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Abstract

Quantum gate operations and dipole-dipole interactions are modeled
by placing doped rare-earth ions in an Yttrium ortho silicate crystal.
The time dependent Schrödinger equation is also solved for different cases
where Europium and Praseodymium are exposed to light pulses carry-
ing operations on them. Both a three level Hamiltonian and a six level
Hamiltonian is used. Through different simulations and models are the
prerequisites for functioning quantum gate operations on rare earth ions
studied.
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Populärvetenskaplig sammanfattning

I och med samhällets utveckling växer mängden information lavinartat. Med all
information kommer vikten av att hitta just den relevanta information som du är
ute efter att växa. Som det är nu s̊a kan vanliga datorer klara det p̊a överkomlig
tid men i framtiden kommer de inte kunna söka igenom all information p̊a rimlig
tid. N̊agot som däremot verkar kunna klara just det och som är väldigt bra p̊a
att söka igenom stora mängder med information tros vara kvantdatorer.

Kvantdatorer är fortfarande framför allt ett teoretiskt koncept och man söker
efter bästa sättet att förverkliga teorin i praktiken. För ett av sätten, där man
har fria joner som är f̊angade i ett magnetfält, har man lyckats koppla ihop 8
joner till ett system som kan utföra vissa elementära operationer. I Lund s̊a
jobbar man med ett fysikaliskt system där sällsynta jordartsjoner sitter i en
kristall och laserpulser används för att p̊averka jonerna p̊a ett kontrollerat sätt.

Med tanke p̊a att det tar flera veckor eller m̊anader att ställa upp ett ex-
periment är det viktigt att man gör ett teoretiskt förarbete, dels för att spara
tid och för att vissa effekter ska kunna först̊as och förklaras. Därför har denna
rapport kommit till för att göra en modell för systemet och för att simulera
vad som händer med joner när olika ljuspulser sänds in och sedan analysera
resultaten. Målet är att öka kunskapen om detta sätt att förverkliga teorin och
s̊a komma ett steg närmare en fungerande kvantdator.
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1 Introduction

As with all great projects the question “why?” is more interesting than “how?”
so to better understand the flow of things and have a mental starting point it
is indeed worth taking the time to ask. The question does have many answers,
true, but one of the fundamental ones for me must be the thirst to understand
and develop a new technology. Why else would anyone dedicate their life and
youth to live in a dark cellar and shoot lasers at a crystal? Even so, the answer
could equally well be “Why not?” and so we find ourselves in a world where
quantum computers are slowly crawling into existence.

The first step in doing any quantum computations is to make some quantum
gate operations and so this work finds its place in the wheel of time. Firstly is a
foundation presented with the basic idea of the quantum computer and quantum
gates and similar basic information that is needed to understand the rest of the
thesis. Following that chapter is a chapter where the hands-on crystal and ions
are presented that are used in this type of quantum operations and through
which the steady-state of the system is studied. Describing how the system is
evolved in time through solving the time dependent Schrödinger equation is the
last step before the results from the different simulations that were made are
presented.

The question that the results are going to answer is how the system should
be constructed to get the highest probability to succeed with a quantum gate
operation. That includes the pulses that are sent into the system and the doping
atoms and doping concentration.

2 Quantum computers

2.1 General description

What, then, are “quantum computers”? To understand we compare a quantum
computer with a normal personal computer. The difference begins already in
the hardware. In the personal computer (PC), information is handled with
bits in ones and zeros. This is realized in the Complementary Metal Oxide
Semiconductor (CMOS) technology by having different voltages for the one (
e.g. 3V) and zero (0V). Using this system the data is moved, processed and
stored a billion times each second. In a quantum computer the information can
be stored in states in the atom and the smallest information unit is called qubit.
An electron belonging to an atom can be in different states but at the end of the
day the electrons are occupying all the lowest energy states. Say that we only
have two states and one electron, a so called two level system, then it is possible
to excite the electron from the lower state to the upper by sending in a photon
with the exact right energy corresponding to the energy difference between the
states. According to quantum physics the state for the electron can be written
as

|ψ〉 = c0 |0〉+ c1 |1〉 ci ∈ C (1)

where |ψ〉 describes the total state of the electron and |c0|2+|c1|2 = 1 which cor-
responds to the probability to find the electron in the system. This means that
the electron can be in a superposition of the eigenstates. Quantum mechanics
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teach us however that as soon as the total state is measured it will collapse into
one of the eigenstates |0〉 or |1〉 with the probability |c0|2 and |c1|2.

Another quantum phenomena that is used in quantum computation is en-
tanglement. Entanglement is when two or more ions are in a superposition and
the collapse of one ion into a state decides the state of the other ion and is thus
a collapse of the whole system. Another way to see it is that the wave function
cannot be written as a product state of the wave functions of the individual
ions. An example is a Bell state which is defined as

|β00〉 =
|00〉+ |11〉√

2
(2)

where the notation |00〉 describes a wave function where both qubits are in basis
state |0〉. The two qubits will with certainty after the collapse have the same
value, even though that value is not decided.

2.2 Bloch sphere

When faced with visualizing a superposition between two states a Bloch sphere
becomes handy. For normalized wave functions ψ such as in equation 1 the
vector representing the wavefunction points to a point on a sphere with radius
one. The poles of the sphere represent when the probability is one to be in one
of the states. Thus if the vector is anywhere else on the sphere means that there
is a probability to be in either state. As an example is the probability at the
equator of the sphere, when z = 0, equal to be in the two states. The position
in the x-y plane corresponds to the phase between the two states where x is the
real axis and y is the imaginary. The vectors and the outlines of the sphere are
shown in figure 1.

|0〉+i|1〉√
2

|0〉−|1〉√
2

y

z

θB

φB

|0〉

|1〉

|0〉−i|1〉√
2

x

|0〉+|1〉√
2

Figure 1: the Bloch sphere [13]

2.3 Gates

To do operations on the qubits different gates are used that change the states
of the qubits. The simplest gate is the NOT gate where the probability in |0〉
and |1〉 are switched. Another commonly used gate is the Hadamard gate which
with the bloch sphere picture, figure 1, shifts the superposition π

2 around the
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y-axis and π around the x-axis. This means that from a qubit in the groundstate
we get a superposition

UHadamard |0〉 =
|0〉+ |1〉√

2
(3)

A third gate that is needed is the controlled NOT (CNOT). The CNOT gate
involves two qubits as opposed to the other two gates than only work on one
qubit. One of the qubits is the control qubit on which nothing is changed. The
other qubit is the target where a NOT gate might or might not be applied. This
depends on whether the control qubit is in |1〉 or not. Using this gate a Bell

state can easily be made by having the control ion in |0〉+|1〉√
2

and the target in

|0〉.

2.4 Algorithms

Suppose two qubits are in a superposition |ψ〉 = (|0〉+|1〉)√
2
· (|0〉+|1〉)√

2
where the

first term is the first qubit and the second term the second qubit which can be
rewritten as |ψ〉 = (|00〉 + |01〉 + |10〉 + |11〉)/2. This superposition holds all
the values those two bits can hold and as the careful reader notice they are not
entangled. This is scalable, meaning that with eight qubits a superposition state
can be created where all the possible 256 values are equally weighted simply by

changing all the qubits into the superposition |ψ〉 = (|0〉+|1〉)√
2

and so on with even

more qubits. If a operation is done on the wave function with equal probability
to have all values finding the needle in the haystack is intuitively easier since
that value is also subjected to the operation. Thus it does not come as a big
surprise that quantum computers are especially good at searching through loads
of data. Using this approach specific values such as the factors of a large number
can be found faster than doing it the classical way. Since quantum computers
are so different from normal computers special algorithms are needed like the
Deutsch-Jozsa algorithm and the Shor factoring algorithm [14].

In this thesis the Deutsch-Jozsa algorithm was simulated. The algorithm
is more of a fundamental quantum computing algorithm and not really good
for anything but demonstrating that a quantum algorithm can be exponentially
faster than any classical algorithm when searching for the answer on a question.
What it does is to check if a function is balanced or not. This means, if the
function returns the same result for all input values or if the results are balanced
such that half the input values return |1〉 and the other half return |0〉. One such
function that is unbalanced is a function that is independent of the input values,
and a balanced function can return the value of one qubit. In a classical way this
question is answered by checking the function for half the input values plus one.
Thus the number of operations is proportional to the number of input values.
In the Deutsch-Jozsa algorithm the input values grow exponentially with the
number of qubits. The additional time needed when doubling the input values
for classical approach is roughly the double while for the quantum algorithm it
is the time to target one qubit with pulses. A schematic sketch for the Deutsch-
Jozsa algorithm is shown in figure 2. If the qubits measured after the algorithm
are all in |0〉 then the function is unbalanced.
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Figure 2: A schematic picture of the Deutsch-Jozsa algorithm. The top line is
the query register where the input qubits are. The bottom line is the answer
register where one qubit is prepared into state |1〉. On all of them are Hadamard
gates (H) applied which creates superpositions with equal probability of being in
|0〉 and |1〉. In Uf is the function targeted on the answer qubit with input from
the query register. After the operation is Hadamard gates once again applied
to the query qubits and the values are measured on them.

2.5 Fidelity

After an operation has been made on a system the final wave function can be
compared to the desired wave function to evaluate how successful the operation
was. This is called the fidelity of the operation and is defined as | 〈ψfinal|ψideal〉 |.
The desired value which is reached for is a fidelity of 99% or better.

2.6 The idea of rare earth ions

There are different ways to realize the quantum computer. One way is by using
rare earth ions doped in a crystal. In that system can different states be used
as data states. The crucial property is the coherence times of the states since
the information need to be left unchanged long enough for several operations
to take place. In rare earth ions such states with long coherence times exist.
When filling the electron shells the 5s and 5p shell are filled before the 4f shell
even though 4f is closer to the core [16]. The half filled shell for rare earth
ions is exactly that 4f shell which means that an excitation within that shell
is protected from external interferences due to those outer lying filled states
which results in those long coherence times. In this shell the different states
depend on the total angular momentum from the 4f electrons. As an example
the Europium state have six electrons in the 4f shell and due to fine structure
splitting the ground state is 7F0. This state with L=3 and J=0 is split into
three states because of the hyperfine interaction between the nucleus and the
electrons. From these states are chosen a |0〉, |1〉 and |aux〉 where the auxiliary
state doesn’t contain any data but works as a storage location. From this group
of states the transition up to the fine structure split 5D0 is an optical transition,
that is within the optical range of frequencies.

Similarly as for the 7F0 state the 5D0 is split into three hyperfine states. One
of them is used to achieve the interaction between ions used in CNOT gates.
For this purpose the higher energy state is used as an excited state because the
ion will change its dipole moment between being in the lower L=3 state and the
excited L=2 state. The change in dipole moment gives a change in the dipole-
dipole interaction between the ions which then can be used for implementing
gate operations.

7



2.7 Dipole-dipole interaction

For a rare earth ion situated in a Yttrium orthosilicate crystal the lattice around
will be distorted due to different ion size than the normal Yttrium ion resulting
in different permanent electric dipole moment. This change in the crystal will of
course affect other ions situated nearby. In this thesis the considered interaction
has been between the static electric dipole moments. As stated above the dipole
moment for the rare earth ions will change between the ground state and the
excited state. This means that exciting one ion induces a change in the crystal
which result in a change in energy between the ground state and the excited
state for other ions positioned nearby. This change or shift can be expressed
using Jackson’s equation for dipole-dipole interaction [5]. Since the ions are
situated in a crystal a prefactor is used modifying the standard equation with
the local field correction using the relative permittivity at zero frequency, also
called dielectric constant, for the host material. If an ion has different dipole
moment in the ground and the excited state with the difference ∆µ = µg − µe
then the shift in transition energy between those states for another nearby ion
can be written as

∆E =
(ε(0) + 2)2

9ε(0)

|∆µ1||∆µ2|
4πε0|r|3

(δµ̂1 · δµ̂2 − 3(δµ̂1 · r̂)(r̂ · δµ̂2)) (4)

where the subscript is the first or second ion. r is the spacial vector pointing
from the second ion to the first and ε0 is the permittivity in vacuum. The
variables with a hat are unit vectors, so δµ̂1 is the direction of the difference
in dipole moment between the ground state and excited state for the first ion.
For this type of crystal ε(0) = 7 is a normal static relative permittivity [11].
The last factor that just depend on the different unit vectors can be called the
geometric factor and this can vary between 1 and -2.
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3 Crystal

When choosing a host crystal for rare earth ions a few properties are searched for.
Firstly the crystal need to have good optical properties allowing the light pulses
to reach the ions and not absorb any of the emitted light. Secondly having a low
maximum phonon mode minimizes the possibility for relaxation in the rare earth
ions due to phonons in the chrystal. Thirdly a low nuclear magnetic moment
from the host atoms ensure that dephasing due to core-electron interaction is
minimized. One material that fulfills these properties is Yttrium orthosilicate.

3.1 Y2SiO5

The Yttrium orthosilicate crystal is widely used for its optical properties as host
crystal. Since both Si and O have no magnetic moment and yttrium only a small
of −0.13µN [8] the decoherence due to spin flips which creates a fluctuating field
is minimized [7].

The material crystallizes in a monoclinic cell with space group C 1 2/c 1
(C6

2h). This space group results in the basic molecule appearing eight times in
the unit cell due to folding and equivalent positions. In Table 1 is the unit cell
parameters and in Table 2 is the position of the basic atoms [10], recalculated
from the space group I 1 2/a 1. The two unit cells share the b axis so the different
vectors drawn in figure 4 are all in the same plane orthogonal to the b axis. There
are two crystallographic different sites that the yttrium ion occupy, Y1 and Y2.
When doping with rare earth ions they replace the yttrium ions primarily in
site 1 and since the two sites have a difference in resonance frequency of some
nm the model is just using site 1 [9]. In table 3 is the Cartesian coordinates to
the sites of Y1 which are all crystallographic equal in the unit cell. Using this
data the unit cell can be constructed as in figure 3.

parameter value

a 14.4137Å
b 6.7190Å
c 10.4000Å
α 90◦

β 122.235◦

γ 90◦

Table 1: Unit cell parameters for Y2SiO5 [10]

3.2 Implanted ions

Since the qubits are rare earth ions they are doped into the material and replace
Y3+. Many of the different rare earth ions could be used but some properties
differs between them. Primarily is the number of electrons in the 4f shell differ-
ent. This affects other properties such as the coherence time. If the number of
4f electrons is odd the magnetic interaction will be strong due to unquenched
electronic spin [11]. That is why ions with an even number of 4f electron ions,
such as Pr3+ and Eu3+, have so long coherence times for their 4f states.Those
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Atom x y z
Y1 0.037 0.257 0.466
O1 0.089 0.002 0.143
O2 0.118 0.287 0.318
Si 0.181 0.093 0.308

O3 0.297 0.429 0.060
O4 0.298 0.157 0.33
Y2 0.359 0.122 0.165
O5 0.485 0.102 0.103

Table 2: The basic position of atoms in the unit cell [10]

Axis orientation [Å]
x y z

a: -14.4137 0 0
b: 0 6.719 0
c: 5.54729 0 8.79702

Y1 sites in the crystal [Å]
x y z
2.051730 1.726783 4.099411
-5.155119 5.086283 4.099412
-13.691785 1.726785 0.299100
-6.484934 5.086284 0.299099
-10.918139 4.992218 4.697611
-3.711290 1.632717 4.697610
4.825376 4.992216 8.497922
-2.381475 1.632717 8.497922

Table 3: Cartesian coordinates of the eight places for Y1 in the unit cell in Å.

10



Figure 3: The Y2SiO5 crystal along the b-axis with Si atom in the yellow
polygons and Y in the orange, from a crystal viewer program
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32.2°
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D2
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Figure 4: Showing the relations between different vectors in the same plane for
the yttium crystal. The grey dots are equivalent crystal points in the plane and
the light blue are similar points half a unit cell distance out perpendicular to
the plane, parallel with the b axis. The green box is the unitcell for C 1 2/c 1
space group with axis a and c. The red box is the unitcell for I 1 2/a 1 unitcell
with the axis A and C. The two principal axis for the crystal, D1 and D2, are
also included as are the P vector which together with the b axis spanns the
plane at which the dipole moment direction lives for Pr. Lastly is the cartesian
axis noted with the y axis being parallel with the b axis.
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two are the ones used in this thesis. The energy levels for the ions are then
affected by the crystal field and split due to the Stark shift. This interaction
with the crystal field mixes the state a bit which makes some transitions that
normally are forbidden to be weakly allowed [11]. As a consequence the normal
term symbol (such as 3H4) is not entirely correct.

3.3 Praseodymium

In Praseodymium the ground level in the 4f shell is 3H4 and the transition
studied is between that state and 1D2 as can bee seen in figure 5. Each of
the states are split into three levels due to second order hyperfine splitting and
electronic quadrupole interaction which is interaction between the core and the
electrons. This hyperfine splitting is very small being just a couple of MHz for
Pr3+. The energy between the states is 495THz which is visible light in the red
region.

Figure 5: The different levels of a) Eu3+ and b) Pr3+ with the hyperfine splitting
that is used in the thesis

3.4 Europium

The transition studied in Europium is 7F0 ↔ 5D0 and can be seen in figure 5. A
transition with J=0 to J=0 is normally not permitted, but since these are mixed
states this transition is weakly allowed giving a long coherence time. Due to
similar hyperfine splitting mechanism as for praseodymium the states are also
split into three levels each. This level splitting is much larger for Europium,
around 100MHz between the levels.

3.5 Read-out ion

When trying to read out the result, that is if an ion is in |0〉 or in |1〉, the data
should not be destroyed in the sense that it becomes something that it was not.
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Eu3+ site I Pr3+ site I Ce3+ site I
δµ[D] 2.3 ∗ 10−2 7.3 ∗ 10−2 0.5

Table 4: The difference in static dipole moment between the ground state and
the excited state used with 1D = 3.33 ∗ 10−30Cm [4]

To avoid this a special ion is used to read out the data. Since a specific data
from one qubit ion is wanted the same goes for the read-out ion where single
ion information is wanted. To increase the signal from that single read-out ion
the ion is cycled many times between two levels. To be able to use this method
the ion need to decay rapidly down to the ground state when excited. The
emitted photon from the relaxation is also needed to have another frequency
than the pulse frequency sent onto this ion otherwise the emitted photon will
be very hard to detect. This is possible if the ground state have some states
with a bit higher energy, for example different phonon lines. When relaxing the
electron might then relax to a higher phonon line than the ground state first,
and thus emit a photon with higher wavelength that can be detected. Using the
dipole-dipole interaction a neighboring qubit ion might change the energy for
the excited state in the read-out ion so it comes outside the frequency range of
the laser pulse driving the read-out cycle resulting in no photons emitted from
the read-out ion. Thus a simple way to read out the data from one qubit close
enough to a read-out ion is to excite |0〉 up to |e2〉 and then apply a pulse that
cycles the read-out ion and detecting if any photon with a higher wavelength is
emitted.

One such ion that can be cycled is Cerium that have one 4f electron and
where the transition between 2F5/2 and 2D 3

2
is used. The second state is in 5d

shell, which results in much shorter coherence times since it is outside 5s and
5p, which enables the cycling of the state in the ion and studying the emission.
For this to work the emitted light of a single ion needs to be detected and such
precision has recently been reached [6].

3.6 Dipole moments

As can be seen in equation 4 the shift in energy depends on the difference in
the static electric dipole moment between the ground and excited state for the
two ions, the distance between them and the direction of the dipole moments.
The distance is given by the position in the crystal and the difference in the
static dipole moment between the ground and excited state is given in table 4.
About the direction of the change in static dipole moment is known that for Pr
ions the angle between them is 24.8 degree in a plane spanned by the b axis and
the vector P from figure 4 [3]. Since the basic molecule is folded and mirrored
the direction of one is set and the rest follows setting up the dipoles as seen in
figure 6.

3.7 Homogeneous and inhomogeneous broadening

The properties of the homogeneous broadening and the inhomogeneous is pre-
cisely why rare earth ions in a crystal works as an idea for quantum computing.
Since the states that are discussed have so long coherence times the line widths,
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Figure 6: The plane and direction of the change in static dipole moment between
ground and excited state.

the homogeneous broadenings, are very small being around kHz or smaller[17].
This since the homogeneous broadening, Γh, depend on the coherence time,
Tcoh, by

Γh =
1

2πTcoh
(5)

The inhomogeneous broadening however is much larger and depends mainly
on the host material for the ions. It comes naturally that the surrounding
affects the ion and in a crystal this can be pictured with the crystal field which
is the static electric field produced by a surrounding charge distribution. If
an impurity, something not normally in the crystal, is in the neighborhood
this field will change and so will the levels in the ion and thus the resonance
frequency will change. In a macroscopic doped crystal the surrounding for each
ion that is doped into the crystal will be different resulting in different shifts
of the resonance frequency. Summing up all the new resonance frequencies
gives the inhomogeneous broadening for the rare earth ions and is on the order
of GHz. Due to the shift in resonance frequency being dependent of different
surroundings of the ions it is no surprise that different doping concentrations will
affect the broadening. For Eu doped in Y2SiO5 the inhomogeneous broadening
can be modeled by a normal distribution with

N

0,

(
Γih

2
√

2ln(2)

)2
 (6)

where the inhomogeneous broadening Γih = Γih0 + ΓihKCDoping with CDoping
being the atm doping concentration between 0 and 1. As can be seen this
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model has a term which is doping concentration independent. From [15] the
values Γih0 = 1.8GHz and ΓihK = 1800GHz is used.

That the inhomogeneous broadening is so much larger than the homogeneous
means that ions can individually be targeted. Each ion has a small channel in
the frequency range where transitions will happen and this channel is depending
on the surrounding and situated somewhere within the large broadening. If the
resonance frequency for each ion is randomized, since it is a thesis in itself to
find how to calculate a reasonable non-randomized broadening, the probability
that two neighboring ions will overlap in frequency is very small. Combining
with the fact that the dipole-dipole interaction is very dependent of the distance
the result is a high probability that a single ion can be targeted and used for
interaction with neighboring ions without loss in fidelity due to interference from
other ions.
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4 Evolution in time

For every answer there is a correct question. Thus to understand a system
such as rare earth ions in a crystal, simply analyzing in steady state can only
give that much answers. A natural follow-up is to move into the time regime
and analyze the individual trees instead of the forest. To this end the time
dependent Schrödinger equation was used.

H(t) |ψ(t)〉 = i~
d

dt
|ψ(t)〉 (7)

Solving this equation exact analytically is close to impossible for most cases
resulting in the use of simplifications or numerical solutions. To this end the
time from t = 0 to t = τ where τ is the time the operation ends is cut to pieces.
In each time step, ∆t, the Hamiltonian is assumed to be constant. Knowing the
start value for the wave function the wave function at time ∆t can be calculated
using n = 0 in

|ψ([n+ 1]∆t)〉 = e
−i∆t

~ H([n+1/2]∆t) |ψ(n∆t)〉 (8)

This can be evolved to

|ψ([n+ 1]∆t)〉 = e
−i∆t

~ λ([n+1/2]∆t) |ν([n+ 1/2]∆t)〉 〈ν([n+ 1/2]∆t)|ψ(n∆t)〉
(9)

where λ and ν are the eigenvalues and the eigenvectors to the hamiltonian.
By iterating this step and letting the known start wave function evolve the
time dependent Schrödinger equation can be solved numerically. As ∆t is made
infinitely small the result approach the exact solution to the SE. What remains
is to find a Hamiltonian for the system.

4.1 Hamiltonian

In a three level system the Hamiltonian is a three by three matrix and can be
divided into two matrices H0 containing the energies on the diagonal and H1

containing the interaction terms on the off diagonals [14]. The energies are fairly
simple being expressed in ~ω with ω being the rotation frequency and in unit
[rad/s]. Since the system in our case is driven and exposed to light which has
a frequency of hundreds of terahertz and the splitting between |0〉 and |1〉 is at
MHz range the interaction between them is set to zero. For the other interaction
terms the electric dipole interaction gives that they are −~d · ~E. The electric field
where ωL is the frequency of the light pulse is expressed as

~E =
~E∗0e
−iωLt + ~E0e

iωLt

2
(10)

and the dipole moment operator as

~d = −( ~dge |0〉 〈e|+ ~d∗ge |e〉 〈0|+ ~dge |1〉 〈e|+ ~d∗ge |e〉 〈1|) (11)

where it is assumed that the two states |0〉 and |1〉 have the same dipole moment

and can be seen as a common ground state |g〉 for dipole matters. Then ~dge can

be defined as ~dge = 〈g| ~d |e〉. Multiplying them and defining

Ω =
~dge ~E0

~
(12)
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Ω̃ =
~dge ~E∗0
~

(13)

result in

H1 = −~
2

((ΩeiωLt + Ω̃e−iωLt) |1〉 〈e|+ (Ω∗e−iωLt + Ω̃∗eiωLt) |e〉 〈1|

+ (ΩeiωLt + Ω̃e−iωLt) |2〉 〈e|+ (Ω∗e−iωLt + Ω̃∗eiωLt) |e〉 〈2|) (14)

This Hamiltonian contain both fast rotating terms and slow rotating terms wich
can be clearly seen by taking it into the Dirac picture. After doing rotating wave
approximation [1] and removing the fast rotating terms where the frequency of
the light and the frequency of the excited states add since they will fast average
out to zero, the hamiltonian still in Dirac picture is

H1DP = −~
2

(Ωei(ωL−ωe)t |1〉 〈e|+ Ω∗e−i(ωL−ωe)t |e〉 〈1|

+ Ωei(ωL+ω2−ωe)t |2〉 〈e|+ Ω∗e−i(ωL+ω2−ωe)t |e〉 〈2|) (15)

The full hamiltonian in Schrödinger picture is then

H =

 ~ω0 0 −~Ω(t)
2 ei(ωLt+φ)

0 ~ω1 −~Ω(t)
2 ei(ωLt+φ)

−~Ω∗(t)
2 e−i(ωLt−φ) −~Ω∗(t)

2 e−i(ωLt−φ) ~ωe

 (16)

4.2 Rotating frame

When the above Hamiltonian is implemented and the evolution in time of the
wave functions are tried it is easy to understand that the time steps need to be
very small since it must resolve the frequency of the light which is at terahertz.
Doing that take much time from better things so to avoid the problem a rotating
frame is introduced. It is best understood by letting a unitary operator work
on the Hamiltonian that will create a rotating frame that rotates the third
energylevel.

U =

1 0 0
0 1 0
0 0 e−iωRF t

 (17)

Applying this transformation on the time dependent Schrödinger equation

U†H |ψ〉 = i~U†
d

dt
|ψ〉 (18)

H ′ |ψRF 〉 = i~U†(
dU

dt
|ψRF 〉+ U

d

dt
|ψRF 〉) (19)H ′ − i~

0 0 0
0 0 0
0 0 −iωRF

 |ψRF 〉
 = i~

d

dt
|ψRF 〉 (20)

where H ′ = U†HU and |ψRF 〉 = U† |ψ〉 which gives an effective Hamiltonian

HRF =

 ~ω0 0 −Ω(t)
2 ei(ωL−ωRF )t+iφ

0 ~ω1 −Ω(t)
2 ei(ωL−ωRF )t+iφ

−Ω∗(t)
2 e−i(ωL+ωRF )t−iφ −Ω∗(t)

2 e−i(ωL+ωRF )t−iφ ~(ωe − ωRF )


(21)
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Increasing the frequency of the rotating frame, ωRF , to about the same fre-
quency as the light reduces the exponent and thus the frequency of the interac-
tion term and so larger timesteps can be taken while keeping it well resolved.

4.3 Many Ions

The Hamiltonian in (21) does just explain a system of one ion. When expanding
the system to include more ions the Hamiltonian must of course expand as well.
Just thinking about the eigenstates for two ions instead of one ion the eigenstate
for the ground level changes from |0〉 to |00〉 since the state of the two of them
need to be explained. This gives that the Hamiltonian for two ions will be a
9×9 matrix and more generally the n ion Hamiltonian will be a n3×n3 matrix.
Constructing this Hamiltonian for two ions is done by

H2
RF = H1

RF ⊗ 1+ 1⊗HRF (2) +HDDinteraction (22)

where ⊗ is a tensorproduct. The superscript of HRF note the complete hamil-
tonian for that number of ions and the paranthesis note the basic hamiltonian
with the energylevels of that ion. HDDinteraction is zeros except for the matrix
element where two of the ions are in the excited state, that is 〈ee|ee〉 = ~∆E
where ∆E is the dipole-dipole interaction term between the two ions in Rad/s.
Following similar way an algorithm for making a Hamiltonian for a general
number of ions can be made.

4.4 Pulses

When applying a pulse to the system the interaction terms in the Hamiltonian,
that is the off diagonal terms change depending on the frequency of the incoming
light pulse and the Rabi component which describes how the pulse behaves in
time. The pulse is described with

−~Ω(t)

2
ei(ωLt+φ) (23)

where Ω(t) is the Rabi frequency, ωL is the frequency of the light and φ is the
phase.

What is done before is to describe the model but the toolbox that will be
used is the pulses. Since the superposition between |0〉 and |1〉 can be described
by a vector on the Bloch sphere the effect of the pulses are also well described
using Bloch vectors.

There are many different kinds of pulses, the easiest being a square pulse,
where a laser with a fix frequency and phase is on for a time period and otherwise
off. This pulse, depending on the phase, rotates the Bloch vector around x- or
y-axis with an angle corresponding to the area under the Rabi frequency which
depends on the intensity of the beam. A π rotation can be done by setting
Ω(t) = 106Rad/s and applying the pulse for a duration of π ∗ 10−6s where
in this case the area correspond to the product between the time and Rabi
frequency.

Since in nuclear magnetic resonance (NMR) a lot of different pulses are used
and have been used for a long time, many pulses have been developed by them.
One such pulse is the complex hyperbolic secant pulse, so called sechyp, which
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is very good on one thing, to swap the probabilities between two states. With a
normal square pulse a π pulse will swap the probabilities as well, but as soon as
the resonance frequency is a bit off the laser frequency the rotation will no longer
be around the x- or y-axis and so give a loss in fidelity. The sechyp however
start the pulse by rotating the Bloch vector in the x-y plane in one direction
then do the transfer with a Rabi frequency varying but with the area equal to
π and end rotating the other way in the x-y plane, see figure 7. This way, as
long as the detuning, that is the difference in frequency between the resonance
frequency and the frequency of the light pulse, is less than the frequency by
which the bloch vector is rotated in the start and end of the pulse the pulse will
do a mostly complete transfer (figure 8). The phase of the starting Bloch vector
does not matter and the end phase is hard to know since it will be different for
different detuning. For the sechyp pulse the Rabi frequency is written as

Ω(t) = Ω0(sech(β(t− t0)))1+iµ (24)

Typical values used in experiments for Pr are Ω0 = 0.55 ∗ 2πMrad/s, β =
1.47MHz, µ = 1.93 [13].

yx

z

Figure 7: The rotation of the bloch vector for ions with different detuning driven
by a sechyp pulse from [12].

Sechyp pulses can also be sent in with two different light frequencies at
the same time, so called two color pulses. This is only usable for three levels,
where the transfer between two states, |0〉 and |1〉, are done via a third state,
|e〉. Letting the pulses have the same Rabi frequency they can be written as
Ω(t)e−iγ0 and Ω(t)e−iγ1 where γ is the phase of the light. To better understand
how the two-color pulses works another basis between the two data states can
be chosen as

ˆ|0〉 =
1√
2

(|0〉 − eiφ |1〉) (25)

ˆ|1〉 =
1√
2

(|0〉+ eiφ |1〉) (26)

If the phase between the pulses is φ then only ˆ|1〉 couples to the excited state,

called the bright state, while ˆ|0〉 can be seen as a dark state [13]. For a phase
difference of φ+π the opposite is true. Using the first two two-color pulses from

table 5 the probability to be in ˆ|1〉 is transfered to the excited state and then
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Figure 8: The amplitude and frequency of a sechyp pulse
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returned with an arbitrary angle θ. This can be written as ˆ|1〉 → ˆ|1〉eiθ. In the
system this changes the Bloch vector with the angle θ in the plane orthogonal

to ˆ|1〉 from how it was before. Changing the value of φ the state ˆ|1〉 changes
and thus the plane in which the rotation is done. Normally this value is either
π/2 for rotation around the y-axis or π for rotation around x-axis.

This is true for ions with the resonance frequency at the light frequency. For
ions that are detuned from this frequency another phase angle will appear that

depends on the detuning. To remove this extra phase that is added to ˆ|1〉, the

same phase is added to ˆ|0〉 making it a global phase of the states that does not
change the relative phase between the states and thus does not affect the Bloch
vector. This phase is added by applying similar pulses as before but without

any angle change targeting ˆ|0〉.

Pulse # ϕ0 ϕ1 ϕ1 − ϕ0 Description

1 0 φ φ ˆ|1〉 → |e2〉
2 π + θ π + φ+ θ φ |e2〉 → ˆ|1〉 with angle θ

3 0 π + φ π + φ ˆ|0〉 → |e2〉 to compensate

4 π 2π + φ π + φ |e2〉 → ˆ|0〉 to compensate

Table 5: Angles for the four two color pulses. If φ = π the rotation is around
the x-axis and if φ = π

2 the rotation is around the y-axis, [13]

4.5 Raman transitions

Since the two-color pulses have two frequencies at the same time the possibility
for two photon processes appear. Such a process is the Raman transition where
an electron is excited up to a virtual state and deexcited to the other ground
state. This process can be described with adiabatic Raman transition which for
the space spanned by the states |0〉 and |1〉 can be expressed as transformation
operator

U = e−
i
2 Λ2~σ·~n (27)

where ~σ is the vector of Pauli matrices and a rotation Λ2 around an axis de-
scribed by unit vector ~n. Those are defined as

Λ2 =

∫ tf

ti

−2

√
Ω2(u) +

(
∆

2

)2

sin2

(
1

2
arctan

(
2

Ω(u)

∆

))
du (28)

nx = cos(α) sin(2 arctan(1)) (29)

ny = − sin(α) sin(2 arctan(1)) (30)

nz = cos(2 arctan(1)) (31)

with α being the phase between the two pulse frequencies [2].
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5 Results

Coming this far into the thesis the theories are waiting to be applied onto som
results. Starting quite general step by step the results will approach simulating a
quantum computer algorithm. The first results come from analysing doped ions
in the crystal-model and a possible way to compare results from the model with
real world results through the echo experiment. A single ion is then exposed
to different pulses and analysed. Expanding the Hamiltonian multiple ions and
their interactions are analysed. Last is the possibility to make chains of qubits
explored in a simplified way.

5.1 Qubit interaction and frequency shifts

5.1.1 Doping and shift statistics

The key to be able to do any quantum computing is the read-out process.
Without the read-out ion nothing that happens will have any impact on the
world. Thus the interaction between the Ce ion and the Pr ions is studied. To
understand the basic interaction between two ions and to what extent the shift
depend on the distance between them a figure such as figure 9 is a step on the
way. In the figure the dipole-dipole interaction in equation 4 between a Ce ion
and a Pr ion is used with the directions of the dipole moment change being
parallel to each other and orthogonal to the vector r̄ resulting in a geometrical
factor of 1.
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Figure 9: The shift from dipole dipole interaction on a Ce ion from a Pr ion
as a function of distance with the dipole moment direction being parallel with
each other and with the line between the ions.

As the rare earth ions are situated in a host crystal certain sites are available
for the ions. Thus using the model for the yttrium ortho silicate crystal the Y1
site is used and qubit ions are placed randomly corresponding to the doping
concentration. The different realizations were made with the ions placed within
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a sphere with the read-out ion in the middle. From a thousand such realizations
for doping concentration 0.1%, 0.2%, 0.5% and 1% the largest shift on the Ce
ion from a Pr ion was noted in figure 10 and figure 11. Notable is that for larger
shifts just certain lines exist in the shift. This is as expected since just certain
sites can be populated and since the interaction highly depends on the distance.
Note also that this is the absolute value of the shift.
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Figure 10: Number of realizations as a function of the shift in energy. From
1000 realizations per doping concentration is the absolute value of the biggest
shift on the Ce ion from any Pr ion taken.

The two figures have different scale and figure 11 show the realizations where
the read-out ion was nog shifted so much. To know the statistical probability
that at least one ion in a realization will be able to shift the read-out ion as
much as needed to get some information is very useful when deciding the doping
concentration of the crystal. Note that the shift in figure 11 is also in absolute
value showing the distribution for the thousand realizations. As the direction of
dipole moments is distributed with the mean value zero, half will shift upward
and half will shift downward.

It is not only the existance of a qubit that can be read out that is important.
If other ions in the crystal are excited by the pulse meant to excite the strongest
influencing ion on Ce and the sum of their shifts on Ce is larger than the line
width for Ce, that is 3MHz, it is possible that the read out process is corrupted.
For this purpose a profile with the probability for a Pr ion with six levels to
be excited from a sechyp pulse with the typical parameters in section 4.4 as a
function of the detuning, the difference between the resonance frequency of the
ion and the frequency of the incoming light, can be seen in figure 12. Centering
this profile around the resonance frequency of the strongest interaction ion on
the read-out ion, all other ions that have a resonance frequency within this profile
will be excited with a certain probability. Summing up the shift on the read-out
ion from all the ions that are excited together with the strongest influencing
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Figure 11: Number of realizations as a function of the shift in energy. This
figure shows the same data as figure 10 but focuses on how the probability to
get a low interaction changes with changed doping concentration
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Figure 12: The probability to excite a Pr ion with a sechyp pulse as a function
of the detuning

Doping concentration % shift more than 3MHz Average (MHz)
0.1% 9.7 1.25
0.2% 14.4 1.69
0.5% 15.2 1.71

1% 17.6 1.86

Table 6: A thousand realizations where the sum of the shifts on the Ce ion from
the Pr ions in the crystal within the profile for different doping concentrations
was collected

one for a thousand realizations and for 0.1% and 1% doping concentration the
histogram in figure 13 was acquired. In table 6 the percentage from a thousand
realizations where the sum of the shifts on the read-out ion more than 3MHz and
the average shift in energy for four different doping concentrations are noted.
Interesting to see is that one magnitude higher doping concentration result in a
doubling of realizations where the shift is larger than the Ce linewidth.

Another interesting simulation is how much all the Pr ions (independent of
their resonance frequency) outside a range of 10nm shift the resonance frequency
of one Pr ion depending on the doping concentration. In figure 9 the magnitude
of the shift for 10nm is the same as the detuning needed to be unaffected by the
pulse for Pr, which is shown in figure 25. This could result in influence on the
target ion from ions far away that disrupts the computation. Ideal would be that
the shift from ions further away than 10nm were negligible. To do this a crystal
sphere with a diameter of 80nm is setup and a ion in the middle selected. From a
thousand realizations the largest negative shift1 from one ion per realization for
the doping concentrations 0.1%, 0.2%, 0.5% and 1% is collected and displayed in
figure 14 and the sum of the shifts is displayed in figure 15. The distribution is as
expected where the increase in doping concentration also increases the shift. The
sum of the shifts show that at a doping concentration of 1% the broadening of
the shift in resonance frequency of the target ion reaches roughly 50MHz which
compared to the results in section 5.2 is on a magnitude that would disrupt the

1The largest positive shift give the same result but with opposite sign
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Figure 13: Number of realizations as a function of the shift in energy. For 1000
realizations at doping concentration 0.1% and 1% is the shift on Ce from all
excited Pr ions within the sechyp profile taken. The dashed line shows where
the 3MHz line is corresponding to the linewidth of Ce.
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interaction between the target and close ions used in a computation.
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Figure 14: Number of realizations as a function of the shift in energy. The shift
from the ion which has the largest negative shift on one Pr ion from Pr ions 10nm
away or more for a thousand realizations and different doping concentrations
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Figure 15: Number of realizations as a function of the shift in energy. The
shift on one Pr ion from all Pr ions further away than 10nm for different doping
concentrations

5.1.2 Photon echo

The difference in dipole moment between the ground state and the excited
state for Ce was calculated from photon echo experiments assuming a lorenzian
distribution of the shifts so to test the model and study if the shift follows a
lorentzian distribution we model a photon echo experiment with the calculated
Ce dipole moment value. The photon echo experiment is done on a crystal
with 0.08% Ce3+ and 0.05% Pr3+. The Pr is first excited with a π

2 pulse
followed by an excitation pulse to Ce and then a π pulse to Pr. If a Pr ion is
shifted in frequency by the excited Ce ions then the time development of the
phase will change. After the π pulse to the Pr, Ce is no longer excited which
results in the development being different for those Pr ions that were shifted
by Ce which results in a weaker echo. Using the model the crystal can be
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built up. Assuming that there is no interaction between Ce ions the shift due
to dipole-dipole interaction on each Pr ion from all the Ce ions is simulated.
This assumption turns out to be reasonable. The Pr ions that are selected
in our simulation are within 1GHz of the zero detuning in the inhomogeneous
broadening done with a normal distribution with σ = 40GHz. The Ce ions
are within 100MHz of the zero detuning as well but with the inhomogeneous
broadening having σ = 4GHz. These values are reasonable values from the
quantum information group at Lund. The resulting shifts are displayed in figure
16 with linear scale on the y axis and figure 17 with logarithmic scale on the y
axis.

Figure 16: Number of realizations as a function of the shift in energy. A simu-
lation on how the distribution of the shift on Pr ions from all Ce ions will look
like

To this distribution a non linear fitting was made with the Lorentzian dis-
tribution

f(x) = k
1

π

(
Γ
2

)2
E2 +

(
Γ
2

)2 (32)

Since the input energy is in Hz Γ will also have the unity Hz. The fitting resulted
in Γ = 55kHz and k = 9.51∗1010. Notable is the shift distribution fits well with
the lorentzian for small shifts but falls of slower than the lorentzian distribution.

5.2 Single qubit dynamics

5.2.1 Single-color pulses

To simulate quantum gates an ion is placed alone in the universe and exposed
to single-color sechyp pulses with pulse parameters from section 4.4. The ion
has all six levels and a NOT operation is done with a pulse between |0〉 and
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Figure 17: Number of realizations as a function of the shift in energy. A simu-
lation on how the distribution of the shift on Pr ions from all Ce ions will look
like with logarithmic scale

|e2〉 followed by a pulse between |e2〉 and |1〉 and last a pulse between |0〉 and
|e2〉 again. In figure 18 the end result after the operation on a Pr ion is given
as a function of the detuning between the light frequency and the resonance
frequency of the ion. As shown in the figure is the NOT operation successful
for small detunings and leaves ions detuned more than 1MHz unchanged. At
the right side the beginning of the next hyperfine level is starting to show.

Changing the pulse parameters to Ω0 = 5 ∗ 2πRad/s, β = 1.7MHz and
µ = 2.69 and doing the same operation figure 19 is acquired. Now the effect of
the nearby hyperfine level is clearly visible. The increase in the frequency range
of the pulse broadens the profile resulting in a larger range in frequency where
ions are transfered with a high fidelity through the operation.

When instead of Pr an Eu ion with much larger hyperfine splitting is targeted
with the same pulse parameters the result is shown in figure 20. It is very similar
to figure 19 except that no excitation due to a hyperfine level is seen.

5.2.2 Two-color pulses

Furthermore is the ion exposed to two-color pulses following the scheme and
sechyp pulse parameters from section 4.4 with a π rotation around the x axis
resulting in a NOT operation. The pulse durations are 8µs each with the center
of the sechyp pulses after half the time. The total NOT operation for an ion in
resonance is seen in figure 21. In that figure the last two pulses, the compen-
sation pulses, do not have any effect since zero detuning does not give an extra
phase angle. With an ion detuned 1MHz from the light frequency the same
operation results in figure 22 where the last two pulses clearly compensate for
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Figure 18: Probability to be in a certain state as a function of detuning for that
ion. A NOT operation on one six level Pr ion with single-color pulses with pulse
parameters from section 4.4
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Figure 19: Probability to be in a certain state as a function of detuning for that
ion. A NOT operation with single-color pulses with parameters in section 5.2.1
on a Pr ion
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Figure 20: Probability to be in a certain state as a function of detuning for that
ion. A NOT operation on a Eu ion with single-color pulses with parameters
from section 5.2.1

the detuning dependent phase the first two pulses acquired.
As the operations are done in a crystal with lots of other ions with different

resonance frequencies the change in probability as a function of the detuning
from the laser frequency is very interesting. The ideal case would be that only
the targeted ion is affected and none else, and thus a pulse with the frequency
width equal to the homogeneous broadening would be wished for. However,
remembering Heisenberg the pulse that is more narrow in frequency is longer
in time and if the operation takes long time compared to the life time of the
state the assumption that no dephasing occurs does not hold. Using the pulse
parameters as mentioned, the model was expanded including all six levels that
are close to each other and the two-color NOT operation was done. The end
result as a function of the detuning is plotted in figure 23 and in figure 24 for
Eu with figure 24 being a close-up around the resonance frequency.

The same was done for a Pr ion also with six levels in figure 25 and in figure
26. Especially for Pr is it notably how far from the ideal case it is. Because of
the hyperfine splitting structure being much more closely spaced in energy than
for Eu, the Raman transition terms for the other levels will interfere with the
resonance transition terms.

5.2.3 Raman effect

To compare the full model with just the adiabatic model described in section 4.5
to see how big influence the adiabatic Raman transition have and to compare
the two models, the operator presented there is used together with a two-color
sechyp pulse with the parameters Ω0 = 5 ∗ 2πRad/s, β = 1.7MHz and µ = 2.69.
Note that this single two-color pulse only results in taking the bright state to
the excited level. Using the full model with a three level Eu ion result in figure
27. For Eu the splitting between the two ground levels is 90MHz which can
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Figure 21: Probability to be in a certain state as a function of time. The change
in population for an ion with zero detuning from light frequency being exposed
to a NOT operation with two-color pulses
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Figure 22: Probability to be in a certain state as a function of time. An Eu ion
detuned with 1MHz from the light frequency and how the population changes
as a NOT operation with two-color pulses are done and the compensation pulses
brings the fidelity to one since a detuned ion should not be affected by the pulse
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Figure 23: Probability to be in a certain state as a function of detuning for
that ion. The end result after a NOT operation on a three level Eu ion with
two-color pulses as a function of detuning from light frequency
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Figure 24: Probability to be in a certain state as a function of detuning for that
ion. The same operation as for figure 23 but focused on small detuning
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Figure 25: Probability to be in a certain state as a function of detuning for that
ion. A NOT operation with two-color pulses is simulated for one Pr ion with
six levels as a function of the detuning from the laser frequency.
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Figure 26: Probability to be in a certain state as a function of detuning for
that ion. The same operation as for figure 25 but for frequencies close to zero
detuning.
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clearly be seen in the figure. Solving the same setup with the same pulse but
using the adiabatic Raman model described in section 4.5 result in figure 28.
The two figures are very similar except around 90MHz detuning where processes
other than Raman transitions are expected to happen. Thus is seen that due to
Raman transitions are even ions that are far detuned, on the order of 100MHz,
affected by the pulse. This is an unwanted property of the pulse which makes it
very difficult to target only one ion and in practice makes it impossible to use
this pulse. Given that the two different approaches give similar result another
conclusion is that the full model,the time evolution program, seems to give
correct results.
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Figure 27: Probability to be in a certain state as a function of detuning for
that ion. The end result in a simulation using one two-color pulse with Ω0 =
5 ∗ 2πRad/s, β = 1.7MHz and µ = 2.69

The Raman transitions depend strongly on the Rabi frequency. In figure 29
the pulse parameters used in section 4.4, most notably the Ω0 = 0.55 ∗ 2πRad/s
(i.e. almost an order of magnitude weaker than in figure 27), was used showing
a significant change in how far detuned Raman transitions occurs, only a couple
of MHz. Using pulses with lower Rabi frequencies can thus enable the use of
two-color pulses when targeting one ion. Also the influence from the adiabatic
Raman transitions for small detuning is weak as seen in the large difference
between the two models. When the pulse is on resonance the contribution from
the adiabatic Raman transition is indeed expected to be zero. However, for
detunings larger than 1MHz the results from the two approaches agree and the
contribution from Raman transitions are strong.

For single ion dynamics, single-color sechyp pulses have an ideal effect while
two-color pulses introduce two photon processes which increase the number of
unwanted ions that are affected by the pulse. However, as seen in figure 22 is
some of the effect nullified with compensation pulses.

36



0 0.5 1 1.5 2

x 10
8

0

0.2

0.4

0.6

0.8

1

Detuning (Hz)

P
ro

ba
bi

lit
y

 

 

|0>
|1>

Figure 28: Probability to be in a certain state as a function of detuning for that
ion. The end result after one two-color sechyp pulse with Ω0 = 5 ∗ 2πRad/s,
β = 1.7MHz and µ = 2.69 using the adiabatic Raman transition model.
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Figure 29: Probability to be in a certain state as a function of detuning for
that ion. The adiabatic Raman solution for one two-color sechyp pulse with
parameters in section 4.4 with Ω0 = 0.55MHz (dashed line) and the simulated
result with the same pulse parameters (solid line)
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5.3 Multiple qubit dynamics

5.3.1 Multiple excitation from one pulse

Expanding the simulation to include two ions the effect of the interaction be-
tween them come into play. A single-color sechyp pulse was targeted at the
resonance frequency of one ion and the wanted result is an excitation of that
first ion and no change in the population for any other ion. Thus, in figure 30
the state |e0〉 is displayed as a function of detuning and dipole-dipole interac-
tion between the target ion and the other ion. Both ions have six levels and
the target ion is the one changing in frequency. First, for small detuning the
second ion is affected by the pulse as well, resulting in loss in fidelity as seen in
figure. Second the most prominent feature is the big valley, where the detuning
between the ions roughly equals the shift in energy. This can be understood in
the following way: as the target ion is excited the second ion is, due to dipole-
dipole interaction, shifted to resonance with the target ion excitation frequency.
It will then be picked up by the sechyp pulse and driven up to the excited state.
The width of the rift is depending on how broad the sechyp is in frequency, and
the spacing between the levels.
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Figure 30: Probability to be in |e0〉 after a sechyp pulse with the parameters
given in figure 28 as a function of detuning between the target ion and another
ion and the shift in energy due to dipole-dipole interaction between them.

5.3.2 Simple pulse sequence

To know if the system works for gate operations, a system of three ions is set
up with the resonance frequency of the second ion being 20MHz higher than
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the first and the third being 20MHz higher than the second. They all shift each
other 150MHz when excited. Applying a chain of sechyp pulses to this system,
targeting the different ions, figure 32 shows the evolution in time of the system.
The pulses are given with 8µs interval following the scheme in figure 31. With
the first two pulses a blockade is attempted, i.e. if the excitation of the first ion
can block the excitation of the second. As can be seen, there is no change in the
probabilities around 12µs which is the center for the second pulse which shows
that the blockade is successfull. The first ion is then retuned to the ground
state by pulse 3. The second part, pulse 4 to 6, aims at changing the third ion
from |0〉 to |1〉 and doing the excitation of the second ion, to show that a NOT
operation is possible and that an ion in state |1〉 does not block the excitations.

Figure 31: The scheme showing in which order and which energy the pulses
were sent in

For the operations done in figure 32 the pulses were cut after 8µs and then
followed by next. This way of giving the pulses causes loss in fidelity when
shortening the times more than 2.5µs for each pulse as can be seen in figure
33. Another approach is to mix the energy fields from the different pulses and
letting them continue for the whole duration of the operation. Doing so for these
pulses and varying the time from center of one pulse to the center of next and
noticing the probability at the end, figure 34 was acquired. Comparing these
two results the mixing of the energy fields allow shorter time between the center
of the pulses while keeping a high fidelity. Using this method with the system
of three ions set up above and a center to center time of 1.6µs for the pulses,
the result shared in figure 35 was obtained. As seen is the end result still the
same with a high fidelity.

5.3.3 Deutsch-Jozsa algorithm

Extending the previous results a simulation of a real algorithm with many gate
operations on a system of three ions was made, now without mixing the energy
fields. The algorithm chosen was the Deutsch-Jozsa algorithm (see section 2.1)
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Figure 32: Probability to be in a certain state as a function of time. In a
system of three ions with three levels sechyp pulses with parameters as in figure
28 are sent in following order: Q1 : |0〉 → |e〉, Q2 : |0〉 → |e〉, Q1 : |e〉 → |0〉,
Q3 : |0〉 → |e〉, Q3 : |e〉 → |1〉, Q2 : |0〉 → |e〉 as seen in figure 31
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Figure 33: Probability to be in |0e1〉 after the operation in figure 32 as a function
of the time between the center of the pulses when cutting each pulse as the next
pulse is sent in
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Figure 34: Probability to be in |0e1〉 at the end of the operations in figure 32
as a function of time between pulse centers for overlapping pulses
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Figure 35: Probability to be in a certain state as a function of time. The same
pulse scheme as for figure 32 but with the energy fields mixed together with
1.6µs between the center of the pulses
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for a query register of two qubits with the third being the qubit in an answer
register. The initial state of the system has the query register qubits in |0〉 and
the answer register qubit in |1〉. To realize the Hadamard gates two-color pulses
were used which, since it is two rotations, require 8 pulses and the function cho-
sen was a CNOT which is a balanced function. The qubits were chosen with the
second qubit being 40MHz detuned from the first and the third being 170MHz
detuned from the first. Excitation of any ion shift the resonance frequencies of
the other two ions 300MHz, via the dipole-dipole interaction, and the evolution
in time for the system can be seen in figure 36. In the figure the system starts
in the initial state |001〉 and three Hadamard gates are applied, one per qubit.
After little less than 200µs the function is applied and to finish of is a Hadamard
gate applied to the first and second qubit. When measuring the state of the
first qubit there is a higher than 95% probability to find it in state |0〉 and the
same high probability is it to find the second qubit in state |1〉 when measuring.
Thus the probability is very high to get the result that the function is balanced!
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Figure 36: Probability to be in a certain state as a function of time. A Deutsch-Jozsa algorithm was made with two qubits in the query
register. The function is a CNOT operation and thus balanced and should return 1 in one of the query register qubits at the end. After
setting up the system with three Hadamard gates the function is applied and then two Hadamard gates are applied to Q1 and Q2 and
the output is that Q2 has a high probability to be in state 1 and the function is thus balanced
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To sum this part up, increasing the number of ions in the simulation expands
the problems many times and in different direction, both becoming more time
consuming and introducing shifts from interactions with all the other ions. Still
a small quantum algorithm was successfully simulated.

5.4 Qubit chain statistics

Connecting the two approaches to quantum computing, the modeling approach
and the simulating approach, would be to send in pulses to the ions in a crystal
and use the interaction between them and their frequencies. A step in that
direction is to pick out the ions from a realization that can be a part of a quantum
operation chain. Between two qubits the criteria is that the frequencies should
not overlap so that targeting one ion will affect the other ion, neglecting the
shift in resonance frequency due to dipole-dipole interaction. Using Pr ions and
giving each a frequency channel with at least 20MHz to another ions resonance
frequency in the chain, a number of chains can be constructed starting from the
ions that shift the read-out ion more than 30MHz. The chain containing most
ions is marked in the realization in figure 37 with green halos and the ions that
shift the read-out ion enough have a green line drawn.

With an increase in doping concentration the interactions between the ions
in the crystal are stronger and more numerous. Consequently the change in
the size of the chain as a function of the concentration is interesting. The
average size of 50 realizations is seen in figure 38 and except for small doping
concentrations the increase is linear. To understand this development it must
be remembered that the inhomogeneous broadening increase linearly with the
doping concentration (section 3.7). Still, it could be that the length of the
largest chain changes very much between different realization but that is not
the case as can be seen in figure 39. Thus, at a certain doping concentration
the probability to find a chain where most channels are occupied will be high
and so the limiting parameter is the width of the inhomogeneous broadening.
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Figure 37: The model of the crystal doped with 0.2% Pr with the read-out Ce
ion in the middle with green connections to all ions that shift it more than 30
MHz. The biggest chain where there are not two ions within 20MHz from each
other in resonance frequency is made up of the ions with a green halo
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Figure 38: The average of numbers in the biggest chain out of 50 realizations
as a function of different doping concentrations.
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Figure 39: The distribution of the length of the biggest chain for four doping
concentrations with 50 realizations each.
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6 Conclusions

To conclude, a high fidelity of the operations is wanted and the pulses result in
a target frequency range of the order of 100kHz for high fidelity, which means
that the number of ions close by should be as low as possible to minimize shifts
on the target ion. This gives that the doping concentration should be as low as
possible. At the same time a chain of ions that can be used for operations should
be formed with a high certainty to simplify the practical search for a working
quantum system. From figure 39 this gives for Pr a higher doping concentration
than 0.2%.

When using two-color pulses the pulse parameters with lower Rabi frequency
are better for minimizing excitations of other ions in the system due to Raman
transitions. For single color pulses a higher frequency chirp (β∗µ) value is better
since there is a trade-off between not exciting other ions and a robustness of
the system which drives the operation with high fidelity, even if the target ion
is shifted a bit.

Between the two ions Eu is preferable since the fidelity for two-color pulses
is higher. This will be a bit trickier since the larger hyperfine splitting result in
simultaneous excitation frequencies at around 100MHz away from the resonance
frequency. The mapping of a functioning chain will thus be problematic but at
the same time other ions that have resonance frequencies in between the target
ion excitation frequencies can be allowed.
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