gives
||−→r || = 1 and hence a pure state has Bloch vector length equal to one.
Conversely, suppose ||−→r || = 1. Theorem 8.1 says that Tr(ρk) = 1 iff ρ is in a pure state where
k > 2, and in particular this is true for k = 2. Using Tr(ρ2) for the density matrix that is stated
in the theorem given that ||−→r || = 1

Tr(ρ2) =
1

4
((1− rz)2 + 2r2

x + 2r2
y + (1 + rz)

2) =
1

4
(2 + 2 ||−→r ||) = 1 (41)

Hence according to Theorem 8.1 the density matrix ρ is pure.
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9. TIME EVOLUTION OF THE DENSITY OPERATOR

For a state vector the time evolution is described by Eq. (7). In the following the time evolution
for the density operator will be derived:

d

dt
ρ(t) =

d

dt

n∑
i=0

pi|ψi(t)〉〈ψi(t)| (42)

=

n∑
i=0

(pi(
d

dt
|ψi(t)〉)〈ψi(t)|+ pi|ψi(t)〉(

d

dt
〈ψi(t)|)) (43)

=

n∑
i=0

(pi(
1

i~
H|ψi(t)〉)〈ψi(t)|+ pi|ψi(t)〉(−

1

i~
〈ψi(t)|H)) (44)

=
1

i~
H

n∑
i=0

pi|ψi(t)〉〈ψi(t)| −
1

i~

n∑
i=0

pi|ψi(t)〉〈ψi(t)|H (45)

=
1

i~
[H, ρ(t)] (46)

The equation above will be used in the derivation of the Bloch equations.

11



Part V

The Quantum repeater

10. SCALING ERRORS IN QUANTUM COMMUNICATION

The most common way to send quantum information is to send photons through an optical fiber.
The information can be encoded in the two-dimensional basis consisting of horizontal respective
vertical polarization of single photons. In an ideal world it would be possible to send quantum
information over very large distances. But in reality there are for example imperfections in the
optical fibers and detector noise that creates errors. It turns out that the probability of absorption
and depolarization of a photon in an optical fiber scales exponentially with the distance. This
introduces three complications:

1. The number of trials that is needed to transmit a photon grows exponentially with the length
of the fiber.

2. Imperfections in the detector can give dark counts (a dark count is when the detector registers
that a photon is detected, but in reality nothing came in to the detector). This implies that
the rate of the real photons reaching the detector must be higher than the dark count rate
otherwise the signal-to-noise drops to zero [1].

3. Even if a photon is successfully transmitted, the fidelity between the inital quantum state
and the received quantum state decreases exponentially with the length of the fiber (fidelity
is a measure of how similar two quantum states are [9]).

The mission of a quantum repeater is to improve the scaling of errors with respect to the length.
This will enable long-distance quantum communication [15].

11. DEMONSTRATION OF HOW A QUANTUM REPEATER WORKS

The goal of the quantum repeater is to create entanglement between two parties called Alice
(A) and Bob (B) where A and B are spatially separated. Entanglement is a property of quantum
states that has no analogue in classical mechanics. Since there is no classical analogue the phe-
nomena is very unintuitive. Even so it has been experimentally shown to be a property of nature.
Entanglement is a key-stone in for example Quantum Key Distribution (QKD) that enables secure
communication between two parties. If any third party tries to measure the communication sent
between the two parties the state will collapse. The third party can then be detected with some
probability [9].
In Figure 2 an illustration of how a basic setup for QKD looks like. A source in the middle sends
out two entangled photons through for example an optical fiber. One photon is sent to Alice and
one to Bob. The distance between them is d. As mentioned before the number of trials scales
exponentially with the distance, hence the distance d is limited. It’s at this point the quantum
repeater comes into play.
In order to for example double the distance between Alice and Bob a quantum measurement device
is put in the middle (can be seen in Figure 3). There are now two sources that sends out entangled
particles. The source to the left sends out two entangled photons, one photon to Alice and one
photon to the quantum measurement device. The source to the right sends out two entangled pho-
tons, one photon to Bob and one photon to the quantum measurement device. Inside the quantum
measurement device entanglement swapping is peformed. This makes the two photons inside the

12



FIG. 2: Illustration of the setup for QKD. Image from [16].

FIG. 3: Illustration of the setup together with a quantum measurement device that performs
entanglement swapping. Image from [16].

device to dis-entangle with their respectively photon and instead the photon that Alice has be-
comes entangled with Bobs photon [17]. At this point the quantum repeater scheme has created
entanglement between Alice and Bob with a distance of 2d between the parties. This concept can
now be generalized by building a chain of quantum repeaters shown in Figure 4. Notice that a
quantum memory is also introduced in this figure. The purpose of having a quantum memory in
this scheme is to get better performance [16].
Although the question remains: has the scaling problem been reduced?

To be able to answer this question a small investigation of the QBER (Quantum Bit Error Rate)
will be done. The QBER is defined as the ratio between the the wrong number of bits and the
total number of bits received (QBER = Pdet/(Pdet + Praw), where Praw is the probability to get
a correct bit and Pdet is the probability to get an error). The probability of getting a correct bit
is calculated to be: Praw = tlinkη

n, where tlink is the transmission coefficient (the probability that
a sent photon gets to the wanted detector given the total distance), η is the detector efficiency
and n is the number of sections of length d. The probability to get an error is calculated to be:

Pdet = (t
1/n
linkη + (1 − t1/nlink)pdark)

n − tlinkη1/n, where pdark is the probability to get a dark count.

FIG. 4: Illustration how a quantum repeater enables to create entangled photon to an arbitrary
distance. Image from [16].
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FIG. 5: Three different n is shown. The parameters are set to: η = 10%, pdark = 10−4 and fiber
attenuation α = 0.25dB/km. Image from [1].

Finally the normalized net rate (the number of succesfully transmitted photons over a period of
time) is ρnet = (Praw + Pdet) · fct(QBER), where the function fct denotes the fraction of bits
remaining after error correction and privacy amplification. For a more detailed description see ([1],
p.20-21). In Figure 5 an example of ρnet is plotted as a function of the distance. Three different n is
shown. The parameters are set to: η = 10%, pdark = 10−4 and fiber attenuation α = 0.25dB/km.
As can be seen when n = 1 the net rate drops to zero at 90km, while for n = 2 the net rate drops
to zero at 155km. The reason for a much lower net rate for several quantum repeaters is because
the detector efficiency is set to a low value (η = 10%).
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Part VI

The Maxwell-Bloch equations for a 2-level
system

The Maxwell-Bloch equations is a model that describes light-matter interaction. The model is
simplified so that numerical simulations is possible with only three nested loops. The equations is
called Maxwell-Bloch since the atoms are treated quantum mechanically by the Bloch equations
while the light is treated by the Maxwell’s wave equation.

12. DERIVATION OF THE BLOCH EQUATIONS

Starting of from Eq. (46) (the density matrix will always be time-dependent in this section
therefore ρ := ρ(t)) the Hamiltonian needs to be defined in order to describe the physics. In this
case there are only two energy-levels. The groundstate denoted as |g〉 with eigenvalue ~ωg and the
excited state denoted as |e〉 with eigenvalue ~ωe The Hamiltonian has two parts

H = H0 +HI(t) (47)

where H0 is the Hamiltonian for an unperturbed atom and HI(t) is a time-dependent perturbation.
The unperturbed Hamiltonian described as

H0 = ~ω0|e〉〈e| (48)

where ω0 = ωe − ωg is the transition frequency for the atom.
The time-dependent perturbation will be produced by a spatially 1-dimensional oscillating electric
field E(z, t). In the dipole approximation the perturbation can be described by

HI(t) = −ME(z, t) = −(µge|g〉〈e|+ µ∗ge|e〉〈g|)E(z, t) (49)

where M is the dipole moment operator and µge = −e〈g|z|e〉 is the transition dipole moment
between ground state and the excited state. The electric field is described as

E(z, t) = ξ(z, t) cos(ωLt− kz + ϕ(t)) (50)

= ξ(z, t)(cos(ωLt− kz) cosϕ(t)− sin(ωLt− kz) sinϕ(t)) (51)

where ξ(z, t) is the envelope of the field, k is the wavenumber, ϕ(t) is the phase and ωL is the laser
frequency ([18]; [19], p. 8-14).
The rotating wave approximation (RWA) is an approximation that assumes that the radiation
frequency is close to the atomic resonance:

|∆| = |ω0 − ωL| � ω0 (52)

where ∆ is called detuning.
This approximation will be used to simplify the equations. First of all we need to move from the
Schrödinger picture into the interaction picture. This is done by the unitary operator

U = e−iH0t/~ =

[
1 0

0 e−i(w0t)

]
(53)
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Thus the denisty matrix and Hamiltonian in this picture is ρ′ = U−1ρU resp. H ′ = U−1HU . Note
that for a unitary matrix the following holds U∗ = U−1. The time-evolution in this picture will
now be derived. Lets start of by rewriting the time-evolution for the density matrix.

i~
d

dt
ρ = [H, ρ] (54)

= Hρ− ρH (55)

= UU−1HUU−1ρUU−1 − UU−1ρUU−1HUU−1 (56)

= UH ′ρ′U−1 − Uρ′H ′U−1 (57)

= U(H ′ρ′ − ρ′H ′)U−1 (58)

⇔ (59)

i~U−1(
d

dt
ρ)U = H ′ρ′ − ρ′H ′ (60)

= [H ′, ρ′] (61)

The left hand side of Eq. (54) will be written in terms of ρ′.

d

dt
ρ =

d

dt
(Uρ′U−1) (62)

= (
d

dt
U)ρ′U−1 + U(

d

dt
ρ′)U−1 + Uρ′(

d

dt
U−1) (63)

Lets put the left hand side of Eq. (60) and Eq. (63) together

i~U−1(
d

dt
ρ)U = i~U−1((

d

dt
U)ρ′U−1 + U(

d

dt
ρ′)U−1 + Uρ′(

d

dt
U−1))U (64)

= i~(U−1(
d

dt
U)ρ′ + (

d

dt
ρ′) + ρ′(

d

dt
U−1)U) (65)

And finally Eq. (65) is inserted into Eq. (61) and now the time-evolution becomes

i~U−1(
d

dt
ρ)U = H ′ρ′ − ρ′H ′ (66)

⇔ (67)

i~
d

dt
ρ′ = [H ′, ρ′]− i~(U−1(

d

dt
U)ρ′ + ρ′(

d

dt
U−1)U) (68)

Note that

U−1(
d

dt
U) =

[
0 0
0 −iω0

]
(69)

(
d

dt
U−1)U =

[
0 0
0 iω0

]
(70)

by introducing G := i~U−1( ddtU) and Eq. (68) can now be written as

i~
d

dt
ρ′ = [H ′ −G, ρ′] (71)
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H ′ will now be explicitly stated

H ′ = ~
[

0 −µgeE(z, t)e−iω0t/~
(−µgeE(z, t)e−iω0t/~)∗ ω0

]
(72)

The off-diagonal terms will be further developed together with Eq. (51):

−µgeE(z, t)e−iω0t/~ = −µgeξ(z, t)(cos(ωLt− kz) cosϕ(t)− sin(ωLt− kz) sinϕ(t))e−iω0t/~(73)

= −µgeξ(z, t)
2~

((ei(−kz+(ωL−ω0)t) + e−i(−kz+(ωL+ω0)t)) cosϕ(t) (74)

+i(ei(−kz+(ωL−ω0)t) − e−i(−kz+(ωL+ω0)t)) sinϕ(t))) (75)

The RWA Eq. (52) will be used and neglect the fast oscillating term ei(ω0+ωL)t. Moreover the real
and imaginary Rabi frequencies will be introduced

Ωr := Ωr(t) =
µge
~
ξ(z, t) cosϕ(t) (76)

Ωi := Ωi(t) =
µge
~
ξ(z, t) sinϕ(t) (77)

The electric field can then be written as

E(z, t) =
~

2µge
(Ωr cos(ωLt− kz)− Ωi sin(ωLt− kz)) (78)

=
~

2µge
(ei(ωLt−kz)(Ωr + iΩi) + e−i(ωLt−kz)(Ωr − iΩi)) (79)

Now with the rotating wave approximation the Hamiltonian is denoted as H ′RWA,

H ′RWA = ~
[

0 −1
2(Ωr + iΩi)e

i(−kz−∆t)

(−1
2(Ωr + iΩi)e

i(−kz−∆t))∗ ω0

]
(80)

Also the global Hamiltonian in the interaction picture becomes

H ′RWA −G = ~
[

0 −1
2(Ωr + iΩi)e

i(−kz−∆t)

(−1
2(Ωr + iΩi)e

i(−kz−∆t))∗ 0

]
(81)

A transformation back to the Schrödinger picture by applying the inverse of the unitary operator
in Eq. (53) given the RWA will be done. Starting of from Eq. (66), but with the RWA

i~U−1(
d

dt
ρ)U = H ′RWAρ

′ − ρ′H ′RWA (82)

i~UU−1(
d

dt
ρ)UU−1 = UH ′RWAU

−1Uρ′U−1 − Uρ′U−1UH ′RWAU
−1 (83)

i~(
d

dt
ρ) = UH ′RWAU

−1ρ− ρUH ′RWAU
−1 (84)

Now the Hamiltonian in the Schrödinger picture with the RWA is

HRWA = UH ′RWAU
−1 = ~

[
0 −1

2(Ωr + iΩi)e
i(−kz+ωLt)

(−1
2(Ωr + iΩi)e

i(−kz+ωLt))∗ ω0

]
(85)
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The last step is to change the rotating frame and use the frequency ωL as reference frame. This
is done by applying the unitary transformation R in the same manner as above but without going
back to the original picture,

R =

[
1 0

0 e−i(ωLt−kz)

]
(86)

Starting of from Eq. (68),

i~
d

dt
ρ′′(t) = [H ′′RWA, ρ

′′(t)]− i~(R−1(
d

dt
R)ρ′′(t) + ρ′′(t)(

d

dt
R−1)R) (87)

where ρ′′(t) = R−1ρR and H ′′RWA(t) = R−1HRWA(t)R.
A similar expression is obtained for the additional terms on the right-hand side as above:

R−1(
d

dt
R) =

[
0 0
0 −iωL

]
(88)

(
d

dt
R−1)R =

[
0 0
0 iωL

]
(89)

The global Hamiltonian Hfinal is then (with G′ = i~R−1( ddtR)):

Hfinal = H ′′RWA −G′ = ~
[

0 −1
2(Ωr + iΩi)

(−1
2(Ωr + iΩi))

∗ ω0 − ωL

]
(90)

The Schrödinger equation can now be divided into 4 connected first order differential equations by
looking at each term in the density matrix separately,

ρfinal =

[
ρgg ρge
ρ∗ge ρee

]
(91)

i~
d

dt
ρfinal = [Hfinal, ρfinal] (92)

This is the result

dρgg
dt

=
i

2
((Ωr + iΩi)ρ

∗
ge − (Ωr − iΩi)ρge) (93)

dρge
dt

= i(
1

2
(Ωr + iΩi)(ρee − ρgg) + ρge(ω0 − ωL)) (94)

dρ∗ge
dt

= i(
1

2
(Ωr − iΩi)(ρgg − ρee)− ρ∗ge(ω0 − ωL)) (95)

dρee
dt

=
i

2
((Ωr − iΩi)ρge − (Ωr + iΩi)ρ

∗
ge) (96)

The Bloch equations will now be stated in terms of the Bloch vector from Theorem 8.2.
2ρgg = 1− rz
2ρge = rx + iry
2ρee = 1 + rz

⇔


rx = 2Re(ρge)
ry = 2Im(ρge)
rz = ρee − ρgg

(97)
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In order to figure out how the equations will look with the Bloch vector, one intermediate calculation
is done

d

dt
(ρee − ρgg) = i((Ωr − iΩi)(Re(ρge) + iIm(ρge))− (Ωr + iΩi)(Re(ρge)− iIm(ρge))) (98)

d

dt
(Re(ρge) + iIm(ρge)) = i(

1

2
(Ωr + iΩi)(ρee − ρgg) + (Re(ρge) + iIm(ρge))(ω0 − ωL)) (99)

and finally the Bloch equations are derived

drx
dt

= −∆ry − Ωirz (100)

dry
dt

= ∆rx + Ωrrz (101)

drz
dt

= Ωirx − Ωrry (102)

where ∆ = ω0 − ωL is the detuning ([20]; [21], p. 123-127; [22], p. 32-33).

13. DERIVATION OF THE MAXWELL WAVE EQUATION

Starting of from the well known Maxwell’s equations in SI units,

∇×H = j +
dD

dt
(103)

∇× E = −dB
dt

(104)

∇ ·D = ζ (105)

∇ ·B = 0 (106)

where H is the magnetic field, E is the electric field, D is the dielectric flux, B is the magnetic
flux, j is the current density of free carriers and ζ is the free charge density.
The following material equations will be used

D = εE + Ptotal (107)

Ptotal = Phost + P (108)

Phost = χεE (109)

B = µH + η (110)

where Ptotal is the macroscopic electric dipole polarization, Phost is the host material which is
linear, χ is the electric susceptibility, P is the polarization for the material of interest that will be
given from the Bloch vector. η is the magnetization, ε is the dielectric permeability and µ is the
magnetic permeability in the host medium.
Taking the curl of Eq. (104) gives
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∇× (∇× E) = −∇× dB

dt
(111)

∇(∇E)−∆E = −∇× d

dt
(µH + η) (112)

∇(∇E)−∆E = − d

dt
(µ∇×H +∇× η) (113)

Inserting Eq. (103) and Eq. (107) into Eq. (113)

∇(∇E)−∆E = − d

dt

(
µ

(
j + ε(1 + χ)

dE

dt
+
dP

dt

)
+∇× η

)
(114)

∇(∇E)−∆E = −µ
(
dj

dt
+ ε(1 + χ)

d2E

dt2
+
d2P

dt2

)
−∇× dη

dt
(115)

The following assumptions will be made: η = 0, j = σE, ζ = 0 and ∇E = 0 where σ is the
electrical conductivity introduced due to ohmic losses in the host material. Moreover for the host
material n2 := (1 + χ) is the constant refractive index squared. Eq. (115) turns into

∆E = µ

(
σ
dE

dt
+ εn2d

2E

dt2
+
d2P

dt2

)
⇔ ∆E − µσdE

dt
− n2

c2

d2E

dt2
= µ

d2P

dt2
(116)

where c = 1/
√
εµ is the speed of light in vaccum. Moreover assume that the ohmic losses is zeros

(σ = 0). This will give us the Maxwell wave equation in a medium, together with a host material
([23], p. 21-23; [24] p. 97-103; [25] p. 266-267)

∆E − n2

c2

d2E

dt2
= µ

d2P

dt2
(117)

The electric field is now written as Eq. (79) and inserted into Eq. (117), moreover assuming that
the space is one-dimensional:

~
2µge

(
d2

dz2
− n2

c2

d2

dt2

)
(ei(ωLt−kz)(Ωr + iΩi) + e−i(ωLt−kz)(Ωr − iΩi)) = µ

d2P

dt2
(118)

Note that

d2

dx2
(f(x)eiβx) = (f ′′(x) + 2iβf ′(x)− β2f(x))eiβx (119)

where f(x) is an arbitrary continous function and β constant. The slowly varying envelope
approximation (SVEA) will now be used. This approximation assumes that the f(x) is vary-
ing slowly in time compared to the laser frequency β. This gives the following inequalities
f ′′(x)� βf ′(x)� β2f(x), and hence

d2

dx2
(f(x)eiβx) =SV EA (2iβf ′(x)− β2f(x))eiβx (120)

SVEA will be used for the Rabi frequencies Ωr and Ωi, assuming that they are slowly variying
compared to the laser frequency ωL (Ω′′r/i � ωLΩ′r/i � ω2

LΩr/i).
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Developing the left-hand side in Eq. (118) (the wavenumber k := ωLn/c),

~
2µge

(
d2

dz2
− n2

c2

d2

dt2

)
(eiωL(t−zn/c)(Ωr + iΩi) + e−iωL(t−zn/c)(Ωr − iΩi)) = (121)

~
2µge

(
d2

dz2
− n2

c2

d2

dt2

)
(eiωL(t−zn/c)(Ωr + iΩi)) + c.c. =SV EA (122)

~
2µge

eiωL(t−zn/c)((−2i
ωLn

c

d

dz
(Ωr + iΩi)−

ω2
Ln

2

c2
(Ωr + iΩi))− (2i

ωLn
2

c

d

dt
(Ωr + iΩi)−

ω2
Ln

2

c2
(Ωr + iΩi))) + c.c. = (123)

−iωL~
µge

eiωL(t−zn/c)
(
n

c

d

dz
(Ωr + iΩi) +

n2

c2

d

dt
(Ωr + iΩi)

)
+ c.c. (124)

The macroscopic polarization will be expressed in terms of the expectation value of the dipole
moment integrated over all detunings:

P (z, t) = N

∫ +∞

−∞
g(∆)〈M〉d∆ (125)

where N is the number of atoms, g(∆) is the inhomogeneous profile and 〈M〉 is the expectation
value of the dipole moment. The inhomogenous profile satisfy the following condition ([26], p.
805):

1

2π

∫ +∞

−∞
g(∆)d∆ = 1 (126)

The expectation value of the dipole moment is calculated from quantum mechanics. This is how
the Maxwell wave equation is connected to quantum mechanics and hence this is a semi-classical
model. The atoms is treated quantum mechanicly while the light is treated classically. From Eq.
(8) the expectation value of the observable M can be calculated

〈M〉 = tr(ρM) (127)

= = tr(ρ(µge|g〉〈e|+ µ∗ge|e〉〈g|)) (128)

= ρgeµ
∗
ge + ρ∗geµge (129)

= ρgeµ
∗
ge + c.c. (130)

From Theorem 8.2:

ρge =
1

2
(rx + iry) (131)

Inserting Eq. (131) into Eq. (130) and also letting the density matrix elements oscillate as ei(ωLt−kz)

gives

〈M〉 =
1

2
(rx + iry)e

i(ωLt−kz)µ∗ge + c.c. (132)

Now Eq. (132) is inserted into Eq. (125)

P (z, t) =
1

4π
N

∫ +∞

−∞
g(∆)(rx + iry)e

i(ωLt−kz)µ∗ged∆ + c.c. (133)
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Developing the right-hand side of Eq. (117) (the wavenumber k := ωLn/c). SVEA will be used for
the Bloch vector components rx and ry, assuming that they are slowly variying compared to the
laser frequency (r′′x/y � ωLr

′
x/y � ω2

Lrx/y)

µ
d2

dt2

(
1

4π
N

∫ +∞

−∞
g(∆)(rx + iry)e

i(ωLt−kz)µ∗ged∆

)
+ c.c. = (134)

1

4π
µN

∫ +∞

−∞
g(∆)

d2

dt2

(
(rx + iry)e
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1

4π
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−∞
g(∆)(rx + iry)µ

∗
ged∆ + c.c. (137)

Now the right-hand side is equal to the left-hand side, that is Eq. (124) equal to Eq. (137)

−iωL~
µge

eiωL(t−zn/c)
(
n

c

d

dz
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d
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(Ωr + iΩi)

)
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−ω2
L

1

4π
µNei(ωLt−kz)
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−∞
g(∆)(rx + iry)µ

∗
ged∆ + c.c. (138)
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n
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)
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µgeωLµcN

4π~n
ei(ωLt−kz)
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−∞
g(∆)(rx + iry)µ

∗
ged∆ + c.c. (139)

Extract the real and the imaginary part as well as the term eiωL(t−zn/c) into two different equations
gives

dΩr

dz
+
n

c

dΩr

dt
=

α

2π

∫ +∞

−∞
g(∆)ryd∆ (140)

dΩi

dz
+
n

c

dΩi

dt
= − α

2π

∫ +∞

−∞
g(∆)rxd∆ (141)

where α =
|µge|2ωLN

2c~nε is called the absorption coefficient ([19], p. 14-16; [20]).

14. THE COMPLETE EQUATIONS

The postulates of quantum mechanics is only valid for a closed system. When performing an
experiment the system 2-level atom model is not a closed system. A quick fix to solve this problem
is to introduce two phenomenological decay constants T1 and T2. 1/T1 is the rate for an atom to
relax toward equilibrium. 1/T2 is the rate at which the coherence will decrease through for example
collisions. The complete Maxwell-Bloch (MB) equations is then Eq. (100)-(102) together with Eq.
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(140) and Eq. (141).

drx(z, t,∆)

dt
= −∆ry(z, t,∆)− Ωi(z, t)rz(z, t,∆)− rx(z, t,∆)

T2
(142)

dry(z, t,∆)

dt
= ∆rx(z, t,∆) + Ωr(z, t)rz(z, t,∆)− ry(z, t,∆)

T2
(143)

drz(z, t,∆)

dt
= Ωi(z, t)rx(z, t,∆)− Ωr(z, t)ry(z, t,∆)− 1 + rz(z, t,∆)

T1
(144)
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dΩr(z, t)
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α

2π
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−∞
g(∆)ry(z, t,∆)d∆ (145)

dΩi(z, t)

dz
+
n

c

dΩi(z, t)

dt
= − α

2π

∫ +∞

−∞
g(∆)rx(z, t,∆)d∆ (146)

15. RETARDED TIME AND THE RUNGE-KUTTA METHOD

A smart change in variables for the MB equations will be done in order to easily solve the
equations. Lets introduce two new variables

τ(z, t) = t− zn

c
(147)

z′(z, t) = z (148)

where τ := τ(z, t) is called retarded time and z′ := z′(z, t) is introduced for our convinence. The
chain rule will be applied [27].

d

dt
=

dτ

dt

d

dτ
+
dz′

dt

d

dz′
(149)

d

dz
=

dτ

dz

d

dτ
+
dz′

dz

d

dz′
(150)

An intermediate step in order to continue the calculations

dτ

dt
= 1

dz′

dt
= 0

dτ

dz
= −n

c

dz′

dz
= 1

(151)

Inserting the above in Eq. (149) and Eq. (150) gives

d

dt
=

d

dτ
(152)

d

dz
= −n

c

d

dτ
+

d

dz′
(153)
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These result will now be substituted into the MB equations,

drx(z′, τ,∆)

dτ
= −∆ry(z

′, τ,∆)− Ωi(z
′, τ)rz(z

′, τ,∆)− rx(z′, τ,∆)

T2
(154)

dry(z
′, τ,∆)

dτ
= ∆rx(z′, τ,∆) + Ωr(z

′, τ)rz(z
′, τ,∆)− ry(z

′, τ,∆)

T2
(155)

drz(z
′, τ,∆)

dτ
= Ωi(z

′, τ)rx(z′, τ,∆)− Ωr(z
′, τ)ry(z

′, τ,∆)− 1 + rz(z
′, τ,∆)

T1
(156)

dΩr(z
′, τ)

dz′
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α0

2π
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−∞
g(∆)ry(z

′, τ,∆)d∆ (157)

dΩi(z
′, τ)

dz′
= −α0

2π

∫ +∞

−∞
g(∆)rx(z′, τ,∆)d∆ (158)

These equations can now be solved numerically. In the numerical model g(∆) can’t be defined from
−∞ to +∞, therefore a different α will be used called α0. α0 := α(ω0)/g(ω0) where g(ω0) 6= 0
([22], p. 37). The numerical program will contain three nested loops. Whereas the outermost loop
runs over all z-slices, the middleloop runs over all detunings. The innermost loop contains the
Bloch equations, these can easily be solved by the classical Runge-Kutta method for given z′ and
∆ [28]. When the two inner loops has finished, the integral (the macroscopic polarization) for the
Maxwell part can be calculated. Note that the variable substitution is vital to get a efficient and
fast numerical program.
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Part VII

Quantum memory protocols

16. THEORY

A. Homogenous- , inhomogenous linewidth and spectral hole burning

The homogenous linewidth is the width in the frequency domain that an ion can absorb or emit
electromagnetic radiation. The homogenous linewidth has a lorentzian shape and the linewidth is
Γh = 1/(πT2), where T2 is the coherence time introduced in Section 14.
The doped ions in a rare-earth-ion-doped crystal are embedded in a crystal lattice. Due to imperfec-
tions in the lattice, the transition frequencies between ions in the crystal varies. The inhomogenous
profile is created by summing up all the ion’s homogenous linewidths with their respectively tran-
sition frequencies. In the 2-level MB equations the ions transition frequencies is given by the
detuning ∆ and the inhomogenous profile is given by the function g(∆). The inhomogenous profile
has a gaussian shape. For example in the case of a Pr3+ : Y2SiO5 the inhomogenous profile is in
the order of 5 GHz wide while the homogenous profile is in order of kHz.
A concept that is often refered to in this thesis is the absorption profile for an inhomogenous
profile mainly in the context of a spectral hole (sometimes called spectral pit). The absorption
profile refers to a three-dimensional picture where the x-axis represents a spatial one-dimensional
position in the crystal, on the y-axis represents the detuning and the z-axis represent the amount
of absorbers/ions (sometimes the spatial dimension is neglected). A spectral hole (stricty speaking
the term is: persistent spectral hole) can be created in the inhomogenous profile. Suppose the
atomic structure is limited to a 3-level system with two ground states and one excited state. An
incoming laser pulse excites some population from one ground state to the excited state. With
some probability the excited population will relax to one of the two ground states (given that
this is possible). The lifetime between the ground states are much longer than the lifetime in the
excited state. It’s thereby possible to ”burn away” population from one ground state to another.
This is called optical pumping. The incoming pulses is usually called burn-pulses for this reason.
Due to the broad inhomogenous profile, different ions with different transition frequencies can be
addressed by choosing the incoming laser frequency. By scanning the laser in frequency it’s possible
to create a wide spectral hole. When a spectral hole has been created some ions can be burned
back into the pit ([29], [22]). This burn-back procedure is important for all the quantum memory
protocols described in this thesis. To be able to have an absorption profile with one or more narrow
peaks inside a spectral hole is one key ingredient to get a high efficient quantum memory. In the
results and discussion section, different shapes of the burned-back peaks will be compared against
each other.

B. What is a quantum memory?

To get a feeling of what a quantum memory is, it’s good first to look at a classical computer
memory. A classical memory is a device that can store bits over time and on-demand release the
information. The bits can be stored in many different ways. For a classical computer the bits are
normally stored as charges or magnetization of memory cells.
A quantum memory is a device that can store qubits. The qubits should be able to be stored for
a certain amount of time and released on-demand. There are four things that are important when
realizing a quantum memory [30]:
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� The storage and recall efficiency: The efficiency is in most cases defined to be the ratio
between the output and input quantum state amplitudes squared.

� Fidelity: This is the overlap between the output and the input quantum state wave functions.

� Storage time: The separation in time between the input and output quantum states.

� Multi-mode: The number of optical modes that can be stored.

In the following sections a number of quantum memory protocols are described. All these protocols
have the same basic technique of exploiting the inhomogenous profile in for example a rare-earth-
ion-doped crystal. The advantage of using a rare-earth-ion-doped crystal is the long coherence
times (T2) at cryogenic temperature. The information carriers will consist of single photons, these
are coherently absorbed by an ensemble of atoms. The recall process of the photon is done by a
certain technique or structure that makes the atoms rephase. When the ensemble of atoms rephase
they generate a macroscopic polarization which affects the field according to Maxwell’s equations.
Optimally this process sends out a photon that contains the same quantum information as the
incoming photon that was stored [22].

C. Definition of efficiency

The efficiency of a quantum memory is defined as the ratio between the integral of the intensity
of the outgoing stored pulse and the integral of the intensity of the incoming pulse:

η =

∫ t3
t2
|Eecho(t)|2dt∫ t1

t0
|Einc(t)|2dt

(159)

where η is the efficiency, |Eecho(t)|2 is proportional to the outgoing stored pulse intensity and
|Einc(t)|2 is proportional to the intensity of the incoming pulse. The span in the time-domain of
the incoming pulse is between t0 and t1 and the span in the time-domain of the outgoing stored
pulse is between t2 and t3.

D. CRIB

Controlled reversible inhomogeneous broadening (CRIB) first proposed by Moiseev and Kröll
[3], exploits a hidden time-reversal symmetry. This symmetry forces the atomic ensemble to rephase
and reproduce the stored photon. This concept will be explained by two different implementations
called the transverse and the longitudal CRIB both relying on the DC Stark effect. The DC Stark
effect will have different effect for different type of crystals. For one type of crystal the doped ions
have two possible orientations of the permanent electric dipole with respect to a electric field. The
effect has been measured experimentally and shown in Figure 6. In the other type of materials
every ion has a permanent electric dipole moment in a random orientation with respect to a electric
field.

1. Transverse CRIB

The transverse CRIB protocol was introduced by M.Nilsson and Kröll [31] and investigated
analytically by Sangouard et. al. [32].

26



FIG. 6: The DC Stark effect for Eu : Y AlO3. The resonance frequency splits into two parts, this
is due to the fact that there are two possible orientations of the permanent electric dipole
moment of the doped ions with respect to the field. The stronger electric field the more

separation between the levels. What can be seen is one initial spectral hole for zero voltage that
splits in two parts for non-zero voltage ([22], p. 14).

In this subsection an intuitive step-by-step description of how the scheme works will be done. The
initial scheme was to include a third level in order to reverse the propagation direction of the
outgoing stored pulse. The reason to reverse the propagation of the outgoing stored pulse is to
exceed the maximum efficiency limit of 54% that occurs when the outgoing stored pulse propagates
in forward direction [32]. In the intuitive step-by-step description the implication of the third level
will be excluded. The ions in the crystal are assumed to have a permanent electric dipole moment
in a random orientation with respect to a electric field.

1. Prepare a peak of absorbing ions inside a spectral hole. This is shown in Figure 7a. The
peak will contain a large number of ions.

2. A constant electric field is now turned on. This will shift all the ions transition frequency
randomly since the ions are assumed to have a random orientation of their permanent electric
dipole moment. The inital peak is then spread out more or less uniformly, shown in Figure
7b. This inhomogenous profile in Figure 7b will now be defined as g(∆) (Eq. (125)).

3. A light pulse (for example a single photon) can now be sent in to the material. Suppose
the light pulse entered at time t = t0. The frequency-span of the incoming pulse should not
be broader than the uniform structure inside the spectral hole. Given that there are high
absorption (a lot of ions in in the initial peak) the pulse will be almost completely absorbed.
The incoming pulse will excite the ions in the inhomogenous profile and since they are spread
out over different frequencies they will start to dephase relative to each other.

4. At time t = t0 + τ the electric field is reversed, shown in Figure 7c. This will cause all ions
to reverse their shift: g(∆) → g(−∆) given that ∆ = 0 is the center position of the inital
peak, this is shown in Figure 7a. It should be noted that the transformation g(∆)→ g(−∆)
is a simplification that assumes that the inital peak is a delta function. Since all ions have
reversed their shift they will get in phase at time t = t0 + 2τ and thereby release the stored
pulse.
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(a) Step 1 (b) Step 2 (c) Step 4

FIG. 7: Step 1,2 and 4 are visualized for the transverse CRIB protocol. Figures from [29]

2. Longitudal CRIB/ GEM

Longitudal CRIB, also called gradient echo memory (GEM), first demonstrated experimentally
by Sellars et. al. [33] and in year 2010 efficiency as high as 70% was obtained experimentally [4].
The protocol was investigated analytically by Longdell et. al. [34]. The protocol will be explained
by a step-by-step description. GEM is easier to implement than transverse CRIB with respect
to get high efficiency. The reason for this is that GEM doesn’t suffer from the maximum 54%
efficiency limit in forward direction and hence GEM doesn’t need any third level to reverse the
propagation of the outgoing stored pulse. Even though GEM is easier to implement it should be
taken into consideration that a phase shift is applied for the outgoing stored pulse. Suggestions
to avoid the phase shift is to for example put two memories in row with opposite gradients and
therefore cancel the phase shift of the photon [34].
The doped ions in the crystal are assumed to have one possible orientation of their permanent
electric dipole moment with respect to the field (actually there are two orientations of the doped
ions but one of the orientation is excluded).

1. Prepare a peak of absorbing ions inside a spectral hole. This is shown in Figure 8a, note that
the z-dependency is included and the edges of the spectral hole are not shown compared to
Figure 7a. The peak will contain a large number of ions.

2. A linear electric field with respect to the z-position is turned on. This can mathematically
be represented as η(z, t) = η0 · (z − L/2) where η(z, t) is the electric field strength, η0 is
the maximum field strength and L is the total length of the crystal. All ions for a given
electric field strength will shift the same amount since they have the same orientation of
their permanent electric dipole moment with respect to the field. The result can be seen in
Figure 8b.

3. A light pulse (for example a single photon) can now be sent in to the material. Suppose the
light pulse entered at time t = t0. The frequency of the incoming pulse should not be broader
than the line broadening. Given that there are high absorption (a lot of ions in in the initial
peak) the pulse will be almost completely absorbed. The incoming pulse will excite the ions
in the inhomogenous profile and since they are spread out over different frequencies they will
start to dephase relative to each other.

4. At time t = t0 + τ the electric field is reversed: η(z, t > t0 + τ) = −η0 · (z − L/2), this
can be seen in Figure 8c. This will cause all ions within the same z-position to shift equally
much for any given frequency. At time t = t0 + 2τ all ions have aquired the same phase and
thereby release the stored pulse.
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(a) Step 1 (b) Step 2 (c) Step 4

FIG. 8: Step 1,2 and 4 are visualized for the longitudal CRIB protocol.

FIG. 9: Four AFC peaks inside a spectral hole.

E. AFC

The atomic frequency comb (AFC) protocol was introduced and analytically investigated by
Afzelius et. al. [5]. Experimental results of 35% efficiency was shown by Amari et. al. in the
beginning of 2010 [6]. The AFC protocol doesn’t rely on any DC Stark effect as the transverse/lon-
gitudal CRIB protocols. In this scheme it’s the equally spaced frequency comb in the absorption
profile that creates the rephasing. This protocol has been analytically proven to obtain a maximum
efficiency of 54% when outgoing stored pulse propagates in forward direction (note that this is the
same limit as for the transverse CRIB protocol) [5]. But by placing the crystal inside a cavity it
has been shown theoretically that efficiency up to 92% (whereas higher efficiency is only limited
by the finesse of the atomic frequency comb) given that the cavity is on resonance [8]. An example
of how the absorption profile should look like is shown in Figure 9 (the edges of the spectral hole
have been discarded). The frequency-span of the incoming pulse should not be smaller than the
distance between the AFC peaks and the pulse should not be broader than the total frequency-span
of the peaks. The distance between the AFC peaks is denoted as ∆ and the FWHM of the peaks
is denoted as γ. Suppose a light pulse (for example a single photon) is sent in to the material at
time t = t0. At time t = t0 + k2π/∆ (given that ∆ is in radians per second) where k is an positive
integer the ions will get in phase and release some parts of the stored pulse.
The finesse of the AFC is defined as: F := ∆/γ.

F. Difference between effective absorption and peak absorption

Two different notions of absorption will be used. The term effective absorption refers to how
much the absorption will be in average whereas the term peak absorption refers to how much
absorption the maximum value of a peak has. For example the AFC protocol in section 16 E the
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absorption profile consists of multiple peaks. In between the peaks in frequency (see Figure 9)
there are no ions absorbing. Therefore in this case the effective absorption will basicly be the
peak absorption divided by the finesse. For longitudal CRIB the peak absorption will be given
when the electric field is turned off. But the effective absorption will be given when the electric
field is turned on. The reason for this definition of the peak absorption is because this is the
value experimentalists are interested in when ordering a crystal (that is, the absorption when no
structure or electric field has been created/applied).

G. Simulation of outgoing stored pulse in backward direction

In Section 15 an explanation of how to simulate the Maxwell-Bloch equations in the forward
direction with three nested loops.
To easily be able to simulate when the outgoing stored pulse propagates in backward direction one
crucial simplification is done. Suppose the incoming pulse starts at retarded time T = t0 and ends
at retarded time T = t1. Then the trick is to use the simulation in the forward direction up until
retarded time T = t1. After T = t1 the most outerloop over the z-slices is performed in reverse
order. This will make the outgoing stored pulse propagate in backward direction since there is no
defined direction in the Rabi frequency. In reality this process will not be possible without some
kind process that reverses the direction of the rephasing of the ions. This normally leads to losses
in the system.

17. RESULTS AND DISCUSSION

All results in this section has been obtained by numerically solve the MB equations with the
Runge-Kutta method described in Section 15. The decay rates 1/T1 and 1/T2 are set to zero
otherwise noted.

A. Simulation of transverse CRIB

In an ideal world the reversed electric field for the transverse CRIB protocol will cause all ions
to reverse their shift: g(∆)→ g(−∆) (this occurs when the initial peak is infinitely narrow). This
is the assumption taken in the simulations for the transverse CRIB protocol. The incoming light
is made out of two gaussian pulses (blue curve in Figure 10), the first pulse has greater FWHM
than the second one. The red cure in Figure 10 shows the outgoing pulse as a function of retarded
time. As can be seen the efficiency is not very good when the outgoing pulse propagates in forward
direction. This coincide with the maximum efficiency limit described in Subsection 16 D 1.

In Figure 11b the intensity inside the material can be seen as a function of retarded time and
one spatial dimension, given that the outgoing stored pulse propagates in forward direction. The
electric field is reversed after at tr = 0.8µs in retarded time and hence the outgoing stored pulse
of the widest pulse comes at t = 1.6µs in retarded time.
Note that the incoming pulse is reversed in time. The reversion of the pulse can be understood
by the applied transformation g(∆) → g(−∆). Lets only look at two different positions in time
of the incoming pulse in Figure 11a: t1 = 0µs and t2 = 0.4µs (this is the time when the wide
respectively the narrow pulse has its center). At time t1 the first pulse enters the material and the
ions are getting excited and thus start to dephase. At time t2 the second pulse enters the material
and the ions are getting excited and thus start to dephase. So the ions that store the first pulse
have dephased for a longer time relative to the second pulse. When the field is reversed at time
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FIG. 10: Simulation of transverse CRIB. The last incoming pulse (the most narrow pulse) is sent
out of the material first. Outgoing stored pulse propagates in forward z-direction. The intensity

doesn’t reach over 54% efficiency.

(a) Incoming pulse (b) Intensity inside the material

FIG. 11: Simulation of transverse CRIB with spatial dimension included. Outgoing stored pulse
propagates in forward z-direction. The last incoming pulse (the most narrow pulse) is sent out of
the material first. Outgoing stored pulse propagates in forward z-direction. Maximum intensity

at z = 2.1 can be seen, the intensity doesn’t reach over 54% efficiency.

tr = 0.8µs, the ions that store the first pulse will rephase at time t1,rephase = t1+2·(tr−t1) = 1.6µs.
But the ions that store the second pulse will rephase at time t2,rephase = t2 + 2 · (tr − t2) = 1.2µs
and hence the second pulse will be sent out first.
The maximum intensity occurs at z = 2.1 in Figure 11b, this would be the optimal absorption of
a crystal in order to obtain the highest efficiency for the transverse CRIB in the forward direction.

In Figure 12 the intensity of the incoming pulse and outgoing stored pulse are shown as a function
of retarded time, given that the outgoing stored pulse propagates in backward direction. In Figure
13b the intensity inside the material is shown as a function of retarded time and one spatial
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FIG. 12: Simulation of transverse CRIB. Outgoing stored pulse propagates in backward
z-direction. The last incoming pulse (in the narrowest pulse) is sent out of the material first.

Efficiency close to unity.

(a) Incoming pulse (b) Intensity inside the material

FIG. 13: Simulation of transverse CRIB with spatial dimension included. Outgoing stored pulse
propagates in backward z-direction. The last incoming pulse (the most narrow pulse) is sent out

of the material first.

dimension, given that the outgoing stored pulse propagates in the backward direction. This gives
an efficiency of the outgoing stored pulse close to unity.

B. Simulation of AFC

In Subsection 16 E it was mentioned that the AFC protocol releases an outgoing stored pulse
at time t = t0 + k2π/∆ given that the incoming pulse entered at t = t0 and given that the spacing
between the peaks was ∆ radians. In Figure 14a the intensity inside the material can be seen,
the incoming pulse is shown in Figure 13a. Figure 14a for the AFC protocol and Figure 11b from
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(a) Intensity inside the material

FIG. 14: Simulation of AFC with spatial dimension included. Outgoing stored pulse propagates
in the forward z-direction. The last incoming pulse (the most narrow pulse) is sent out of the

material last.

FIG. 15: Simulation of AFC. Outgoing stored pulse propagates in the forward z-direction. The
last incoming pulse (the most narrow pulse) is sent out of the material last.

the transverse CRIB protocol gives similar output up to the retarded time 1.6µs, that is both
outgoing stored pulses are reabsorbed and releases a maximum of 54% of the incoming intensity.
The difference compared to the AFC protocol is that the reabsorbed pulse is yet again reemitted
inside the material after an equal amount of time. The explanation for this is the the ions rephase
periodicly as described in the theory section: t = t0 + k2π/∆, where k is a positive integer. Note
that the second reemitted pulse has lower intensity. The reason for the decrease is that ions inside
the AFC peaks within themself start to dephase relative to each other since they are not infinitely
narrow in frequency. If the crystal length would be cut at z = 11.9 the maximum intensity of the
outgoing pulse would be obtained, this can be seen in Figure 15.

33



(a) Efficiency (b) Shapes, descibed by Eq. (160)-(162)

FIG. 16: Efficiency for GEM given different absorption shapes of the initial peak. The outgoing
stored pulse propagates in the forward direction. The FWHM is different for the different shapes

in order to get the same effective absorption.

C. Simulation of efficiency for GEM and AFC in forward direction

Comparsion between the GEM and AFC protocol given that the echo propagtes in forward
direction will be shown. In Figure 16a three different efficiency curves is shown as a function of
peak absorption for GEM. The outgoing stored pulse propagates in the forward direction. The
absorption curves in Figure 16a overlap, this is due to that the gauss, supergauss and lorentz
function (shown in Figure 16b) are chosen such that they all contribute to the same effective
absorption.
The lorentz function is described as:

L(ω) =
(γLor/2)2

ω2 + (γLor/2)2
(160)

where γLor = 1
8.5 MHz.

The gauss function is described as:

G(ω) = e−ω
2ln(2)/(γGau/2)2 (161)

where γGau = 1
6 MHz.

The supergauss function is described as:

SG(ω) = e−ω
8ln(2)/(γSGau/2)8 (162)

where γSGau = 1
5.5 MHz.

The difference between effective absorption and peak absorption is described in Section 16 F.
The efficiency is getting close to unity as the absorption gets higher and hence the GEM protocol
can give high efficiency when the outgoing stored pulse propagates in the forward direction.
In Figure 17a three different efficiency curves is shown as a function of peak absorption for AFC.

The outgoing stored pulse propagates in forward direction. The absorption curves overlap, this is
due to that the gauss, supergauss and lorentz function (shown in Figure 17b) is chosen such that
they all contribute to the same effective absorption.
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(a) Efficiency (b) AFC structure, the single peaks is descibed by
Eq. (160)-(162)

FIG. 17: Efficiency for AFC given different absorption shapes of initial peaks. Outgoing stored
pulse propagating in forward direction. The FWHM is different for the different shapes in order

to get the same effective absorption (hence the finesse is different).

Note that the efficiency never reaches above 54%. The reason that the efficiency doesn’t reach
the 54% analytical limit is due to two main reasons. The first reason is that the peaks in the
AFC structure have a finite finesse that leads to dephasing within the AFC peaks. The second
reason is that the incoming pulse is not a perfect pulse but is actually cut-off due to the finite
simulation time. Hence some frequency components of the pulse are outside of the AFC structure
and are not absorbed. As can be seen in both Figure 16a and 17a the shape of the peaks are very
important to get high efficiency. The sharper slope on the peaks, the better. The Lorentz shape
never reaches over 30% efficiency in any of the cases. The supergauss gives the best efficiency of
these three different shapes. Note that the GEM protocol needs higher peak absorption than the
AFC protocol in order to absorb the incoming pulse.

D. Simulation of efficiency for GEM and AFC in backward direction

In Figure 18a three different efficiency curves are shown as functions of peak absorption for GEM.
The outgoing stored pulse propagates in backward direction. The absorption curves coincide, this
is due to that the gauss, supergauss and lorentz function (shown in Figure 18b) is chosen such that
they all contribute to the same effective absorption. GEM seems to give fairly high efficiency in
backward direction, but not as high as the forward direction given the same peak absorption (can
be seen by comparing Figure 16a and 18a).
In Figure 19a, three different efficiency curves are shown as function of peak absorption for AFC.

The outgoing stored pulse propagates in the backward direction. The absorption curves coincide,
this is due to that the gauss, supergauss and lorentz functions (shown in Figure 19b) are chosen
such that they all contribute to the same effective absorption. The efficiency is now not limited by
the 54% efficiency and hence efficiency close to unity can be reached.
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(a) Efficiency (b) Shapes, descibed by Eq. (160)-(162)

FIG. 18: Efficiency for GEM given different absorption shapes of the initial peaks. Outgoing
stored pulse is propagating in the backward direction. The FWHM is different for the different

shapes in order to get the same effective absorption.

(a) Efficiency (b) AFC structure, the single peaks is descibed by
Eq. (160)-(162)

FIG. 19: Efficiency for AFC given different absorption shapes of the initial peaks. Outgoing
stored pulse propagating in the backward direction. The FWHM is different for the different

shapes in order to get the same effective absorption (hence the finesse is different).

18. CONCLUSIONS

Three different quantum memory protcols has been introduced. A summary of the advantages
and the disadvantages for the different protocols will be listed given the theory and the results in
this section:

Transverse CRIB
Advantages:

� The electric field can be reversed at any given time. More freedom to decide when to release
the outgoing stored pulse.
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Disadvantages:

� A constant electric field must be applied.

� High peak absorption is needed for the inital peak.

� High efficiency not possible when the outgoing stored pulse propagates in the forward direc-
tion.

GEM
Advantages:

� High efficiency possible when the outgoing stored pulse propagates in the forward direction.
Therefor easier to implement.

� The electric field can be reversed at any given time. More freedom to decide when to release
the outgoing stored pulse.

Disadvantages:

� A linear electric field gradient must be applied.

� High peak absorption is needed for the inital peak.

� The outgoing stored pulse aquires a phase shift.

AFC
Advantages:

� The Stark shift isn’t neccessary, this makes it easier to implement.

� The peak aborption is basically the effective absorption multiplied by the finesse. The peak
absorption doesn’t have to be too high.

Disadvantages:

� High efficiency not possible when outgoing stored pulse propagates in the forward direction.

� The emission of the outgoing stored pulse is given by the spacing between the AFC peaks,
this can’t be changed once the photon has entered the material. Less freedom when to release
the outgoing stored pulse.
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FIG. 20: Crystal inside a cavity, reflectivity and transmission shown in percent.

Part VIII

Cavity simulations by interference

19. THEORY

A quantum memory scheme has recently been realized experimentally in Lund at the Quantum
information group [7]. The scheme has been suggested and analytically investigated by several
theoretical papers, for example one paper by Mikael Afzelius and Christoph Simon [35] and one
paper from Sergey A. Moiseev et. al. [36]. The paper from Mikael Afzelius and Christoph Simon
suggest to use the AFC protocol for a crystal inside a cavity. The advantages of having a cavity
for the AFC protocol is to enhance the absorption and extend the limit of 54% efficiency without
using a third energy-level ([5], p. 2).
The idea of this section is to extend the paper by Mikael Afzelius and Christoph Simon and in
addition understand the experimental results.

A. Derivation of transmission and reflection spectrum

Figure 20 illustrates the experimental setup. A 2mm crystal is placed between two partially
transparent mirrors with different reflectivity. When a light pulse enters from the left in Figure
20 either constructive or destructive interference will occur inside the medium. Constructive in-
terference happens for certain frequencies, these are called resonance frequencies. Light will be
transmitted out of the crystal only for the resonance frequencies given that the light is not totally
absorbed. In the following the transmission and reflection spectrum will be theoretically calculated
in the simplest possible way. When a pulse comes in on a certain frequency the phase will change
depending on the refractive index. Lets assume that the incident complex wave can be described
by the following equation:

E0(t) = E0e
iωt (163)

where E0 is the initial size of the amplitude, t is the time and ω is the frequency. For every
roundtrip inside the cavity a phase shift and some attuenuation δ(z, ω) is introduced. The δ(z, ω)
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in this case is defined as:

δ(z, ω) := −kz = ω(−nr(ω) + ini(ω))z/c (164)

where k is the wave-number, z is the distance, c is the speed of light in vaccum, nr(ω) and ni(ω)
are the real respectively imaginary refractive index. The wave from Eq. (163) will now be extended
with the phase shift δ(z, ω), this results into:

E(ω, t, z) = E0(t)eiδ(z,ω) (165)

= E0e
iωteiω(−nr(ω)+ini(ω))z/c (166)

= E0e
iωte−iωnr(ω)z/ce−ωni(ω)z/c (167)

Note that the term e−ωni(ω)z/c introduces a damping effect. The intensity of the wave is attenuated
as the square whereas the absorption coefficient can be identified ([37], p. 170-173):

|e−ωni(ω)z/c|2 = e−2ωni(ω)z/c = e−α(ω)z (168)

⇔ (169)

ni(ω) = α(ω)
c

2ω
(170)

When comparing with experimental data the convention is to measure absorption in terms of
αL(ω). This will introduce the following definition: α(ω) := αL(ω)/L, where L is the length of the
crystal. The absorption αL(ω) is given from experimental data so the last unknown parameter is
the real refractive index. It turns out that the real and the imaginary parts of the refractive index
have a strong connection by the Kramer-Kronig relations ([38], p. 13):

nr(ω) = n(∞) +
1

π
P

∫ +∞

−∞

ni(ω
′)

ω′ − ω
dω′ (171)

ni(ω) = − 1

π
P

∫ +∞

−∞

nr(ω
′)− n(∞)

ω′ − ω
dω′ (172)

where n(∞) = 1.8 is assumed so that the host material is taken into account and P is called the
Cauchy principal value that removes the singularity

P

∫ +∞

−∞

1

ω′ − ω
dω′ := lim

ε→0+

(∫ w−ε

−∞

1

ω′ − ω
dω′ +

∫ +∞

w+ε

1

ω′ − ω
dω′
)

(173)

Eq. (171) can easily be solved numerically together with a small trick that approximates the
solution. Instead of using the Cauchy principal value the idea is to move the singularity to the
imaginary plane. First lets reformulate the equation:

nr(ω) = n(∞) +
1

π
P

∫ +∞

−∞

ni(ω
′)

ω′ − ω
dω′ (174)

= n(∞) +
1

π
P

∫ +∞

−∞

ni(ω
′)(ω′ − ω)

(ω′ − ω)2
dω′ (175)

= n(∞) + lim
ε→0

1

π
P

∫ +∞

−∞

ni(ω
′)(ω′ − ω)

(ω′ − ω)2 + ε2
dω′ (176)
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The roots of the denominator are ω′ = ω± iε, so by not taking the limit and instead choose ε small
enough the singularity is removed from the real axis to the imaginary plane and hence,

nr(ω) ≈ n(∞) +
1

π
P

∫ +∞

−∞

ni(ω
′)(ω′ − ω)

(ω′ − ω)2 + ε2
dω′ (177)

where ε is small.
The transmission/reflection spectrum will be calculated by summing up all the fields coming out
from the front/back of the crystal. The intensity is calculated by taking the absolute value squared
of the field. The cavity transmittance is calculated by taking the ratio between the transmission
intensity and the incoming intensity . The intensity coefficients are defined as R + T = 1 where
R is the reflection coefficient and T is the transmission coefficient. The amplitude coefficients are
defined as r =

√
R and t =

√
T ([39], p. 418). The sum is illustrated in Figure 27 and the cavity

is unfolded for convenience. The total sum is calculted below:

FIG. 21: Model for the cavity.

Et(ω) = E(ω, t, L)t1t2 + E(ω, t, 3L)t1t2r1r2 + E(ω, t, 5L)t1t2(r1r2)2 + ... (178)

= E0e
iωtt1t2e

ikL
∑
j=0

(ei2kL(r1r2))j (179)

=
E0e

iωtt1t2e
ikL

1− ei2kLr1r2
(180)

Er(ω) = E(ω, t, 0)r0e
iπ + E(ω, t, 2L)t1r2t0 + E(ω, t, 4L)t1r2t0(r1r2)1 + ... (181)

= E0e
iωt(−r0 + t1r2t0e

i2kL
∑
j=0

(ei2kL(r1r2))j) (182)

= E0e
iωt(−r0 +

t1r2t0e
i2kL

1− ei2kLr1r2
) (183)

where Eq. (179) and Eq. (182) contains a geometric sum that is evaluated [40].
Finally the cavity transmittance and reflectivity is calculated by taking the ratio between the
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outgoing intensity and initial intensity:

Tc(ω) = |Et(ω)/E0(ω)|2 =

∣∣∣∣ t1t2e
ikL

1− ei2kLr1r2

∣∣∣∣2 (184)

Rc(ω) = |Er(ω)/E0(ω)|2 =

∣∣∣∣− r0 +
t1r2t0e

i2kL

1− ei2kLr1r2

∣∣∣∣2 (185)

The material constants L, r0, t0, r1, t1, r2, and t2 is known from the crystal.

B. Mode spacing

Constructive interference inside a cavity will happen for certain frequencies. If the phase has
changed by a multiple of 2π maximum constructive interference will be obtained (given that the
frequency is given in radians/second). This is the round-trip phase condition:

φ(ω) := ωnr(ω)2L/c = q2π (186)

where φ(ω) is the phase, ω is the angular frequency, 2L is the round-trip length, c is the velocity of
light in vaccum, n is the real refractive index and q is a positive integer. The resonance frequencies
of the cavity can then be derived by rewriting Eq. (186):

ωq =
q2πc

nr(ω)2L
(187)

where ωq is the resonance frequency for mode q.
For a cold cavity with only the host material present where the refractive index nhost = nr(ω) will
be assumed to be constant for all frequencies. The mode spacing can then be calculated as

∆ωmode = ωq+1 − ωq =
2πc

2Lnhost
(188)

But in general the refractive index is not constant and depends on the frequency, this makes the
mode spacing calculation a little bit more complicated. By Taylor expanding to first order the real
refractive index is approximately nr(ωq+1) ≈ nr(ωq) + n′(ωq)∆ωmode, using this together with Eq.
(187) an approximated expression for the mode spacing can be calculated,

∆ωmode = ωq+1 − ωq ≈
2πc

2L

1

nr(ω) + ω dnr(ω)
dω

∣∣∣∣
ωq

(189)

The FWHM of a resonance peak can be approximated analytically as well, but this will not be
done in this thesis. The only thing to note about the approximated FWHM is that it will be
proportional to the mode spacing ∆ωmode ([25], p. 432-437).

C. Group velocity

The group velocity will be an important tool to understand the results in the next section. A
small introduction about group velocity will be made. The definition of the group velocity given
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Name Value

t0
√

0.2

t1
√

0.2

t2
√

0.003

r0

√
0.8

r1

√
0.8

r2

√
0.997

TABLE I: Constants for cavity simulations.

that the second and higher order derivatives of the real refractive index is negligible:

vg(ωc) :=

(
dω

dk

)
ωc

=
c

ng(ωc)
=

c

nr(ω) + ω dnr(ω)
dω

∣∣∣∣
ωc

(190)

where ω is the angular frequency, ωc is the central angular frequency, k is the wavenumber,
ng(ωc) := nr(ωc) + ωc

dnr(ωc)
dω is the group refractive index and c is the velocity of light in vac-

cum ([38], p. 17-19). The group velocity exist due to interference between different frequencies
and the envelope of a pulse travels at the group velocity due to constructive interference and de-
structive interference. Note that under three different circumstances the group velocity can be very
different than the phase velocity.

� If nr(w) ≈ −w dnr(ω)
dω the group refractive index will be close to zero and hence the group

velocity will be larger than the speed of light in vaccum. Important to note is that this
doesn’t break the theory of special relativity since it’s not the signal or information that
travels faster than speed of light of vaccum [41]. A deeper discussion about fast light is out
of the scope of this thesis.

� If nr(w) � w dnr(ω)
dω the group velocity will be much slower than the phase velocity, this is

called slow light. At the Quantum information group in Lund very low group velocity has
been measured experimentally, for example 2200 m/s ([42], p. 40). Slow light effects will be
one key point in the next section.

� The last case will be if nr(ω) < −ω dnr(ω)
dω then the group velocity propagate in opposite

direction relative to the phase velocity.

20. RESULTS AND DISCUSSION

For all simulations in this section some parameter will be constant, these are represented in
Table I

A. Cold cavity

First of all lets assume that there is no inhomogenous profile. This will result in a constant
real refractive index of 1.8 and a constant imaginary refractive index of 0 (the refractive index of
the host material). The length of the crystal is set to L = 0.00200010 m, L = 0.00200016 m and
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L = 0.00200019 m to the see the length dependence of the resonance frequencies. The result can
be seen in Figure 22. Some longitudal modes can be seen and as the length changes the resonance
frequencies changes, moreover the transmission peaks FWHM is in range of GHz. Comparsion

(a) Transmission spectrum (b) Reflection spectrum

FIG. 22: Simulation of a cavity with no absorbing ions present, refractive index from host
material set to 1.8. Zero detuning is at 5 · 1014 Hz.

between the analytical expression in Eq. (188) and the numerical simulations will be done to see if
they coincide (this is done in frequency (1/s), therefore the factor 2π is removed from the analytical
expression),

∆ωanalyticalmode =
c

2Lnhost
≈ 41.63GHz (191)

∆ωnumericalmode ≈ 41.66GHz (192)

where ∆ωnumericalmode is measured in Figure 22 (distance between the red peaks), L ≈ 0.002m and
nhost = 1.8. The values coincide very well.

B. Spectral hole as a supergaussian

In the following a spectral hole from a supergauss function with a width of almost 20 MHz will
be included inside the inhomogenous broadening. The result can be seen in Figure 23, note that
the FWHM of the resonance frequency peak has decreased from being in the range of GHz to be
in the range of MHz! This effect can understood by looking at Eq. (189) and the fact that the
FWHM of the resonance peak is approximately proportional to Eq. (189):

FWHM ∝ ωq+1 − ωq ≈
2πc

2L

1

nr(ω) + ω dnr(ω)
dω

∣∣∣∣
ωq

=
2π

2L
vg(ωq) (193)

so the FWHM and the mode spacing are proportional to the group velocity introduced in Subsec-
tion 19 C. In Figure 24a the real refractive index is shown. As can be seen the difference between
the maximum value and the minimum value of the refractive index inside the spectral hole is not
large, so dnr(ω)

dω is actually small. So at first glance it’s hard to believe that the group velocity can
be three orders of magnitude smaller than the phase velocity. But the wavelength of the incoming
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(a) Transmission spectrum (b) Reflection spectrum

FIG. 23: Simulation of a cavity with a spectral hole present inside the medium. The spectral hole
is represented as a supergaussian and the width is almost 20 MHz. The length of the crystal is

chosen so that the transmission peaks is centered in the spectral hole: L = 0.00200013666m. The
real refractive index and absorption profile has been scaled in order to fit into the plot. Peak

absorption αL = 5 on the edge. Zero detuning is at 5 · 1014 Hz.

light is around 606nm and hence the angular frequency ω is in the order of 1015 rad/s and is mul-

tiplied by the derivative of the real refractive index. Since nr(ω) < ω dnr(ω)
dω a simplified expression

for the group velocity is:

vg(ωc) ≈
c

ω dnr(ω)
dω

∣∣∣∣
ωc

(194)

So in the case of slow light the group velocity is inversely proportional to the derivative of the
real refractive index. The ratio between the FWHM of the transmission peaks from Figure 22 and
Figure 23 is roughly the same as the ratio between the group velocity for a cold cavity (for a cold
cavity the derivative of the real refractive index is zero and hence: vg = c/nhost) and the group
velocity in Figure 24b. When studying Figure 24b in more detail note that the group velocity is
much lower near the edges of the spectral hole (the edges of the spectral hole are just outside the
x-axis values at ±10 MHz) and hence the cavity transmission peak will be smaller near the edges
of the spectral hole. This effect can be seen by comparing the FWHM of the transmission cavity
peaks between Figure 23 and Figure 25.

C. Spectral hole together with the AFC protocol

In a paper by Mikael Afzelius and Christoph Simon the derivations in the second half of the
paper assumes that the cavity is on resonance for the frequencies of interest. With this assumption
they show that the efficiency can be as high as 92% where the efficieny is only limited by the finesse
of the comb. While this sounds promising the question remains whether this assumption is true
or not. And if it’s true what condition must hold for the absorption profile. In the following some
results will be shown that investigates this assumption. To obtain 92% efficiency the finesse of
the frequency comb should be equal to 10 and the single pass effective absorption (optical depth)
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(a) Real refractive index (calculated by Eq. (177)) (b) Group velocity (calculated by Eq. (190))

FIG. 24: Numerical results for the real refractive index and the group velocity at the center of
the spectral hole in Figure 23. Zero detuning is at 5 · 1014 Hz.

(a) Transmission spectrum (b) Reflection spectrum

FIG. 25: Simulation of a cavity with a spectral hole present inside the medium. The spectral hole
is represented as a supergaussian and the width is almost 20 MHz. The length of the crystal is

set to L = 0.00200022m. The real refractive index and absorption profile has been scaled in order
to fit into the plot. Peak absorption αL = 5 on the edge. Zero detuning is at 5 · 1014 Hz. The
group velocity is lower near the edge of the spectral hole this is the reason for the difference in

FWHM of the transmission peaks between this figure and Figure 23.

45



should be αeffectiveL = 0.1. This means that the absorption of the AFC peaks should be set to
αL = 1 ([35], p. 3-4).
At the Quantum information group in Lund the AFC peaks are made by initially burn a spectral
hole. When the spectral hole has been created some ions are sent back into the spectral hole in
such a way that they are forming an atomic frequency comb (AFC). A theoretical example of how
the absorption profile might look like after this procedure is shown in Figure 26.

FIG. 26: AFC peaks are put back into a spectral hole. Example of the absorption profile with the
AFC protocol, finesse=10, number of peaks=6. Peak absorption αL = 5 on the edge.

(a) Transmission spectrum (b) Reflection spectrum

FIG. 27: Simulation of a cavity with a spectral hole together with the AFC protocol inside the
medium, finesse=10, number of peaks=6. The spectral hole is represented as a supergaussian and
the width is almost 20 MHz. The length of the crystal is set to L = 0.00200013666 m. The real

refractive index and absorption profile have been scaled in order to fit into the plot. Peak
absorption αL = 5 on the edge. Zero detuning is at 5 · 1014 Hz. Note that all values are the same

as in Figure 23 except that there are now AFC peaks present.

By looking at the transmission spectrum it will be possible to some extent figure out what
conditions and changes that must be done to the absorption profile in order to be on resonance.
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From Figure 27a it can be seen that only the two peaks in the middle seems to be on resonance
with the cavity. The result of this can be seen in Figure 27b where the frequencies in between the
outermost AFC peaks are more or less 100% reflected. One effect that is important to note is that
the AFC peaks themself change the real refractive index (due to the Kramers-Kronig relations)
and thereby create resonance for some frequencies near themselfs. This can be seen from Figure
27a where there are some narrow transmission peaks just beside the AFC peaks.
A way to enhance the resonance around the AFC peaks is to lower the edges of the pit. In Figure
28 the edges peak absorption is set to αL = 1. Now in Figure 28a it can be seen that in between
the AFC peaks there are now transmission, this means that the resonance condition is more or less
completely fulfilled for this kind of absorption profile.

(a) Transmission spectrum (b) Reflection spectrum

FIG. 28: Simulation of a cavity with a spectral hole together with the AFC protocol inside the
medium, finesse=10, number of peaks=6. The spectral hole is represented as a supergaussian and
the width is almost 20 MHz. The length of the crystal is set to L = 0.00200013666 m. The real

refractive index and absorption profile have been scaled in order to fit into the plot. Peak
absorption αL = 1 on the edge. Zero detuning is at 5 · 1014 Hz. Note that all values are the same

as in Figure 27 except that the edges of the spectral hole are 5 times lower.

D. Comparsion between theoretical and experimental data

Despite the simplicity of this model it’s the agreement with experimental data that matters.
There are difficulties on the experimental side to determine all the parameters that are needed in
the model. Many times experimentalists and theorists have to do intelligent guesses for a model
to fit. This will be done for many cases in this section.

1. Cold cavity

In Figure 29 the experimental cold cavity transmission spectrum is compared with the one given
by the model. The experimental data is scaled in height and therefore no units are given on the
y-axis, only the shapes can be compared.
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FIG. 29: Comparsion between theoretical and experimental data of the transmission spectrum for
a cold cavity (only host medium present). The experimental data is scaled in height.

2. Spectral hole

The spectral hole for Pr:YSO can be made 18 MHz wide ([29], p. 25). The inhomogenous profile
for a crystal inside a cavity can’t easily be readout. The assumption that needs to be made is that
the hole-burning procedure for a crystal inside a cavity is the same as the hole-burning procedure
without a cavity. This is not necessarily the case. The 18 MHz spectral hole is shown in Figure
30a, the experimental comparsion is shown in Figure 30. The experimental data is scaled in height
and therefore no units are given on the y-axis, only the shapes can be compared.

(a) Absorption profile (b) Transmission spectrum

FIG. 30: Comparsion between theoretical and experimental data of the transmission spectrum for
a spectral hole. The experimental data is scaled in height.
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3. AFC structure

Four AFC peaks have been inserted into the pit. The AFC peaks for the theoretical model are
assumed to look the same and have gaussian shape, this is not neccesarily the case in reality. It’s
in any case interesting to compare this data with experimental data. The result can be seen in
Figure 31. The experimental data is scaled in height and therefore no units are given on the y-axis,
only the shapes can be compared.

(a) Absorption profile (b) Transmission spectrum, note that the x-axis has not
the same scale as in Figure 31a.

FIG. 31: Comparsion between theoretical and experimental data of the transmission spectrum for
a spectral hole together with four AFC peaks. The experimental data is scaled in height.

21. CONCLUSIONS

The FWHM and the mode spacing of the resonance peaks inside the cavity is reduced three
orders of magnitude inside a spectral hole (Figure 30) compared to a cold cavity with only the
host material present (Figure 29). The resonance peaks and mode spacing can in theory become
as narrow as wanted by just changing the absorption of the edges of the spectral hole. A narrow
resonance peak is not wanted for the AFC protocol. To get high efficiency all AFC peaks should
be on resonance with the cavity. In Figure 27 and Figure 28 it can be seen that the edges of the
spectral hole can’t be to high. If the edges of the spectral hole is to high the derivative of the real
refractive index become large. The FWHM of the resonance peak is inversely proportional to the
derivative of the real refractive index (can be seen from Eq. (193) and Eq. (194)) and therefor it’s
important to have low absorption for the edges.
The length of the cavity can be changed in order to move the resonance peak in frequency this can
be seen from Eq. (187) aswell as Figure 23. The length doesn’t have to be changed much in order
for the resonance peak to be moved a lot in frequency.
One interpretation for the FWHM and the mode spacing to change three orders of magnitude,
is that it takes the pulse (relative to the group velocity) three order of magnitude longer time to
go through the crystal compared to a cold cavity. This means that the cavity behaves as it was
three orders of magnitude longer than it actually is under these circumstances. According to this
interpretation the cavity of real length L = 0.002 m together with a 20 MHz spectral hole with

49



absorption αL = 5 on the edges give the same result as a cold cavity of length L = 2 m!
The experimental data is in fair agreement with the theoretical model. Many variables that hasn’t
been measured or can’t be measured (the absorption profile can’t be measured inside a cavity) on
the experimental side. These have to be guessed and put into the theoretical model. Still it was
possible to fit the experimental data well enough with this model for all cases shown in Figures
29, 30 and 31. The spectral hole (Figure 30a) made in a crystal without cavity seems to have the
same structure as for a crystal inside a cavity. This might not be true for all cases but in this case
it seems to be correct.
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Part IX

Maxwell-Bloch cavity simulations

22. THEORY

In this section a more advanced theory will be derived compared to Section 19. The equations
are basically an extension of the semi-classical MB equations from Section VI where a cavity is
included. The theory is based on derivations from Siegman’s ”LASERS” [25], Lamb’s ”Theory of
an Optical Maser” [43] and Lei Stone Meng Ph. D. thesis [44].

A. Cavity decay constant

A cavity with decay constant due to losses from two mirrors can be derived as follows. The
decay constant is defined as the inverse time at the point when the initial intensity of a field is
reduced by a factor of e−1 and hence

I(τ) = I0e
−1 (195)

γ = 1/τ (196)

where I0 is the initial intensity, τ is the time it takes for the intensity to decrease a factor of e−1

and γ is the decay constant. Suppose that the two mirrors have reflectivity R1 resp. R2. For a
certain point in time t the intensity is decreased as

I(t) = I0 · (R1R2)q (197)

q =
t

T
(198)

where q is the number of round-trips that have been done and T is the time it takes to make one
round-trip. By putting Eq. (195) equal to Eq. (197) the decay constant can be extracted.

(R1R2)τ/T = e−1 (199)
τ

T
ln(R1R2) = −1 (200)

γ =
1

τ
=

1

T
ln(

1

R1R2
) (201)

The total cavity decay constant for a cavity with one partially transparent mirror and one 100%
reflection mirror is ([25], p. 935)

γtotalc = γ0 + γ1 = 2α0c+
1

T
ln(1/R1) (202)

where γ0 := 2α0c is the internal power losses in a real optical cavity, T is the round-trip time and
R1 is the relfectivity of the partially transparent mirror.
In the case of two partially transparent mirrors (with reflectivity R1 resp. R2) and neglecting the
internal power losses (α0 = 0) the cavity decay constant as Eq. (201) is

γc =
1

T
ln(

1

R1R2
) =

1

T
ln(1/R1) +

1

T
ln(1/R2) = γ1 + γ2 (203)
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and hence the total decay constant is the sum of both mirrors decay constants γ1 and γ2.
The time it takes for a round-trip in a cold cavity (only host medium present) can be expressed as
a function of the speed of light in the medium and the length of the cavity,

T =
2nL

c
(204)

where c is the speed of light in vaccum, n is the refractive index of the host medium and the factor
of 2 comes from the fact that it’s a round-trip.

B. Derivation of the Maxwell-part for a cavity

The field inside the cavity will be treated classically by Maxwell’s equations in SI units. Starting
of from Eq. (116) in one spatial dimension,

d2E

dz2
− µσdE

dt
− n2

c2

d2E

dt2
= µ

d2P

dt2
(205)

The polarization P will basicly be treated the same way as in the Maxwell-Bloch equations. For
a two-level atom ensemble it’s the rx and ry components of the Bloch vector that determines the
electric polarization. The Bloch vector evolves according to the Bloch equations, which are derived
in Section 12 and Section 13. In the following the Maxwell-Bloch equations will be expanded and
modified so that the equations can describe the evolution of a 2-level system with a host medium
in a cavity.
In the following a vital assumption to simplify the equations will be done, that is to expand the
electric field and the polarization as ([25], p. 924)

E(z, t) =
∑
n

En(t)un(z) (206)

P (z, t) =
∑
n

Pn(t)un(z) (207)

where En(t) and Pn(t) are coefficients that only depends on time, un(z) are orthogonal eigenmodes
of a cold cavity of length L (only host medium present). Strictly speaking the terms En(t) and
Pn(t) should be derived by:

En(t) =
1

v

∫ L

0
u∗n(z)E(z, t)dz (208)

Pn(t) =
1

v

∫ L

0
u∗n(z)P (z, t)dz (209)

where v is a normalization constant given that the cavity is defined from 0 to L. In the theory
developed by Lamb [43] the Eq. (208) and Eq. (209) are calculated more carefully than in this
thesis. In this thesis the derivation is simply assuming that En(t) and Pn(t) behaves similar to
the MB equations without spatial dependency and no extra terms added from the inner product
in Eq. (208) and Eq. (209). In some cases this will not be a good approximation.
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The eigenmodes are functions that satisfy the Laplace equation(
d2

dz2
+ k2

n

)
un(z) = 0 (210)

un(0) = 0 (211)

un(L) = 0 (212)

where kn = ωnn/c are the eigenvalues and ωn are the resonance frequencies for the cold cavity
(with the host material). The solution to one-dimensional Laplace equation is

un(z) = sin(
πnz

L
) (213)

for n=1,2,... .
Inserting Eq. (206) and Eq. (207) into Eq. (205) gives:

∑
n

(
− k2

nEn − µσ
dEn
dt
− n2

c2

d2En
dt2

)
un = µ

∑
n

d2Pn
dt2

un (214)

⇔ (215)∑
n

(
d2En
dt2

+ γc
dEn
dt

+ w2
nEn

)
un = − 1

εn2

∑
n

d2Pn
dt2

un (216)

where γc = σ/(n2ε) is the cavity decay constant. Note that since un is an orthogonal basis and it’s
possible to project Eq. (216) onto an arbitrary un. Therefor every term in the sum can be treated
separately as

d2En
dt2

+ 2γc
dEn
dt

+ w2
nEn = − 1

εn2

d2Pn
dt2

(217)

In the following only one longitudal mode is going to be used, so the subscript n is going to be
dropped:

d2E

dt2
+ γc

dE

dt
+ w2

cE = − 1

εn2

d2P

dt2
(218)

where the resonance frequency ωc := ωn.
Now suppose the cavity has two transparent mirrors and the decay constant is defined as γc = γ1+γ2

(from Eq. (203)). In addition an external incoming field from one side will be added. The equation
of motion is now

d2E

dt2
+ γc

dE

dt
+ w2

cE = − 1

εn2

d2P

dt2
+K1

dξin
dt

(219)

where ξin is the incoming field and K1 =
√

1−R1
c
nL is the loss due to the first mirror ([44] p. 6).

Note that by just inserting a field ξin into the equation is an assumption that might not hold for
all cases. One typical situation where this assumption doesn’t hold is when the cavity field and in
the incoming field modes doesn’t match.
The electric field is now written in terms of Rabi frequencies similar to Eq. (79):

E =
~

2µge
eiωLt(Ωr + iΩi) + c.c. (220)
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First Eq. (220) is inserted into Eq. (219)

~
2µge

(
d2

dt2
+ γc

d

dt
+ ω2

c

)
(eiωLt(Ωr + iΩi)) + c.c. = − 1

εn2

d2P

dt2
+K1

dξin
dt

(221)

where ωL is the laser frequency. The left-hand side of Eq. (221) will be developed separately:

~
2µge

(
d2

dt2
+ γc

d

dt
+ ω2

c

)
eiωLt(Ωr + iΩi) + c.c. = (222)

eiωLt
~

2µge

(
d2

dt2
+ (2iωL + γc)

d

dt
+ ω2

n − ω2
L + iωLγc

)
(Ωr + iΩi) + c.c. (223)

SVEA (Slowly Varying Envelope Approximation) will be applied in the same manner as Eq. (120)
together with the assumption that
|ωn − ωL| � ωL. Then the following inequalities are obtained ([25], p. 925-947),

Ω′′r/i � ωLΩ′r/i � ω2
LΩr/i (224)

γcΩ
′
r/i � γcωLΩr/i (225)

ω2
c − ω2

L = (ωc + ωL)(ωc − ωL) ≈ 2ωL(ωc − ωL) (226)

These inequalities turns Eq. (223) into

~
2µge

(
2iωL

d

dt
+ 2ωL(ωc − ωL) + iωLγc

)
eiωLt(Ωr + iΩi) + c.c. (227)

The polarization is expressed almost the same way as in Eq. (133):

P (z, t) =
1

4π
N

∫ +∞

−∞
g(∆)((rx + iry)e

i(ωLt)µ∗ge + c.c.)d∆ (228)

The external field is written as:

ξin =
~

2µge
eiωLt(Υin

r + iΥin
i ) + c.c. (229)

where Υin
r and Υin

i are the real and imaginary Rabi frequencies of the incoming field.
SVEA will be used for the polarization exactly as in Eq. (137).
The right-hand side of Eq. (221) will now be developed and SVEA gives: Υ′r/i � ωLΥr/i

− 1

εn2

d2P

dt2
+K1

dξin
dt

= (230)

−ω2
L

1

4πεn2
NeiωLt

∫ +∞

−∞
g(∆)(rx + iry)µ

∗
ged∆ + eiωLtK1

~
2µge

(
d

dt
+ iωL

)
(Υin

r + iΥin
i ) + c.c. =SV EA

−ω2
L

1

4πεn2
NeiωLt

∫ +∞

−∞
g(∆)(rx + iry)µ

∗
ged∆ + eiωLtK1

i~ωL
2µge

(Υin
r + iΥin

i ) + c.c. (231)
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Now set Eq. (227) equal to Eq. (231)

~
2µge

(
2iωL

d

dt
+ 2ωL(ωc − ωL) + iωLγc

)
eiωLt(Ωr + iΩi) + c.c. = (232)

−ω2
L

1

4πεn2
NeiωLt

∫ +∞

−∞
g(∆)(rx + iry)µ

∗
ged∆ + eiωLtK1

i~ωL
2µge

(Υin
r + iΥin

i ) + c.c. (233)

⇔ (234)(
d

dt
+ i(ωL − ωc) +

γc
2

)
eiωLt(Ωr + iΩi) + c.c. = (235)

i
ωL|µge|2N

4πεn2~
eiωLt

∫ +∞

−∞
g(∆)(rx + iry)d∆ + eiωLt

K1

2
(Υin

r + iΥin
i ) + c.c. (236)

The next step is to extract the real and the imaginary part aswell as the term eiωLt into two
different equations.

dΩr

dt
− (ωL − ωc)Ωi +

γc
2

Ωr = − αc

2πn

∫ +∞

−∞
g(∆)ryd∆ +

K1

2
Υin
r (237)

dΩi

dt
+ (ωL − ωc)Ωr +

γc
2

Ωi =
αc

2πn

∫ +∞

−∞
g(∆)rxd∆ +

K1

2
Υin
i (238)

where α =
|µge|2ωLN

2c~nε is called the absorption coefficient.

C. The complete equations

The postulates of quantum mechanics are only valid for a closed system. When performing an
experiment the system 2-level atom model is not a closed system. A quick fix to solve this problem
is to introduce two phenomenological decay constants T1 and T2. 1/T1 is the rate for the population
term of the atom to relax toward equilibrium. 1/T2 is the rate at which the coherence will decrease.
The complete equations is found by adding Eq. (237) and Eq. (238) that describes the macroscopic
polarization and the Bloch equations from Eq. (100)-(102), this final set of equations:

drx(t,∆)

dt
= −∆ry(t,∆)− Ωi(t)rz(t,∆)− rx(t,∆)

T2
(239)

dry(t,∆)

dt
= ∆rx(t,∆) + Ωr(t)rz(t,∆)− ry(t,∆)

T2
(240)

drz(t,∆)

dt
= Ωi(t)rx(t,∆)− Ωr(t)ry(t,∆)− 1 + rz(t,∆)

T1
(241)

dΩr(t)

dt
− (ωL − ωc)Ωi(t) +

γc
2

Ωr(t) = − αc

2πn

∫ +∞

−∞
g(∆)ry(t,∆)d∆ +

K1

2
Υin
r (t) (242)

dΩi(t)

dt
+ (ωL − ωc)Ωr(t) +

γc
2

Ωi(t) =
αc

2πn

∫ +∞

−∞
g(∆)rx(t,∆)d∆ +

K1

2
Υin
i (t) (243)
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The reflected/transmitted fields out of the material are assumed to be (similar to expression in [9],
p. 299, but with a phase shift of the reflected part of the incoming field):

Ωrefl
r =

√
1−R0

√
R2Ωr −

√
R0Υin

r (244)

Ωrefl
i =

√
1−R0

√
R2Ωi −

√
R0Υin

i (245)

Ωtrans
r =

√
1−R2Ωr (246)

Ωtrans
i =

√
1−R2Ωi (247)

where R0 is the reflectivity for the first mirror and R2 is the reflectivity for the second mirror of
the cavity. Note that the reflected/transmitted fields is not valid for all choices to R0 and R2, a
small investigation about this is done in Subsection 22 D.

D. Regime where MB cavity model is valid

Comparsion with the equations derived in Subsection 19 A will be done for one simple example
in order to see in what regime the MB cavity model is valid. The MB cavity equation will be solved
in the steady state dΩr

dt = 0 on resonance ωL = ωc. The Rabi frequency is assumed to only have
a real part and no ions are present α = 0 (cold cavity with only host medium present). Starting
from Eq. (242):

dΩr

dt
− (ωL − ωc)Ωi +

γc
2

Ωr = − αc

2πn

∫ +∞

−∞
g(∆)ryd∆ +

K1

2
Υin
r (248)

⇒ (249)

γc
2

Ωr =
K1

2
Υin
r (250)

⇔ (251)

Ωr =
K1

γc
Υin
r (252)

Inserting Eq. (252) into Eq. (246) and Eq. (244):

Ωrefl
r =

(√
1−R0

√
R2
K1

γc
Υin
r −

√
R0

)
Υin
r =

(√
1−R0

√
1−R1

√
R2

ln( 1√
R1R2

)
−
√
R0

)
Υin
r (253)

Ωtrans
r =

√
1−R2

K1

2γc
Υin
r =

√
1−R2

√
1−R1

ln( 1
r1r2

)
Υin
r (254)

Finally taking the ratio between the outgoing intensity and initial intensity,

TMB
c =

∣∣∣∣ t2t1

ln( 1
r1r2

)

∣∣∣∣2 (255)

RMB
c =

∣∣∣∣− r0 +
t0t1r2

ln( 1
r1r2

)

∣∣∣∣2 (256)

where r0 =
√
R0, t0 =

√
1−R0, t1 =

√
1−R1, t2 =

√
1−R2, r1 =

√
R1 and r2 =

√
R2.

This is now going to be compared to Eq. (184) and Eq. (185) given that there is no absorption
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ni = 0 and that the resonance condition is fulfilled 2kL = 2π,

Tc =

∣∣∣∣ t1t2
1− r1r2

∣∣∣∣2 (257)

Rc =

∣∣∣∣− r0 +
t1r2t0

1− r1r2

∣∣∣∣2 (258)

The serie expansion of ln(x) is [45]

ln(x) = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+ ... (259)

ln(
1

r1r2
) = (1− r1r2)− (1− r1r2)2

2
+

(1− r1r2)3

3
− (1− r1r2)4

4
+ ... (260)

where −1 ≤ x ≤ 1. The regime where Eq. (255) and Eq. (257) resp. Eq. (256) and Eq. (258) are
almost equal can now be found if 1− r1r2 ≈ 0 and hence the MB cavity model is almost equal to
the interference equations if the reflectivities are close to one.

E. Numerical simulations with the Runge-kutta method

The Runge-kutta method can be used to numerically solve the equations in the above section.
In the numerical model g(∆) can’t be defined from −∞ to +∞, therefore a different α will be used
called α0. α0 := α(ω0)/g(ω0) where g(ω0) 6= 0 ([22], p. 50).

F. Impedance matching condition for the AFC protocol

The impedance matching condition is fulfilled when the absorption of the material inside the
cavity is matched to the transmission of the coupling mirror. This will in best case lead to total
aborption. Total absorption of an incoming photon is the first vital step towards a high efficient
quantum memory. Given that the reflectivity is chosen to be R1 = 0.98 for the first mirror and
R2 = 0.9998 for the second mirror gives the following impedance matching condition for a cavity
that is on resonance:

e−αL
√
R2 =

√
R1 (261)

⇔ (262)

αL = ln(
√
R2/R1) ≈ 0.01 (263)

The AFC peaks should then have an effective absorption of αeffectiveL ≈ 0.01. The peak absorption
should then basically be the effective absorption multiplied by the finesse to reach the impedance
matching condition [35].

G. Readout pulse

To be able to test the equations derived in this section against the equations in Section 20 the
readout pulse is going to be defined. The purpose of the readout pulse is to get the transmis-
sion/reflection spectrum for every frequency. The idea is to do a linear frequency scan with a weak
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Name Value

t0
√

0.02

t1
√

0.02

t2
√

0.0002

r0

√
0.98

r1

√
0.98

r2

√
0.9998

TABLE II: Constants for MB cavity simulations.

pulse so that every time-step represent a particular frequency:

fs(t) = ωstart + (ωend − ωstart)t/(tend) (264)

where fs(t) is the linear frequency scan as a function of the time t. ωstart and ωend are angular
frequencies. The frequency scan starts at ωstart and stops at ωend given that the pulse is sent in
for a duration of tend. The phase is defined to be the integral of the frequency [25]:

ϕ(t) =

∫
fs(t)dt = ωstartt+ (ωend − ωstart)t2/(2tend)) (265)

where ϕ(t) is the phase that can be inserted into Eq. (51).

23. RESULTS AND DISCUSSION

The equations in Section 22 C are built up with many assumptions. In Subsection 22 D it was
shown that for a cavity without atoms and with a frequency chosen such that there is resonance,
only high reflectivities are a good regime for these equations. A simulation test will be done to
see if this simulator produce the same result as the interference equations in Section 20 inside a
spectral hole when the reflectivities are chosen to be high. If this holds, the next step is to try
the AFC scheme by sending in a light pulse into the material. This wasn’t possible to do with
the interference equations. All results in this section will only be valid for one longitudal cavity
mode and the decay constants for the Bloch equation 1/T1 and 1/T2 are put to zero if nothing else
is noted. For all simulations concerning the interference simulator in this section some parameter
will be constant, these are represented in Table II. For the MB simulator the length is chosen to
be L = 0.002m, the refractive index n = 1.0. As can be seen in Table II, the reflectivity for the
mirror for the incoming intensity is R1 = 0.98 and the reflectivity for the mirror in the back of the
crystal is chosen to be R2 = 0.9998.

A. Spectral hole as a supergaussian

In the following a spectral hole from a supergauss function with a width of almost 20 MHz will
be included inside the inhomogenous broadening. In Figure 32 the intereference simulator and MB
cavity simulator output are shown for both the transmission and reflection part. The output from
the equations in Section 22 C has been generated with a readout pulse described in Subsection
22 G.
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The transmission spectrums coincide suprisingly well, while the reflection parts are a little bit

(a) Transmission spectrum (b) Reflection spectrum

FIG. 32: Simulation of a cavity with a spectral hole present. The spectral hole is represented as a
supergaussian and the width is almost 20 MHz. The length of the crystal for the interference

simulator, from Section 20, is chosen so that the transmission peaks are centered in the spectral
hole: L = 0.002000103 m. Peak absorption αL = 0.5 on the edge of the spectral hole. Zero

detuning is at 5 · 1014 Hz. The resonance frequency for the MB cavity model is chosen to be
ωc = ωL, from Section 22 C (that is, the resonance frequency is chosen to be zero with respect to
the detuning for the MB simulator). The graph with the MB equations is obtained by a readout

pulse described in Subsection 22 G.

different from each other. The reflection spectrum in Figure 32b seems to be translated overall and
the highest value is R1 = 0.98 compared to the highest value of the interference simulator which is
one. This error is non-wanted but as it’s proportional to R1 the claim in Subsection 22 D that the
model coincide when the reflectivities are close to one seems still to be valid.

B. Spectral hole together with the AFC protocol

At the Quantum information group in Lund the AFC peaks are made by initially burn a spectral
hole. When the spectral hole has been created some ions are sent back into the spectral hole in such
a way that they are forming an atomic frequency comb (AFC). An example of how the absorption
profile might look like after this procedure in theory is shown in Figure 26. In Figure 33 the output
from the MB simulator and the interference simulator are shown. In Figure 33 there have been
six AFC peaks inserted into the spectral hole. The ”noise” from the MB output comes from the
fact that the readout pulse excites the atoms inside the material. This leads to that the atoms
send out coherent radiation for a short while after the excitation has occured. The mixing between
the radiation from the atoms and the linear frequency scan creates this beating effect. This is
an extreme effect in the reflection seen in Figure 33b, due to this the result with the interference
simulator will not be shown. The transmission spectrums coincide fairly well. In Figure 34 the
absorption on the edges of the spectral hole has decreased. The beating effect is still extreme for
the reflection part, while the transmission spectrums look almost the same.
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(a) Transmission spectrum (b) Reflection spectrum

FIG. 33: Simulation of a cavity with a spectral hole together with the AFC protocol, finesse=8.5,
number of peaks=6. The spectral hole is represented as a supergaussian and the width is almost
20 MHz. The length of the crystal is set to L = 0.002m. Peak absorption αL = 0.5 on the edge.
Zero detuning is at 5 · 1014 Hz. The resonance frequency ωc is chosen to be zero with respect to

the detuning for the MB simulator. Note that all values are the same as in Figure 32 except that
there are now AFC peaks present.

(a) Transmission spectrum (b) Reflection spectrum

FIG. 34: Simulation of a cavity with a spectral hole together with the AFC protocol, finesse=8.5,
number of peaks=6. The spectral hole is represented as a supergaussian and the width is almost
20 MHz. The length of the crystal is set to L = 0.002m. Peak absorption αL = 0.085 on the edge.
Zero detuning is at 5 · 1014 Hz. The resonance frequency ωc is chosen to be zero with respect to

the detuning for the MB simulator.
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C. Spectral hole and slow light effects

The cavity resonance peak has decreased a factor of three inside a spectral hole compared to a
cold cavity shown in for example Subsection 20 B. It was shown that this effect was connected to
the group velocity. One interpretation of this effect is that the cavity of length 2mm together with
a spectral hole acts as a cold cavity of length 2m.
In the following this effect will be investigated in the time-domain instead of the frequency-domain
(the cavity resonance peak has always been shown in the frequency-domain). In Figure 35 a
gaussian pulse with a center frequency at detuning zero has been sent into a medium and is shown
as a function of different peak absorptions of a spectral hole. In Figure 35c the transmission of
the gaussian pulse is shown, when there is no spetral hole (red curve) the gaussian pulse is not
delayed. In Figure 35b it can be seen that the reflection of the red curve is in almost exactly the
same position as the incoming pulse (black dashed curve). The blue and green curves show how
the pulse looks like when there is a spectral hole present. This is the time-domain version of the
slow light effect. The intepretation is that it takes time to build up a field inside the cavity (just as
if the cavity length was in order of 2 m). To clarify how this works Figure 36 shows the real Rabi
frequencies multiplied by the transmission and reflection coefficients (this is the same as looking
at Eq. (244) with r0 =

√
R0 and t0 =

√
1−R0). The blue negative curve is the reflected field

and the red curve is the field inside the cavity multiplied by the transmission coefficient out of the
transparent mirror. Note that the red curve is delayed compared to the reflected field (blue curve)
and by adding those curves the outgoing green curve is obtained. The square of the green curve
in Figure 36 is shown as the green curve in Figure 35.

D. Spectral hole and slow light effects with an AFC structure

The first step that must be fulfilled in the making of a highly efficient quantum memory is to
absorb as much of the incoming pulse as possible. Two examples will be shown that demonstrates
how the edges of a spectral hole affects the storage of an incoming pulse. In Figure 37 the spetral
hole and the AFC peaks have the same peak absorption. The peak absorption of the AFC struc-
ture is chosen such that the impedance matching condition holds, given that the structure is on
resonance. The efficiency is above 80% which is fairly good for a quantum memory. In Figure 38
the peak absorption of the AFC peaks is such that the impedance matching condition holds, given
that the structure is on resonance. The edges of the spectral hole has been increased compared
to Figure 37. Total absorption of the incoming pulse is now not possible due to the slow light ef-
fects described in Subsection 23 C, this affects the efficiency of the quantum memory in a negative
manner.

E. Efficiency for the AFC protocol together with a cavity

Two different cases will be shown to see how the absorption of the incoming field and the
efficiency are affected. The incoming pulse is a gaussian with center around zero detuning (ωL = 0
Hz with respect to the detuning). In Figure 39 the first case is shown, the x-axis is the peak
absorption of the edges of the spectral hole and the y-axis is the peak absorption of the AFC peaks
(for example if the peak absorption of the AFC peaks is αL = 0.085 and the peak absorption of the
AFC edges are αL = 0.085 the absorption profile in Figure 37a is used, if the peak absorption of the
AFC peaks is αL = 0.085 and the peak absorption of the AFC edges are αL = 0.5 the absorption
profile from Figure 38a is used). In Subsection 22 F it was shown that for reflectivity R1 = 0.98,
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(a) Absorption profile

(b) Incoming pulse and reflected pulse (c) Transmitted pulse

FIG. 35: Simulation of a cavity with a spectral hole. The spectral hole is represented as a
supergaussian and the width is almost 20 MHz. The length of the crystal is set to L = 0.002 m.

The slow light effects delays the buildup inside the cavity compared to a cold cavity.

the effective absorption should be approximately αeffectiveL = 0.01 with a finesse F = 8.5 the peak

absorption becomes αpeakL = αeffectiveL · F = 0.085.

The second case shown in Figure 40 shows different resonance frequencies ωc on the x-axis . The
incoming pulse and the AFC-structure are centered around zero detuning. The peak absorption
edges of the spectral hole are constant and set to αL = 0.17.
To clarify how much the resonance frequency (ωc) shifts the cavity peak inside the spectral hole

a figure will be shown. The maximum resonance frequency used in Figure 40 was ωc = 0.2GHz
with respect to the detuning (note that ωL = 0 with respect to the detuning). In Figure 41 three
different values of the resonance frequencies have been used together with an empty spectral hole
(the AFC peaks are removed to avoid the beating effect).
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FIG. 36: Simulation of a cavity with a spectral hole. The spectral hole is represented as a
supergaussian and the width is almost 20 MHz. The length of the crystal is set to L = 0.002 m.
The peak absorption on the edge of the spectral hole are chosen to be αL = 0.4. The field of the
incoming reflection and the transmitted cavity field is shown separately and then added together

as the green curve. The transmitted cavity field is not built up directly inside the cavity and
hence the resulting outgoing field in reflection has both a negative and positive amplitude.

(a) Absorption profile (b) Incoming pulse and reflected pulse

FIG. 37: Simulation of a cavity with a spectral hole together with the AFC protocol, finesse=8.5,
number of peaks=6. The spectral hole is represented as a supergaussian and the width is almost

20 MHz. The length of the crystal is set to L = 0.002 m. Peak absorption αL = 0.085 on the
edge. Zero detuning is at 5 · 1014 Hz. The resonance frequency ωc is chosen to be zero with

respect to the detuning for the MB simulator.
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(a) Absorption profile (b) Incoming pulse and reflected pulse

FIG. 38: Simulation of a cavity with a spectral hole together with the AFC protocol, finesse=8.5,
number of peaks=6. The spectral hole is represented as a supergaussian and the width is almost
20 MHz. The length of the crystal is set to L = 0.002 m. Peak absorption αL = 0.5 on the edge.
Zero detuning is at 5 · 1014 Hz. The resonance frequency ωc is chosen to be zero with respect to

the detuning for the MB simulator.

(a) Absorption; 0 means total absorption; 1 means no
absorption

(b) Efficiency

FIG. 39: Efficiency for the outgoing stored pulse and absorption of incoming pulse shown as a
function the peak absorption of the AFC peaks and peak absorption on the edges of the spectral
hole. The spectral hole is represented as a supergaussian and the width is almost 20 MHz. The
length of the crystal is set to L = 0.002 m. The resonance frequency is chosen to be zero with

respect to the detuning.
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(a) Absorption; 0 means total absorption; 1 means no
absorption

(b) Efficiency

FIG. 40: Efficiency for the outgoing stored pulse and absorption of incoming pulse shown as a
function of the peak absorption of the AFC peaks and the resonance frequency ωc. Finesse=8.5,
number of peaks=6. The spectral hole is represented as a supergaussian and the width is almost
20 MHz. The length of the crystal is set to L = 0.002m. Peak absorption αL = 0.017 on the edge
(ratio between the edge of the spectral hole and the AFC peaks = 2), peak absorption αL = 0.085

of the AFC peaks.

FIG. 41: Transmission spectrum for an empty spectral hole shows how much the cavity peak is
shifted for different resonance frequencies. ωc = 0.2 GHz is the maximum resonance frequency

with respect to the detuning that was used in Figure 40. The reason for the shift to be in order of
MHz when the value of ωc is in the order of GHz is due to the change in refractive index

explained in Subsection 20 B.
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24. CONCLUSIONS

In this section semi-classical equations to simulate a cavity with a medium inside have been
derived. The equations in this section should by all means give rise the same effects as the inter-
ference equations derived in Section 19. The comparsion between the two simulators was shown in
Figues: 32, 33 and 34. The transmission spectrums from the two simulators coincide fairly well.
The reflection spectrum contains a lot of beating effects coming from the fact that the readout
pulse excite population that sends out coherent radiation for a short while. The outcoming pulse
is then a mix of radiation from the linear frequency scan and the ions.
In Figure 39 the absorption of the incoming field and the efficiency of the outgoing stored pulse
were shown as a function of the peak absorption of the edges of the spectral hole and the peak
absorption of the AFC peaks. Most efficiency is obtained having a low peak absorption on the
edges of the spectral hole. The motivation of this in the time-domain is that the slow light effect
has to be small otherwise it will take to long time to build up a field in the cavity which is described
in Subsection 23 D. The motivation in the frequency-domain is that the edges of the spectral hole
should be as low as possible because the cavity peak is getting broader in frequency and can cover
more of the AFC structure.
For R1 = 0.98 and R2 = 0.9998 which is chosen to be the reflectivity for these simulations the
impedance matching conditions is fulfilled when the peak absorption of the AFC structure was
0.085 given that the finesse is F = 8.5. This value maximizes the efficiency in Figure 39 if the peak
absorption of the edges are low enough.
In Figure 40 the absorption of the incoming field and the efficiency of the outgoing stored pulse
were shown as a funtion of the peak absorption of the AFC peaks and the resonance frequency
ωc. The efficiency was at maximum for ωc = 0 Hz where the resonance frequency is given with
respect to the detuning. The reason for the maximum to be at ωc = 0 Hz is that the incoming
pulse (ωL = 0 Hz with respect to the detuning) and the AFC structure are centered around the
zero detuning.
The conclusions of this section are that negative effects of the quantum memory efficiency and
the absorption of the incoming pulse can be seen when the peak absorption of the edges and the
resonance frequency are not optimal. These are important facts to know in order to realize a high
efficient quantum memory with this type of setup. In these simulations it has been shown that,
given that the experiment can be approximated and evolves according to the Equations (239)-(247),
an efficiency over 80% can be obtained under perfect conditions with an AFC finesse of F = 8.5.
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FIG. 42: Picture from [46], where the peak (burn-back) was created in the orthogonal direction
relative the storage pulse propagation.

Part X

Hole-burning techniques

Making a spectral hole in the inhomogenous profile is a key concept for many applications. Both
the CRIB and the AFC scheme (see Section VII) relies on the fact that there is one or several
narrow peak(s) in the absorption profile. Near the peak(s) (in the frequency-domain) there should
be ideally no absorbing ions in order to get a high-efficiency quantum memory. In this section a
new scheme is introduced that improves the sharpness of structures at the edge of a spectral hole.
The scheme is theoretically explained, moreover a proof-of-concept by Maxwell-Bloch simulations
has been done to see how much improvement the scheme gives compared to old techniques.
Two main ways exists in order to burn a spectral hole. Either the burning is performed by pulses
propagating in the same/opposite direction as the storage pulses or the buning pulses propagates
in orthogonal direction relative the storage pulses. Both ways have different advantages and dis-
advantages.

25. THEORY

A. Burning in orthogonal direction relative the storage pulses

In 2010 a paper regarding quantum memories was published in Nature [46]. Experimental
results had shown efficiency close to 70%. This experiment was done with the GEM protocol (see
subsection 16 D 2). The need of an initial sharp peak is crucial to get high efficiency. In order to
obtain a sharp peak they burned the structure from the orthogonal direction relative the storage
pulse propagation. In Figure 42 the experimental setup is shown. Note that the burn-back beam
is orthogonal to the probe direction. This way the peak will be uniform along the probe direction.
For the purpose of a quantum memory this technique is very promising. In the case of a quantum
memory the direction of the incoming pulse is well-defined in direction. Therefor the incoming
pulse can be chosen to be orthogonal to the burn-back beam.
For other applications the direction of the incoming pulse is not well-defined. For example the
direction might be randomly distributed. In this case burning in the orthogonal direction relative
the storage pulses will not work since the orthogonal direction is undefined.
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(a) Bloch simulator (b) Maxwell-Bloch simulator

FIG. 43: Example 1: The Bloch simulator and the Maxwell-Bloch simulator is compared for low
optical depth. The goal is to burn a spectral hole. The simulators follow the approximations in
Subsection 25 G. And the optical depth is chosen to be αL = 1. Note that both result looks the

same, and hence for this example the Bloch simulator is a good approximation of the
Maxwell-Bloch simulator.

B. Burning in the same direction as the storage pulses

In Lund at the Quantum Information Group the hole-burning procedure is done by sending in
burn pulses in the same direction as the storage pulses. The advantage of burning in the same
direction as the storage pulses is that it’s easy. The laser doesn’t have to be aligned in any particular
way since the storage pulses will go the exact same direction. Although the alignment is easier
when burning in the same direction as the storage pulses, there is a problem in making structures
that is uniform through the whole crystal.

C. The sharpness problem

Experimentally it has been seen that creating a structure in the inhomogenous profile in a crystal
with low optical depth differs compared to a crystal with high optical depth. The reason for this is
that the burning pulses are absorbed differently for different optical depth. Previous simulations
in Lund at the Quantum Information Group has been done with a 2-level Bloch-simulator together
with a program calculating the de-excitations in the crystal. These results were very successful
when comparing with experiments for low αL. But for high αL the simulator suddenly didn’t show
the same result as experimental data.
A comparsion between the Maxwell-Bloch simulator and the Bloch simulator will be shown in order
to see the difference. The Bloch simulator only consists of Eq. (142)-(144) whereas the Maxwell-
Bloch simulator consists of Eq. (142)-(146). Therefore the difference between the simulators is
that the Maxwell-Bloch simulator takes into account the spatial change in the burn pulses (the
Maxwell part) while the Bloch simulator doesn’t. Two examples will be shown in order to see the
difference. Both examples are created by the simulator described in Subsection 25 G. The goal is
to burn a spectral hole into an atomic distribution. In the first example shown in Figure 43, a low
αL is used. It can be seen that the spectral hole in Figure 43a looks the same as in Figure 43b.
Hence the simulators coincide pretty well. That is, the Bloch simulator is a good approximation to
the Maxwell-Bloch simulator for low αL. In the second example a relatively high αL is used (see
Figure 44) and as can be seen the results Figures 44a and 44b don’t coincide. The conclusion why
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(a) Bloch simulator (b) Maxwell-Bloch simulator

FIG. 44: Example 2: The Bloch simulator and the Maxwell-Bloch simulator is compared for high
optical depth. The goal is to burn a spectral hole. The simulators follow the approximations in
Subsection 25 G. And the optical depth is chosen to be αL = 20. Note that both result don’t

look the same, and hence for high optical depth the Bloch simulator isn’t a good approximation
of the Maxwell-Bloch simulator.

Figure 44a and Figure 44b differs is that the Maxwell part in the Maxwell-Bloch simulator takes
into account that the burning pulse is decreasing when exciting atoms as it propagates through
the crystal. This means that the initial burning pulse will not look the same in the whole crystal
for large αL due to absorption.
The fact that the burning pulse will get partially absorbed as it propagtes through an absorbing
medium is obvious. But this effect is negative since many applications rely on the fact that
the structure of the atomic distribution is uniform. A first solution to the problem would be to
repeat the same pulse several times, but in fact this will not solve the problem completely. The
reason is that the burning pulses are well-defined in time and hence the pulses has some tail in
frequency and is not as sharp as wanted. The time- and frequency-domain are connected via the
Fourier transform. For example the Fourier transform of a square pulse in time-domain gives a sinc
function in frequency. This drawback will always exist if you can’t use infinitely long pulses in the
time-domain. The consequence for the burning procedure is that the front of the crystal will always
contain less absorbing atoms than the back. As an example lets continue with Figure 44b and send
in the same pulse 15 times (the simulations uses the approximation stated in Subsection 25 G).
In Figure 45, one edge of the spectral hole can be seen at 5 different positions. The non-uniform
effect through the crystal can be seen. If the burning pulse is repeated several times the front
absorption will decrease outside the wanted interval due to that the incoming pulses are broad in
the frequency domain.

D. A scheme to minimize the sharpness problem

From subsection 25 C it should be clear that repeating the burning pulse several times is not a
very good solution to get a uniform and sharp edge for high αL.
In this part of the thesis a scheme to improve the uniformity and sharpness of the edges is proposed.
The scheme is based on using the DC Stark effect to shift the atoms absorbing frequency both
constant and linearly with the z-position.
There are several steps included in the scheme with some assumptions.
The first assumption is that the Stark splitting will split the resonance frequency into max two
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FIG. 45: Edge of a spectal hole with αL = 20 plotted at 5 different positions inside crystal. The
burning pulse is repeated 15 times. Note that the front of the crystal contains less absorbing ions

than the back for any given frequency.

parts. For example crystals for the transverse CRIB protocol is not accepted (the transverse CRIB
protocol assumes that the dipole moment has a random orientation with respect to the electric field,
see subsection 16 D 1 for more details) while crystals for the AFC and the longitudal CRIB protocols
are accepted (AFC and longitudal CRIB both can have crystal properties that has a maximum of
two dipole moment orientation with respect to the electric field). Figure 6 demonstrates the effect
for a Eu : Y AlO3 crystal with two dipole moment orientations with respect to the electric field
where the energy levels are split into two parts, one part shifted to higher energies and the other
part to lower energies.
The second assumption is that a tunable constant DC field can be applied as well as a tunable
linear DC field as a function of z-position (like the linear shift in the GEM protocol in subsection
16 D 2).
In the following the scheme will be presented. In the result section a proof-of-concept for the
scheme is done and in the conclusions the scheme is summarized in a list.
The idea of the scheme is to be able to burn away ions in the crystal in sections. By shifting ions
differently in frequency for different z-position this will be possible. This way the front and the
back of the crystal can get the same shape in principle.
The first step is to burn a hole through the crystal with as straight edges as possible (having a
good initial pulse, without any applied electric field). This initial hole should be more narrow than
the hole that is wanted. Suppose that this first step is completed, this is shown in Figure 46a.
Figure 46a shows the total absorption inside the crystal for one edge of the spectral hole. It will be
important to look seperately at the ions that shifts to the left (shift to lower frequencies) and to
the right (shift to higher frequencies) when an electric field is applied. Figure 46b and Figure 46c
represent the ions going to the left respectively the ions going to the right when an electric field is
applied. Since there is no electric field applied at the moment these look the same. The sum for
Figure 46b and Figure 46c gives Figure 46a and hence the equation in Figure 47 is used.
Suppose a linear electric field with respect to the z position is applied according to the following
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(a) Edge of the initial
hole for the total

distribution

(b) Edge of initial hole,
ions going to left

(c) Edge of initial hole,
ions going to right

FIG. 46: One edge of the initial hole.

FIG. 47: Color equation, ions going to right (blue) + ions going to left (red) = total ions
distribution (green)

equation

η(z) = η0 · (z − L/2) (266)

ηleft(z) = −η0 · (z − L/2) (267)

ηright(z) = η0 · (z − L/2) (268)

where η(z) is the linear frequency gradient, η0 is the maximum strength of the electric field, L is
the total length of the crystal. ηleft(z) describes how the ions that shift to the left (blue color) are
changing their resonance frequency and ηright(z) describes how the ions that shift to the right (red
color) are changing their resonance frequency.
To get a feeling of how this would be done experimentally, Figure 48 is a small sketch of how four
electrodes would be setup around the crystal. By just applying Eq. (266) the result will look like
Figure 49a. Figure 49b and Figure 49c show the different components from Eq. (267) resp. Eq.
(268).
By now it should be clear how a linear freqency gradient shifts the resonance frequency in the
crystal. To continue explaining the scheme one problem arise with just using a linear frequency

FIG. 48: Experimental sketch for how a linear electric field can be applied to a crystal. The
electric field strength is indicated by the red arrows.
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(a) Total distribution
(summation of Figure
49b and Figure 49c

according to the color
equation in Figure 47).

(b) Ions going to left by
Eq. (267)

(c) Ions going to right
by Eq. (268)

FIG. 49: Effect of a linear frequency gradient on the edge of Figure 46 by Eq. (266).

(a) Total distribution
when a linear frequency

is turned on and a
burning square pulse

comes in.

(b) Result after the
electric field is turned

off.

FIG. 50: Example of burning away some ions together with a linear frequency gradient. The
incoming pulse is assumed to be a square pulse in frequency. Note that this type of burning

procedure is not a wanted effect in order to get an uniform edge.

gradient given that the ions split into two parts. The problem is that if a pulse comes in it will
burn away ions in the front of the ions going to left (blue color) and after that burn away ions
going to the right (red color) in the end of the crystal. A non-uniform edge will be created and
this is not wanted in this scheme. To see an example of this effect, suppose there is an square pulse
in frequency coming in from z = 0 propagating to z = L shown in Figure 50a. When the electric
field then is turned off the result of the total distribution is shown in Figure 50b.
The trick to fix this problem which continues the explanation of the scheme is to add a constant
electric field as well. The result of only having a constant electric field is shown in Figure 51. As
can be seen the separation between the ions going to the left and ions going to the right is large.
By applying a linear frequency gradient in addition to the constant electric field we can now access
the back of the crystal without affecting the front (assuming that we have an ideal square pulse in
frequency). The tunable electric field equations now look like:

η(z) = η0 · (z − L/2) + ηc (269)

ηleft(z) = −η0 · (z − L/2)− ηc (270)

ηright(z) = η0 · (z − L/2) + ηc (271)
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(a) Total distribution (b) Ions going to left by
Eq. (267)

(c) Ions going to right
by Eq. (268)

FIG. 51: Effect of a constant electric field on the edge of a spectral hole.

(a) Total distribution (b) Ions going to left by
Equation 267

(c) Ions going to right
by Equation 268

FIG. 52: Effect of a constant electric field together with a linear frequency gradient on the edge
of a spectral hole.

where the parameters are the same as Eq. (266) and ηc is the strength of the constant electric
field. This step can be seen in Figure 52 and now applying the square pulse in frequency, as in
Figure 50a, only the back of the crystal is affected. The last thing to do in order to complete the
scheme is to do the inverse (changing sign of the electric field) of Figure 52 to be able to burn in
the back of the crystal on the ions going to left (blue).

E. Burning in the same and opposite direction as the storage pulses

There is another/complementing possibility to minimize the number of pulses sent in. This is
to every second time send in a pulse from the opposite direction of the crystal. The effect will
be that the ions in the middle will be the ones that has to be taken care of separately in order
to get uniform and sharp edges. With the scheme in the previous subsection together with two
extra electrodes this can be done. So this scheme presented below is an extension to the scheme
in subsection 25 D. To get a feeling of how this would be done experimentally, Figure 53 is a small
sketch of how 6 electrodes would be setup around the crystal. The set of equations can now be
rewritten as

η(z) = η0 · (z − L/4)(θ(z)− θ(z − L/4))− η0 · (z − 3L/4)(θ(z − L/2)− θ(z − L)) (272)

ηleft(z) = −η(z) (273)

ηright(z) = η(z) (274)

where η(z) is the linear frequency gradient, θ is the Heaviside step function, η0 is the strength of
the electric field, L is the total length of the crystal, ηleft(z) is how the ions are shifted to the left
(blue) and ηright(z) is how the ions are shifted to the right (red).
To separate the blue ions from the red ions a constant field is applied. This effect together with
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FIG. 53: Experimental sketch with 6 electrodes, the strength of the electric field are shown as red
arrows.

(a) Total distribution (b) Ions going to left by
Eq. (273)

(c) Ions going to right
by Eq. (274)

FIG. 54: Effect of a frequency shift on the edge by Equation 272.

the effect of sending in a burn pulse is shown in Figure 55. This extra scheme would improve the
uniformness of the burning procedure even more since the same structure can be created separately
in the back, the front and the middle of the cystal without the effect of affecting each other.

F. Rules and definitions for the proof-of-concept

The making of a sharp uniform edge is not trivial. There are a lot of different variables, in other
words this is a multi-dimensional optimization problem. To solve this problem optimally a clever
optimization algorithm have to be used but this goes outside the scope of this thesis. The purpose
of this proof-of-concept is only to show that it’s possible to use the scheme and that it improves
the sharpness. Two restrictions have been made for the proof-of-concept:

� Only two pulses are allowed, they are predefined.

� The initial hole is predefined and created by the widest pulse in frequency from the two
pulses allowed.

� The electric field can be tuned constant and/or linear with respect to z-direction.

The concept is said to be proven if the edge can be made sharper and uniform than with either of
the two pulses when no electric field involved.
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(a) Total distribution (b) Ions going to left (c) Ions going to right

FIG. 55: Effect of a constant electric field together with a frequency shift on the edge. It’s now
possible to burn away parts from the middle without affecting the front/back of the crystal.

Two measures will be defined, one measure is the uniformness and the other measure is sharpness.
The uniformness is defined to be the distance between the front and back summed between two
different values on the y-axis called low and high, see results in Table III. In mathematical terms
this is:

u(low, high) =

high∫
low

|xstart(y)− xend(y)|dy

high− low
(275)

where u is the measure of uniformness, xstart(y) (the blue curve) and xend(y) (the red curve) is
the x-values for given y-values. The parameters is also shown in Figure 56, the uniformness is
illustrated as the black area. The smaller the black area is the more uniform structure exists.
Suppose that an average of all z-slices in a spectral hole is taken. Then the sharpness is defined
to be the distance between on the x-axis for some y-values low and high. This is described by the
following equation:

s(low, high) = |x(y = low)− x(y = high)| (276)

where s is a measure for sharpness, x(y) is the average curve of all z-slices, low and high are two
chosen value between zero and one.

G. Approximations in simulating a spectral hole burning process

The Maxwell-Bloch equations will be used (derived in Section VI) with some additional approx-
imation. When burning a spectral hole several pulses are sent into the material. Usually a long
waiting time will occur between each pulse. This waiting time is important in order to let the ion
de-excite. The de-excitation process is a key point since with some probability the ions can fall
down into a third level that has a long lifetime. This process is called optical pumping [47].
In the following the additional approximation is described:

� For all discretized points in space and in frequency (detuning) there will be some or no
excitation by the incoming burn pulses. The final excitation probability (the excitation
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FIG. 56: Eq. (275) is shown in the figure. The black area is the definition of u(low, high),
low = 0.19 and high = 0.67 in this case.

probability is (1 + rz)/2), after the pulse has propagated through the sample, is with what
probability that the ions will be assumed to drop down into a third level. This third level
doesn’t effect the 2-level system of interest (this is an approximation of optical pumping).
This approximation relies on that the third level has a much longer lifetime compared to the
two-level system being simulated.

26. RESULTS AND DISCUSSION

A proof-of-concept is going to be shown with simulations that follow the approximation in
Subsection 25 G. The ions going to the left can be well separated from the ions going to the right
due to an applied constant electric field (Figure 52), therefore the simulations will only care about
the ions going to the right (red color). It is then assumed that the inverse is done in the same way
for the ions going to the left by only applying a sign change to the electric field.
Two pulses are allowed according to Subsection 25 F. The initial hole is shown in Figure 57, this
hole is made by sending in the widest predefined pulse in frequency seven times.
The scheme described in Subsection 25 D has been applied by using the second predefined pulse
(this pulse is more narrow in frequency than the initial pulse that burned the spectrol hole in
Figure 57) together with a lot of trial and error in selecting the constant and linear electric field.
The result between the initial hole and the improved one by using the scheme can be compared in
Figure 58.

As can be seen in Figure 58b the height of all curves to the right of the edge has decreased,
this is a cost one have to pay when sending in extra pulses. This is an effect coming from the fact
that the pulses is finite in time (80µs) in the simulations and therefore the pulse has a long tail in
frequency. To see how well the scheme works compared to sending in each of the two pulses that
was used in the simulations without any applied electric field is going to be plotted. In Figure 59
the two different predefined pulses can be compared, where the repetition of the pulses is chosen
in a way to optimize the sharpness of the edge.
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FIG. 57: Initial hole in the proof-of-concept. The widest pulse in frequency of the two allowed
pulses has been sent in seven times. The results has been obtained by simulations that follow the

approximation in Subsection 25 G. The optical depth of the peak absorption is chosen to be
αL = 20.

(a) Initial hole in the proof-of-concept. From
Figure 57.

(b) The narrow pulse is repeated 4 times for
different linear frequencies.

FIG. 58: Comparsion between the inital hole from Figure 57 and the improved edge create by the
described scheme in Subsection 25 D. Note that the improved edge is not at the same frequency

as the inital hole due to the extra pulses that is sent in.

(a) Inital/widest pulse in frequency repeated
14 times.

(b) Most narrow pulse in frequency repeated
20 times.

FIG. 59: Compare the two predefined pulses without frequency shift.
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FIG. 60: Average of all z-slices to see difference of the sharpness of the edge.

TABLE III: Comparsion with Eq. 275 with low = 5% and high = 85%.

Figure Description u (in units of 0.1 MHz

58a 7 wide pulses 4.94

- 9 wide pulses 3.91

59a 14 wide pulses 3.18

- 7 narrow pulses 5.69

59b 20 narrow pulses 1.90

58b 7 wide pulses and then apply tuned electric field with 4 narrow pulses 0.87

- 7 wide pulses and then apply tuned electric field with 6 narrow pulses 1.38

As the number of pulse repetition increases the Eq. (275) decreases if no electric field is applied.
So the more pulse repetition the more uniform distribution. This is obvious by taking the example
to send in infinitely many pulses (given that the third-level lifetime is infinite). This will create
a non-existing edge and hence all z-slices will look the same. Another way to see the difference
between the different populations is to take an average of all the z-slices, this is done in Figure
60. Note that the more pulses one sends in comes with the price that the absorption after the
edge becomes lower (right side of the Figure 60). In Table IV the values Eq. (276) is chosen to
low = 5% and high = 85%.

Eq. (276) is a function that can be minimized in an optimization algorithm to find local/global
minima.
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27. CONCLUSIONS

In this part some explanation of how one can burn structures in the inhomogenous broadening
in different ways was described. Either the burning is performed by pulses propagating in the
same/opposite direction as the storage pulses or the buning pulses propagates in orthogonal direc-
tion as the storage pulses. Both ways have different advantages and disadvantages. The advantage
of burning in the same direction as the storage pulses is that it’s easy to know the direction to send
in the storage pulse. The disadvantage is that it’s hard to create a uniform and sharp structure
given that the optical depth is high. The advantage of burning in the orthogonal direction relative
the storage pulses is that the structure can be created more uniform in the direction that the
storage pulses enters. The disadvantage is that it might be hard to know where to send in the
storage pulse. But also if the probe beam is not well defined in direction or randomly distributed
in angle, this scheme will suffer from non-uniform/sharpness problems as the other ones.
A new scheme was introduced as well as a proof-of-concept by simulations showing that the scheme
actually works.
Summary of the scheme:

� Burn an inital hole that is more narrow in frequency than wanted.

� Use a constant electric field together with a linear frequency gradient field that is depending
on z-direction. The constant electric field is needed when the distributions is splitted in two
parts

� Tune the linear frequency gradient so that the end of the crystal is reached and then send
in a more narrow pulse in frequency. This way different parts in the crystal can be treated
more or less seperately and hence a uniform structure can be made.

� After each narrow pulse change the linear frequency gradient so that the end result will be
uniform.

� Repeat the procedure but with a sign change of the electric fields, that way both the ions
going to the left and the ions going to the right is affected equally.

Things to remember:

� The pulses is limited in time so the pulses has long tails in frequency.

� In order to keep as much of the atomic distribution outside of the pit as high as possible
don’t send in too many pulses. This is due to the frequency tails.

TABLE IV: Comparsion with Eq. 276 with low = 5% and high = 85%.
Proof-of-concept*=7 wide pulses and then apply tuned electric field with 4 narrow pulses

Curve in Figure 60 Description s (in units of 0.1 MHz

Red 7 wide pulses 3.99

- 9 wide pulses 3.81

Blue 14 wide pulses 5.24

- 7 narrow pulses 2.99

Purple 20 narrow pulses 4.37

Green Proof-of-concept* 2.62

- Proof-of-concept* 3.31
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� The sharpness problem is a multi-dimensional optimization problem. To use this scheme
optimally, a smart optimization algorithm is required together with for example Eq. (276)
in order to find local/global minimas. Eq. (276) is a measure of how sharp an edge is.

� All comparsion tables and figures described above is only a proof-of-concept done with trial
and error. The improved edge is most uniform according to Eq. (275) and most sharp
according to Eq. (276) with low = 5% and high = 85% seen in Tables III and IV.
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Part XI

Summary

This thesis have theoretically investigated three different problems that all concern highly efficient
quantum memories. The method of investigation was to numerically solve a set of equations. The
main set of equations that were used are called the Maxwell-bloch equations, this is a semi-classical
model where the ions are evolving according to quantum mechanics in the dipole approximation
and the incoming electric field by Maxwell’s wave equation. The connection between quantum
mechanics and Maxwell’s equations is that the ions contributes to a macroscopic polarization that
affect the electric field.
The main conclusions for all three problem will be listed:

1. Transverse/longitudal CRIB and AFC are three different quantum memory protocols. Every
protocol has advantages and disadvantages: CRIB relies on a frequency shift of the ions in
order to send out the stored pulse, the Stark effect can be used to make this possible. The
AFC protocol don’t need a frequency shift, but instead it’s the periodic structure in the
inhomogenous profile that makes it possible to send out a stored pulse. The AFC and
transverse CRIB protocol doesn’t give high efficiency in the forward direction while in the
backward direction efficiency close to unity is possible. Longitudal CRIB can give efficiency
close to unity in the forward direction but introduces a phase shift to the outgoing field.
Three different shapes of the peaks inside the inhomogenous profile were used to see how
much the efficiency is affected. It turns out that the shape is very important and in the three
cases that were tested the supergauss shape was in favor of a gauss or a lorentz shape.

2. A new experimental setup where a rare-earth-ion-doped crystal together with a cavity has
been put together at the Quantum information group in Lund. The experimental results was
explained in this thesis. The cavity resonance peak for a cold cavity is in the order to GHz
whereas inside the spectral hole the cavity resonance peak is in the order of MHz. It turns
out that the cavity resonance peak is proportional to the group velocity. The group velocity
inside a spectral hole is approximately three orders of magnitude lower than the phase speed
of light in vaccum. The experimental results were matched to the theoretical result and a
fair agreement between these two was found.
A set of equations based on the Maxwell-Bloch equantions for a cavity was derived and
showed that under perfect circumstances the new experimental setup together with the AFC
protocol can give efficiency over 80%. But if the edges of the spectral hole are to high
compared to the AFC peaks or if the cavity is not perfectly on resonance the efficiency will
be greatly reduced.

3. Creating sharp structures inside the spectral hole is important for the quantum memory
protocols. A new scheme was explained that allows creation of a more sharp and uniform
strucuture inside the inhomogenous profile relying on the Stark effect. A proof-of-concept
with the Maxwell-Bloch equations showed that this scheme works in principle, but to get
optimal values a multi-dimensional optimization algorithm is required.
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