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Abstract:  There have recently been several studies of the performance
of laser frequency stabilization using spectral holes ildspinstead of
an external cavity, as a frequency reference. Here an &wllytheory for
Pound-Drever-Hall laser frequency stabilization usingcsgal hole-burning
is developed. The interaction between the atomic mediumth@dghase
modulated light is described using a linearized model oMlagwell-Bloch
equations. The interplay between the carrier and modulasidebands
reveals significant differences from the case of locking taaity. These
include a different optimum modulation index, an optimurmpée absorp-
tion, and the possibility to lock the laser in an inherenedin frequency
drift mode. Spectral holes in solids can be permanent osigah For the
materials normally used, the dynamics and time scales obigat holes
often depend on population relaxation processes betweeunndr state
hyperfine levels. These relaxation rates can be very diffeier different
solid state materials. We demonstrate, using radio-frecpupumping, that
the hyperfine population dynamics may be controlled andrd to give
optimum frequency stabilization performance. In this wésoamnaterials
with initially non-optimum performance can be used for #izdtion.
The theoretical predictions regarding the inherent lifesguency drift is
compared to experimental data from a dye laser stabilizadsgmectral hole
in a PP*:Y,SiOscrystal.
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1. Introduction

Frequency stabilization of lasers is an advanced topicarsttience of optical physics, and the
use of optical cavities in the Pound-Drever-Hall scheméq &h often used technique, which is
also theoretically very well understood [2]. Since the E880’ies, laser frequency stabilization
using spectral hole burning has been developed using semluctor lasers [3, 4, 5, 6, 7, 8, 9] or
a Ti:sapphire laser [10]. However, the theoretical undeding of this stabilization method is
not well developed. Such a theory must include the intesadietween the laser to be stabilized
and the atomic reference material in which case the equatbmotion are inherently non-
linear. In this paper we present an analytical, linearirebty, which gives physical insight to
the spectral hole burning dynamics and its implication enftequency stabilization feedback
loop. The theory gives optimum design parameters for thalstation feedback system, and
in particular we demonstrate that an inherent linear lasguiency drift can be avoided with
certain parameter choices.

The inherent linear frequency drift regime is also idendifexperimentally with a dye laser
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stabilized to the 606 nm transition in¥PrY,SiOs. In order to control the hole-burning dy-
namics in this material, we introduced an “RF-eraser”, wtgonsists of RF magnetic fields,
allowing us to vary the hyperfine level lifetimes.

Optical cavities are widely used for laser stabilizatiout, in some cases the use of spectral
holes can be advantageous. Firstly, if one wishes to peréxqperiments on optical transitions
in the hole-burning material itself, it may be required tthegt phase coherence time of the laser
is similar to the coherence tim&, of the optical transition. The hole-burning material litse
is then automatically sufficient as a phase reference. Rtarce, the 580 nm transition in
Ewt:Y,SiOshas an optical coherence time as long as 2.6 ms [11]. Secomdén using the
spectral-hole-burning technique, the sensitivity to attoms requires that the atomic medium
moves much less than an optical wavelength in an opticalreolce time. However, for the
mirrors in a high-finesse cavity this sensitivity is essahtimultiplied by the average number
of round trips made by a photon in the cavity, which can be rs¢\w@ders of magnitude. In
practice, the hole-burning materials require cryogenaiog in which case vibration stability
is more difficult than for an optical cavity. However, if it @ossible to use the same hole-
burning crystal for laser stabilization and for further ekments, the sensitivity to vibrations
is reduced significantly, and much of the technology for tkgegiments can be re-used in the
laser stabilization.

For transient spectral hole systems the long-term stahpliesents a challenge since the
spectral hole position may change over time. Rare-eartiardeped crystals are interesting
for, among others, implementing quantum information prote [12, 13, 14, 15, 16].

In Sec. 2 the analytical theory of laser frequency staliitirausing spectral hole burning is
developed as the main result of this paper. After a brief igtson of the experimental setup
in Sec. 3, we make an experimental study of the laser frequaniit dynamics in Sec. 4. The
paper is concluded in Sec. 5.

2. Theoretical description of laser stabilization using spctral hole burning

Itis our intention in this paper to maintain the physical ersianding, and hence we will restrict
ourselves to analytical derivations and make approximaticather than numerical simulations,
when the calculations become difficult. Our theory is quatitiely accurate for many practical
systems. Below we derive in detail the basic model for theldker stabilization. In Sec. 2.4
we give briefly the main ideas and results behind the modeitadrient linear frequency drift.
Additional details on the theory can be found in [17].

2.1. Two-level atoms and Maxwell-Bloch equations

We start with an ensemble of inhomogeneously broadenedavebd-atoms. We allow laser
light to propagate through these along théirection. With a large beam cross section a one-
dimensional theory is sufficient, and the Maxwell-Bloch atipns can be written (see e.g. [18,
19, 20]):

0 : M . S
E(U—IV) = —(?—I—IA)(U—IV)—IQV\L 1)
0 : . . 1
EW—E[Q(U—HV)—Q (u—|v)]—?(1+w), )
d nyd oo
<az+cat) / g *lV (3)

Here (u,v,w) is the usual Bloch-vector which depends on tim@ositionz, and detuningh
(from a chosen reference point). The electric field is degctin terms of the complex Rabi fre-
quencyQ(zt) = u&(zt)/h, whereé is the complex electric field and is the dipole moment
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along the direction of the field (we consider only a singledinpolarization modeJ., = 2/T»

is the FWHM homogeneous line-width of the atoms in rad/3e@ndT, are the life and co-
herence times of the optical transition, respectively. th B) n, is the refractive index of
non-absorbing background atoms, ayid) is a dimensionless function describing the inho-
mogeneous distribution of atoms such tiggd) is proportional to the number of atoms with
transition frequencA. We use an unconventional but experimentally conveniemhatization
such thag(Ag) = 1 if ag is the absorption coefficient measured with a weak laser &iefce-
guencylq. The integral ove in Eq. (3) effectively adds the contribution of the polatiaa
from all the atoms to the electric field at positionz and timet.

Egs. (1-3) are in general difficult to solve analytically. whyer, for our specific needs re-
garding laser stabilization we will make a number of appmations in the following. We start
by noting that in Eq. (3) the terrﬁ?% is only relevant when describing very fast changes on
the time scald /c wherelL is the length of the sample, and it can be neglected here.

2.1.1. Linear regime of Maxwell-Bloch equations

The next approximation is to consider Egs. (1-3) in the limegime wherew ~ —1 for all
atoms, i.e. the probability of being in the excited statenmk. In Sec. 2.2 we discuss the
validity of this approximation. Inserting (wittv = —1) the integral formu(zt) —iv(zt) =
it e*(%“A)(t*t')Q(z,t’)dt’ of Eq. (1) into Eq. (3) and expressing the electric fi@lih terms
of its Fourier component§)(zt) = [ Q(z w)e'“dw, it follows that Eq. (3) can be written
in Fourier space as:

17} _ oo [ g(A)dA

5,220 = 2n/,m 7%“@—&))9(2’@) @
_ or(w)+ia(w)
pu _fQ(Z7w)-

where we define@rr(w) andai(w) as the real and imaginary absorption coefficients, respec-
tively. For a single frequency component of the fi€l¢z, w) = A(z, w)e'?Z®) with real am-
plitude A and phase we have the relation:

JAzw)  ar(w)

07 - 2 A(Z, OJ), (5)
Io(zw)  ai(w)

0z + 2 ©)

Hereag is the normal absorption coefficient, angis related to the total index of refraction

by n(w) = ny + A‘L‘—ff) with A being the vacuum wavelength of the radiation. Eqs. (4-6) wil
be the workhorse for many calculations in the following sett. Our goal is to model the
frequency variations of the incoming laser field, propagfaitefield through the atomic medium
via Egs. (5) and (6), and finally derive an error signal uséfufrequency stabilization based
on the outgoing field. We will reach this goal in Sec. 2.3, lefobe that we introduce a model

which describes the effect of hole burning in terms of thepshfanctiong(4).

2.2. Two-level atoms with a reservoir state

The calculations in the previous sections need to be refimedder to describe the effect of
spectral hole burning. So, in addition to the grouygdand excitede) states we add a third
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reservoir statér) (see Fig. 4(b)) and write the Bloch equations for these:

2 u-iv)= (i) v - i0(o py) (7)
%?:%KXwHW—Q%u—Nﬂ—%Q% (8)
% llauriv)-Q'(u-v)

+ b%’pe— TlgrPng Tt]Pr» ©)
op _bery Lo Lo (10)

We assume the optical fiel®, only couples to the transitioig) — |e) and hences andv still
refer to this transition, and only the factor= p. — py appears in the driving termin Eq. (7), as
was the case in Eq. (1). We add the possibility of decays fl@rekcited state to the reservoir
state. The branching ratios frojg) to |g) and|e) to |r) are denotetheg andbe, respectively. We
also model relaxation between tjgg and|r) levels. The timescale for decays frdg) to |r) is
Tgr, Which in general need not be the same as the timeSgglethe opposite direction. For the

homogeneous line-widthy, we now havelr = L = 12 1 1 whereT.” is the coherence
2 T (0) 2T, 2
2 T, ar

time of the optical transitiofig) — |e) in the absence of ground state relaxation, and the term
%gr takes the finite lifetime of the statg) into account.

2.2.1. Separation of timescales

Our next step is to derive expressions, which charactenzstiape of spectral holes burned by
the laser field. From Egs. (7-10) we compute the steady-stéitions forpe, pg, andpy while
uandv are still allowed to vary in time according to Eq. (7). Thigigood approximation since
in our specific case we have naturally different timescatesttie ground state populations
and the optical coherenc&y, Tgr > To. Furthermore, when the laser is actively stabilized to
a line-width narrower thamy, it is a good approximation to assume a zeroth order starting
point, Q = Qpe "2t where the laser is running perfectly at a monochromatigueacyAo. If
the variations from this starting point are small, the pafiohs will always be close to their
steady-state values. With a little work we obtain and exgioesfor the population difference
Pg — Pe:
rﬁole
pg—pe=G | 1= Choery——— | , (11)
e+ (A~ Do)?
wheredye is the relative hole depth arid,qe is the FWHM of the hole. These parameters can
be written:

(1+R%
1+(1+RY’
wheres is the resonant saturation parameter:

S0 =|Qol*Ti Ty, (13)

S

dhole = Mole=Thy/1+(1+R) =, (12)

and for our particular case of Egs. (7-10) we have:
1+ 00 1
"o °Toom

= (14)
1+ 42 1+ 43
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The saturation parametsyis a measure of the probability of an atom being in the exdtate
le) at resonance. In steady statefat Ag we havez—; =3/(1+%). The paramete6 is a

measure of the fraction of atoms in the ground stgten equilibrium in the absence of the
laser light or when the detuning,— Ao, is large. The paramet&is a measure of how likely
it is for an atom to be trapped in the reservoir state. ThenessefR is in the termbe,Tyg/ Ty,
which is the ratio of the ratbe,/T; from |€) into the reservoir statg) and the rate AT,y out

of the reservoir state. From Eq. (12) it is clear that a spébinle can be deep and broad for
different reasons: Firstly, if the laser field is strong wathigh saturation parametgy; although
Ris small, and secondly, if the trapping paramdRés large even a weak field wity < 1 is
capable of digging a deep, wide hole.

Now, we wish to employ Eq. (3) or (4) together with Egs. (7-M insert the steady-state
value of Eqg. (11) into Eq. (7) written in integral form. Sintdee steady-state value is time-
independent we may perform the same steps as those leadity {d). We will incorporate
the value ofpg — pe into theg(A) shape function and just pretend that we never left the linear
approximation, Eq. (4), of a two-level system. This is doagectly when:

_ d iole
g(h) = Pg—Pe _ 1_h°'e—4 (15)

i .
© Fhgle - (A Ag)?

The division byG (the fraction of atoms ing) far off resonance) assures thgt\) is correctly
normalized to unity away from the spectral hole, &rgis the absorption coefficient for a weak
laser field in the absence of the spectral hole.

Let us retrace our steps so far and underline the approxnsathade. We have reached the
two important equations (4) and (15). Tg@\) function for a spectral hole describes how many
atoms actually participate in the active two-level traosifg) — |€). We included the effect
of saturation where atoms can also populate the excitee |gjafwhich mathematically also
creates a hole ipg — pe). However, since we assumed the populatipaspg, andpr to be
essentially constant in time, we have restricted oursetveslutions where the laser field does
not deviate much from a perfect fiel@, = Qe 2ot (we have linearized the theory around this
zeroth order solution). Note, that the figddcan still have fast variations in e.g. its phase, as long
as the phase excursions are not too large. Since both pmputedpping in the reservoir state
and the effect of saturation (leading to population tragpinthe excited state) are incorporated
into the single parametegy(A), we effectively model the three-level equations (7-10hvatir
initial linear two-level system with low saturation, as delsed by Eq. (4).

Using Eq. (15) also requires another approximation. We tiatd;oe andlpole depend on
the resonant saturation paramesgr]f the optical depthggL, of the atomic sample is large, the
saturation parameter will depend gnand the use of @independeng(A) will be incorrect.
However, if the laser field burns holes, the attenuation kéllless tharmpL. Practically, the
equations will be applicable fargL not too much greater than unity.

Finally, we point out thatloe andlpole, @s defined in Eq. (12), refer to the structure in the
population, not to the depth and width which would be measimen absorption experiment.
From (12) we always have the relation:

1—dnole= (rh>2- (16)

rhoIe
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2.2.2. Absorption and phase shift from a spectral hole

Let us now employ Egs. (4) and (15) to calculate the atteonatnd phase shift of a laser field
in the presence of a spectral hole. We take forgtfe function:

2 2
I—lnh dholerhole
98 = t— |1 | (17)
Sz \ T (0o

i.e. we have a spectral hole burned at frequefgyinto an inhomogeneously broadened
Lorentzian profile with widthH iy, centered afA = 0. Inserting this into Eq. (4) we find:

2 2
Cihn Cihn T hole(TholetTh)

r r r
oRr(w) 3 —helE LR e e
do %erz i;wag (ThoetTh® 4 (Ag — ()2 (ThoetTh® 4 (A — )2’
(18)
Cinh r%h Thole A d Mhote A d
a(w) o P “5°(Bo— @)dnote - ~5*#(Bo— W)Chole 19)
ao r%h+w2 i:h_FA(Z) MJF(AO_Q))Z WWL(Ao—w)Z’

with Thole and dnole defined in Eq. (12). In the first terms we assumed fhat > 'y, The
arrows indicate the limit whefj,, — o, i.e. when we neglect the effect of the possibly very
wide inhomogeneous background. In case of a Gaussian irdemaous profile, the absorption
and dispersion factors containifgy, must be replaced by Re/(Z)} and Im{w(Z)} with Z =

2W(w+| h) known as the Voigt profile [19]. In general, the shape of tHeoinogeneous
pl’8?l|e varles depending on the broadening mechanism [31, 22

If we compare Egs. (15) and (18) we see that in an absorpti@sunrement with a weak field
(not changing the populations further) the measured widthdepth of the hole are related to
[hole anddhole by:

I holeGhol
r(meas) r r d(meas} _ holeYho e. 20
hole hole+I'h; hole Fhoe+Th (20)

2.3. Calculation of error signals

Now, let us turn to the calculation of real error signals useithe locking procedure. In reality
the input light will vary in amplitude and frequency over grExperimentally, the amplitude
variations are easy to measure directly and and correcHfamce, in the following we con-
centrate solely on frequency errors. A convenient methda @&ssume the incoming laser field
to be of the formQ(0,t) = Qe (Rot+&sin(el)) j e we have an almost single-frequency laser
at Ag, but with an additional small harmonic disturbance of thagghwith frequencyo and

magnitudes, which we assume to be much less than unity. The complex ReduéncyQq is

given byQp = & 2“°°P wherep is the electrical dipole momenty the vacuum permeability,

c the speed of IighlP the optical powerh Planck’s constant divided byr2 n, the background
refractive index of the atomic sample, aAdhe beam cross-sectional area. This model is valid
when the laser is running in the frequency stabilized modé winarrow line-width. When
errors are small, the different frequency components vdtl &nearly, and it is sufficient to
consider a particular frequency.

In order to employ the Pound-Drever-Hall method, we phasdutate the laser beam at
frequency,wm, with modulation indexm, leading to spectral hole burning at the laser base
frequencyfo, and at the sidebandg + . Assuminglinn > wm, the two sideband spectral
holes become identical, and takiagg 1 we neglect hole burning effects from ttesidebands.
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We describe the absorption and dispersion from the spduites by the transmission coef-
ficients,n; and phase shiftgg, wherei = c, s refer to “carrier” and “sideband”, respectively:

r i(r i+
UOL holei Zolel h) dholei

. _ oL |, 21
ni(w) =exp| —— Troey 10”2 | ] b
Mholei
aol T'dholeiw
_ oL 5 Oholei® 22
() 2 M_F(gz’ 2

We let the modulated field pass the atomic sample and cotlect & photo-detector. The de-
tected power has a term oscillating at frequeagygiven by:

P (t) = 4PN 1o RE( T () - £ ™} - Sin(camt),
_ Ne(@)ns(0)€ (@) —ne(0)ns(w)e ») (23)

T(w
() iw+T—}g

HereJy andJ; are Bessel functions corresponding to the modulation indeandP(" is the
total incoming power. In the curly brackets the real parthef tactore we“t is just the instan-
taneous frequency of the incoming laser (relative\t). Hence, the factofT (w), acts as a
transfer function mapping this harmonic frequency excursion onto the medsquoeer. This is
similar to the way in which a complex impedan£éw) maps a complex curretifw) onto a
complex voltage/ (w) = Z(w)I (w) for individual Fourier components in electrical engineer-
ing. Hence, the transfer functiofi,(w), is directly applicable for purposes of feedback loop
design for the laser stabilization system.

In the denominator oT (w), the termT—}g is added in order to compensate for the fact that

g(4) is not time-independent on timescales slow comparefgte the spectral holes are not
permanent. This term arises from an ad hoc model, where titerceequency of the spectral
hole, Ao, is varied as the instantaneous laser frequeat¥! = Ag + wcog wt), weighted
exponentially back in time with time constariijg [17].

Eq. (23) is a very useful model for the atomic response to barorerrors in laser frequency
on all timescales. The transfer functidiiw) is important in the understanding of the interplay
between the carrier and sideband holes. However, the eddna(atermT—}g in the denominator
is far from giving the full picture of laser stability at loweguencies. This is discussed further
in Sec. 2.4.

2.3.1. Evaluating the transfer function

The transfer function in Eq. (23) can be evaluated by usiag@#pressions in Egs. (21) and (22).
Whenw < Molej We obtain:

aol inrg 7(1%L(i+

(@)~ L i [ (%) — f(x)]. (24)

where the functiorf (shown in Fig. 1) is defined by:

x—1 X — I holec

rholes
= —, 25
X(X—|— l) ’ h > X ( )

S rh

f(x) =
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T

Fig. 1. The functionf (x) defined in Eq. (25). Ak = 2.41 it attains its maximum value of
0.172. Physicallyf (x) is proportional to the slope @f (w) atw = 0 in Eq. (22).

I

In the central regimeT,g‘1 <K W <K Mholej, the termlfi’i;%g is unity and the transfer function
is real. In the low-frequency limitp < Tral, the transfer function becomes imaginary and
proportional tow. In the high-frequency limit > Mpoje, We find:

T ~—te Fle s e %) (26)

iw

The transfer functio (w) has been plotted in Fig. 2 for a choice of reasonable expetahe
parameters. It is clear that there are three distinct regjime discussed above. Assuming that
the terms in the square brackets in Eqgs. (24) and (26) aréiy@oghe transfer function is a
negative real number timeés, 1, and% for the low-, medium-, and high-frequency regimes,
respectively. This behavior is clearly seen in the mageitofiT () shown on the upper plot
in Fig. 2. The fact that the transfer function is real at medfvequencies means that the error
signalJ Re{T (w)e®} will oscillate in phase with the actual frequency erfoRe{€“!}. For
high frequencies, the extr%afactor makes the error signal oscillate as{8&-772}, i.e. the
response is 90delayed. This is shown as the phase reachif@’ in the lower plot in Fig. 2.
For low frequencies the situation is the opposite; the pisadvanced by 90 This behavior
of the gain and phase has been previously reported in expetsnand numerical simulations
[5, 6].

In our calculations we always assume that the power in theéecdyeam is higher than in
either of the sidebands, leadingltgoiec > MNholes- Then, according to the definition in Eq. (25),
Xc will be larger thanxs, and the term in the square brackets in Eq. (26) will be pasiths
we assumed above. For Eq. (24), however, we can have a situatieref (x;) < f(xs) if,
e.g. 241 < Xs < X, according to Fig. 1. In this case there is a 2pbase shift between the
medium- and high-frequency regimes which in practice mélaaisthe sign of the error signal
cannot be chosen correctly for all frequency componentsinsed feedback loop. Physically,
the sign change occurs when the slopepgfw) aroundw = 0 equals the slope af(w) in
Eq. (22) and we must assure that this is never the case. Naiettedt prior to and in the
initialization of the laser locking feedback loop the spelcholes are broad and shallow (since
the laser is broadband). The carrier hole will be deepertiisideband holes while the widths
are roughly the same, limited by the broad laser line-widithis in turn assures that the slope
of g(w) for the carrier is larger than for the sidebands. We must shdbe right parameters
such that the sign will remain correct when the feedback Ie@tosed and the laser line width
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Fig. 2. The magnitude and phase of the transfer functiom) calculated from Eq. (23)
(heavy lines). The light lines show the asymptotic cases discusseddatogm (24)
and (26). Parameters used die= 150 pus, T = 18 us, Trg = Tgr = 4 ms, ber = 0.5,
Qo = 2m-1 kHz, andm = 0.40, giving ', = 2m-17.5 kHz, Mgec &~ 211-21 kHz and
Moles =~ 211- 18 kHz. These parameters are close to our experimental workingsyals
we shall see in Sec. 4.

narrows.

2.3.2. Parameter choices for obtaining a large error signal

The theoretical observations above enable us to discusptium parameters in general. A
few design considerations are also given in connection athparticular experimental setup,

see Sec. 3.
In order to obtain a large error signal, our first observatsothe fact that the detected power

given in Eq. (23) is proportional 8", It is no surprise that more light gives a higher signal at
the detector, but it is wrong to just naively increase theining light powerP™ and expect

a better performance. Doing so will increasen Eq. (13) and in turn the hole width$,gje;

in Eqg. (12). However, increasing the incoming power and aséiime time increasing the beam
area A, leading to an unchanged intensity, will always help. Heiitds a good idea to use an
atomic sample with a large area.

Next we observe in Eg. (23) that the front factlpd; attains its maximum value of 0.339
when the modulation index i = 1.08. This value is often used in laser stabilization setups
utilizing optical cavities [2]. However, as opposed to teeanance lines in a cavity, the shape
of spectral holes depends on the optical power. If the qaarid sideband powers were equal
the holes would be identical, i.gc = ns and@. = @;, leading to a zero error signal according
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to Eq. (23). For this reason the optimum modulation inderugelr than 1.08, leading to a more
asymmetric power distribution between the carrier and ttebands. We have searched our
parameter space with numerical methods while optimiziegsignal in Eq. (23). The result is
thatm = 0.56 is a good choice. However, there are further complicatr@garding the laser
stability which suggest thah should be even lower. This will be discussed in Sec. 2.4.

Regarding the hole widthBpgec andMholes it is clear from Eq. (24) and Fig. 1 that =
Molec/T'h should not be much greater than 2.41, since a higher valuglysimakes thef -
function decrease again. Also, we would like to make- 'holes/I'n Small in order to decrease
f(Xs). We can do this by lowering the modulation indexMakingm too small will also lower
the factorJpJ; and this is why we foundn = 0.56 to be the optimum choice seen solely from
the point of view of optimizing the error signal. Howeveretmagnitude of the error signal is
not everything. The narrower the hole widfhge;, the longer the duration of the atomic phase
memory and hence potentially better phase stability ofakeri can be obtained. We should also
note that a given width hei, can be obtained in different ways according to Eq. (12). One
could choose a high intensity (high) and a short hole lifetimé;g (low R according to (14))
if adjustable. On the other hand, a low intensity and a lorlg hfetime could give the same
result. In general, the latter will give the better longatestability of the spectral hole.

To estimate the optimum optical densityL let us assume that ~ 2 andxs ~ 1. This is not
far from optimum given the discussion above. Inserting ithis either Eq. (24) or (26) leads
to the ballpark estimateaglL ~ 1.15, corresponding to a background intensity transmissfon o
e %L ~ 32%. Note, this is on the edge of our approximation tst should not be too large
for quantitatively correct results.

2.4. Laser drift

In the previous sections we have calculated the error Sgoalaser locking based on the lin-
earized model with the time-independent distribution fiorcg(A). For slowly varying errors
on timescales slower than the hole lifetinig,, we presented in connection with Eq. (23) an
ad hoc model to describe the dynamics wher- 0. However, this does not really illustrate
the real challenges in long-term stability of the laser @rerncy. First of all, note that(w) — 0
whenw — 0, which is a consequence of the fact that a transient spéciis not a fixed fre-
guency reference. This means that on long timescales theftagiuency stability will depend
highly on e.g. measurement noise and offset toleranceialéttronic system.

We discuss in the present section that, in addition to thes@ems, under certain conditions
there is a solution to the equations where the laser is lodkédhe frequency is drifting linearly
with time. Below we will re-calculate the absorption coa#fitsar anda, in the presence of
laser drift, which leads to corrections to the error signal.

2.4.1. The drift model

We consider a situation where the incoming laser field isrgivg Q(0,t) = Qe 2o+t

corresponding to an instantaneous linear frequency @miady,s; = Ao + Bt, wheref is the
drift rate in radsz. This ansatz leads to a time-dependent version of Egs. );Aatich can
be solved by numerical methods. However, our aim is to dexivéntuitive condition for the
presence of a linear laser drift, which can be done analigtiteperturbation theory by making
a series expansion @k, pg, andpr in the dimensionless parame@e= % This parameter
is a measure of how far the laser drifts during a hole lifetifiag compared to the width of the
hole,rh0|e.

By expandingoe = péo) + Epél) + Ezpéz) +..., and similarly forpg andp;, we may calculate

the corresponding distribution functigit) = £ (pg— pe) = é(Péo) —p)+ é(pél) — o)+

O(&?). The term linear ir€ is our correctionggsi (A), to the shape functiog(A) due to the
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Fig. 3. Thresholds for stable laser operationdﬁflze(’? is below the solid line the square
bracket in Eqg. (28) is positive and the zero-drift solution is stable. tieiofor the low-
frequency part of the laser locking to have the correct sigre) — f(xs) > 0 in Eq. (24))
we require the less stringent condition tkﬁﬂf’ is below the dotted line. Between the
two lines the laser can be locked in a linearly drifting mode.

drift. By insertinggqritt (A) into Eq. (4) and evaluating the result@t= Ay, we calculate the
imaginary absorption coefficiemt; experienced by the laser beam at frequefgylrifting at
rate3. The calculations are quite cumbersome [17], we just ptebernresult:

T 3T 176 |, 1 T Tr
BT, TT; [l-l— 2T;+2ngr] +3 [ber(l—f— T*f)—begTTﬂ
) 27)

a1 (80) = ~ao
The first-order drift contribution tarr(4o) is zero by symmetry.

2.4.2. Error signal from drift

Expression (27) may look a little complicated, but all wellyeaeed to understand is the factor
to the left of thex-sign. This factor says, that should be calculated by taking the background

ap times “how far we climbed up the hole” (this &= f;ri) times the relative deptltqe, of
the hole. The rightmost fraction in Eq. (27) is merely a cansindependent of laser power.
Hence, this constant is the same for the center and side. hiol#®, not so uncommon, case
whenbe Ty > T (leading toR > 1) the factor is approximately equal (1 + %’r)]*l. For
brevity we make this approximation below. In the Pound-Bredall scheme, the measured

power on a photo-detector oscillatingeaat, becomes:

apl r r
P (t) = —PM JoJiagle ? <rh°7ec+T7es> BTFT‘J {dh"'&c - d“"'es] sin(wmt).  (28)
1+ TL;: Mholec  Tholes

Comparing this expression to the low-frequency versiondn(24) we find most importantly
that the difference irfi-functions has been replaced by the difference in the rétigsi /T hoe;-
As discussed previously, there is a risk of obtaining thengrsign for the error signal. The
difference in square brackets in Eq. (28) must be positivedoo drift with3 = 0 to be a stable
solution. If this is not the case, there will be a bi-stableiBon with positive or negative non-
zero values of3. Since a particular value ¢ will give zero error signal, the frequency drift
must be linear.
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Fig. 4. Different level schemes used in this paper. We define timescaleslaxation be-
tween ground state levels and branching ratios from the excited state xTibedestate
lifetime is always denoted;. (a) The most naive scenario with two levels, considered in
Sec. 2.1 and in the first row of Tab. (b) Our basic model for all calculations, described
in Secs. 2.2 and 2.4. Rows two to four in Tab. 1 refer to this case. N&enay have
different relaxation timescaléky # Tgr. (€) and(d) Different schemes with three ground
states coupled as shown with RF-magnetic fields. Hence the timescale isrtdenstawvo
opposite directions. These cases are reflected by rows five and sik.id, T@spectively.
(e) The real P¥:Y,SiOs level scheme.

We wish to operate the laser stabilization system withastittherent linear drift, and to this
end we derive a stability criterion based on convenient exgntal parameters. The interplay
between the carrier and sideband holes depends on thetgatyrarametenn, and the actual
strength of the hole-burning process, which can be par@edtby e.g. the measured carrier

hole depthdholeas The condition for the square brackets of Egs. (24) and @®gtpositive,
which is required for stability, is shown in Fig. 3.

Note, that it is easier to fulfill the criterion for correctefrequency behavior than the cri-
terion for no inherent linear drift. This is an important ebgtion which shows that all the
calculations regarding the drift model are worthwhile aedessary to obtain a complete un-

derstanding of laser stability. It is indeed possible tJF?? is in between the dotted and solid
lines in Fig. 3, in which case the laser stabilization systeapparently locked but still the laser
is drifting linearly. We also wish to note that the ratiieiei /I holei, and thef-function describe,
respectively, approximately and accurately the slope eftiase shift versus frequency when
light passes the spectral hole. Hence, the physical origaifiterplay between the carrier and
sidebands) of the two criteria shown in Fig. 3 is similar, véaes the actual difference is more
of mathematical nature.

We conclude this section by pointing out that the drift ckdtions can be performed in a
similar manner for a simple two-level system in absence efsanvoir statér), but the results
can readily be guessed by settifig = 0, Tgr = o, ber = 1, andbeg = 0. Then the three-level

case will reduce to the two-level case and Eq. (27) will rediea, (Ag) = — ‘;0 rholedhOIe
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Table 1. The value o6 andR for the different setups shown in Fig. 4. The first row gives
the relations for the two-level atom (Fig. 4(a)) and the second row itbescthe two-level
plus reservoir state system considered in Sec. 2.2 (Fig. 4(b)). Tleatid fourth rows are
special cases of the second row. In the third row we asslyme o, which describes a
one-way natural decay from statiegsto |g). In the fourth row we assumBg = Tgr which
describes the case when an RF magnetic field couples the otherwiseplattetatesr)
and|g). The fifth and sixth rows correspond to the cases shown in Fig. 4(clFand(d),
respectively, where there are two reservoir states. These folchses are presented since
they resemble our experimental case usinty Pf,SiOs as the atomic medium.

Case G =
Two-level G=1 R—1
PerTrg
1+
Three-level G= 1Tr _ ﬁTer
lJr?gr 1+W%
Three-level, B B -
natural decay G=1 R=1+-F"
Three-level, .
RF eraser G=3 R=[1+ =]
Four-level oo b (T Te)
, G=1 R— l[1+ o ber(2Teg i)
RF eraser (1) 3 3 1
Four-level, 1 . .
RF eraser (2) G=3 R= §[1+ ‘afertizver)

2.5. General remarks on the calculations

Up until now we have considered a two-level system with alsingservoir state to model the
trapping of atoms in the hole-burning process. This is a Erepstem which allows for not too
complicated analytical solutions, thereby maintaining piysical understanding. This simple
system is actually found in T#:Y 3Al5012[4, 10], and the even simpler pure two-level system
is found in EP*:Y,SiOs[7, 8] and Er:KTP [6].

However, more complicated cases exist. For our experimgitts Prt:Y ,SiOsthere are
three ground state levels and three excited state levaldrige4(e). In order to be able to es-
timate whether our experimental case resembles the sirtples-level system, we calculate
g(A) for the more complicated case with three distinct grountéstahown in Fig. 4(c,d). The
active optical transition is stillg) — |€), but two reservoir states are present. In Fig. 4(c) the
reservoir states are labelég] and|f) for “close” and “far”, respectively, describing their posi
tion relative to the statfy). In Fig. 4(d) the symmetric case is shown with reservoirestat. )
and|r2). This distribution functiong(4), is found to have exactly the same form as Eq. (12),
apart from new values &® andG, which are given in Tab. 1 (fifth and sixth rows).

We see that adding more ground reservoir states only chahgespectral holes quantita-
tively, but qualitatively we still have a Lorentzian-shdpieole fulfilling Eq. (12), as for the
simple case of two-levels plus a single reservoir state.@¥&w when all the nine transitions of
Fig. 4(e) play the role ofg) — |€) due to the inhomogeneous broadening, the total distributio
function,g(4), will in general be non-Lorentzian. We try in the experingetat keep this effect
small, in order to mimic the three-level system and dematestthe qualitative features of the
theoretical calculations. The results in Tab. 1 will helpdoghis.

We also wish to remind the reader that our theory generadlyrass perfect lasers or perfect
lasers with harmonic errors. In practice, this is not theecésit our approximations are still
quite good if the stabilization system maintains a narrove-ividth. If the laser line width
is e.g. 1 kHz and the hole width is 20 kHz, there will be somedkr folding effect of the
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order of 5%. Also, we have assumed tht is not too large. If we, for example, sepL ~ 1
and assume a measured hole depth of around 50%, the traisno$she carrier beam is
e 1/2 ~ 60%. This means that the saturation parameter varies by 4@%stlee sample, and
we can approximately take this into account by lowering thistion parameter to 80% of
the calculated value. In this manner (for the two levels plgingle reservoir state) we should
be able to keep the theory quantitatively correct withinuah10%, while all the qualitative
features should hold true.

Finally, in our theoretical derivations of the error signak assumed the inhomogeneous
profile of the transition to be infinitely broad with the cogaence that the absorption of the
modulation sidebands became identical. Relaxing this ibondeads to another term in the
error signal oscillating as cé@mt) and essentially being proportional to the derivative of the
inhomogeneous absorption profile versus frequency [23% éffiect can be utilized as a fixed
frequency reference for the laser stabilization [4, 24].

3. Experimental setup

We have stabilized a Coherent CR699-21 dye laser to the 60Bamsition in Pf:Y,SiOs.
The theoretical calculations of Sec. 2 assisted us in chgdbie optimum parameters of the
electronic feedback system for best performance. It ish®purpose of this paper to describe
the electronic system, which consists of standard teclesigdowever, for completeness we
mention a few design considerations below. For furtheridatae refer to [25, 26].

The main building blocks of the laser stabilization systemshown in Fig. 5. In the upper
right corner we show the commercial version of the dye lasbere we placed an intra-cavity
electro-optical modulator (EOM 1). We fed the two electmthy two separate amplifier cir-
cuits, IC1 and IC2.

From the laser output the laser beam was directed through@mnelectro-optical modulator
(EOM 2) applyingwm = 2r1- 50 MHz modulation from a local oscillator. The modulatedrne
was then expanded to cover the entire area offa:®¥pSiOscrystal with diameter of 19 mm,
thickness of 5 mm, and doping concentration 0.005%, keptiyastat operated at 3.0 K. The
peak absorption of the inhomogeneous profilegs = 1.9 corresponding to a transmission of
e 9ol ~ 15%.

Surrounding the crystal are two sets of coils allowing usdapte RF-magnetic fields to
the 10.19 MHz and the 17.31 MHz hyperfine level transitiorge RF fields are generated as
sawtooth sweeps, the 10.19 MHz signal is 100 kHz wide, and.th@l MHz signal is 200
kHz wide. The sweep time is 0.82 ms, which is comparable tdpeerfine level coherence
time of 0.50 ms and hence the pumping becomes effectivebherent. This procedure assures
smooth re-population over time of the hyperfine levels sitoens with different frequencies
on the inhomogeneous hyperfine transition are affectedfateint times.

After the light has passed the crystal it is detected and delated at the frequenayy, and
filtered to give the error signal. Based on this, the lasajuescy is actuated using EOM 1
which is driven by the analog electronics shown in Fig. 5¢apad IC1 and IC2. The complex
electronic gain from the error signal to the voltage acrbsselectrodes of EOM 1 is given by:

_ R iw(Rs+Ry)C+1
g(w)—ﬁ1 T ioRC (29)

We see that there is a characteristic cutoff frequeficy, %T = m, which separates this

gain into a low-frequency part proportional .% and a high-frequency part where the gain is
constant and real. We choose the component values suchéhaitical frequencyg, is close
to Mhole- In this manner the electronic gain of Eq. (29) together i medium- and high-
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Fig. 5. Optical and electronic design schematics. Abbreviations: N, riteh LP, low-
pass diplexer; PS, phase shifter; LO, local oscillator; EOM, electtiwapnodulator. See
the text for more details.
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Fig. 6. Experimental setup for characterizing the spectral hole dysamjart from the
locking beam needed for the laser stabilization system, we place an addjiobing
beam for characterizing the dynamics of the locking itself. AOM 1 is in dophks con-
figuration and allows us to scan the laser beam frequency without any fneéon. AOM
2 allows us to shift back to the original stabilized laser frequency to cteiae the holes
when the laser is locked. An extra crystal in another cryostat is usedeasuring the laser
frequency drift on long timescales.

freciuency part of the atomic response shown in Fig. 2(a) add a total response proportional
to .

1I'QF1e output of IC2 was also sent to a low-frequency, digitalpprtional-integral (PI) regu-
lator, i.e. an amplifier with gaig(w) O & + ¢, O ”f;'“. We choser to be equal to a typical
value for the hole lifetime],g, matching the low- to medium-frequency response of Fig).2(a
The output was sent into the commercial parts of the laseraaadjusting the Brewster plate
and the piezo-mounted mirror. In this manner, the totalaasp of the atomic medium and our
electronic system at all frequencies becomes proport'ltméj. This is known from feedback
theory [27] to assure stable operation.

For our study of the hole-burning dynamics, we have in additd the stabilization setup of
Fig. 5 constructed the optical setup shown in Fig. 6. The doatlon of AOMs 1 and 2 allow
us to measure simultaneously the shape of the carrier aetiasid holes using the coherent
readout technique described in [28, 29]. Examples of hageb are given in Fig. 8(a,b). These
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shapes can be correlated to the laser drift, which can beureshby burning a spectral hole in
an auxiliary crystal and measuring its position over tines Big. 7 for an example.

4. Experimental results

In this section we wish to present some experimental vetifiocaf the theory concerning the
drift dynamics in Sec. 2.4. In particular, in Sec. 4.2 we wilidy the correlations between
the hole shapes and the laser drift, and we will test the driirion of Fig. 3. We will also
comment briefly on the short time stability of the laser in.S&8, but before that we will in
Sec. 4.1 compare our particular system usintj Pf,SiOsto the theoretical models of Sec. 2.
We conclude the experimental section with a discussion ofesults.

4.1. Comparing Pr3+:Y»>SOsto the theoretical model

As shown in Fig. 4(e), there are three ground and three eksitates in P :Y,SiOs. The
transition strengths between these are very differenstitomgest aret% — i% (0.55),1% —
+3(0.38),£3 — 3 (0.40),+£3 — +3 (0.60), andt 3 — +3 (0.93), while the remaining four
are weak (0.07 or less) and have smaller influence on therigckihe numbers in parentheses
are the relative strengths taken from [30] and we assumettese are also valid for branching
ratios in the decay process. We see that the ions typicalywsithin thei%,i% space or in
theig state, and only seldom change between these (the totalrgygs®bability being 7%).
If this crossing occurs, the RF pumping on the ground stapeiiine transitiontg — i% at
17.31 MHz transition will counteract it. Since the crossisgnfrequent, the timescale for this
RF transitionT17vn2 can be relatively slow (in order to maintain a certain holptdg On the
other hand, anion resonanton, e.g.,ﬂ*%a i% optical transition will decay to the grounb%’
state with a high probability (40%), and the RF pumping onttjyeerfine transitiont% — i%

at 10.19 MHz must counteract this with a relatively shortedmaleTigmnz (to maintain the
same hole depth for this atomic species). In all experim@ptart from some of those illustrated
in Fig. 8) we have sef;7vnz = 10 -TiomHz. Hence, by combining a small branching ratio for
the optical decay taking an atom away from the resonantitiamsvith a long timescale for
the RF pumping bringing the atom back to the resonant tiangjor vice versa), we ascertain
that the parametdRis similar for the atomic species resonant on the five tremmstmentioned
above (according to the results in Tab. 1). Since, also, tiemgths of these five transitions
are not that different, we expect to see experimental reswit too different from the simple
three-level model of Fig. 4(b).

4.2. Laser drift dynamics

Let us now turn to the experimental results concerning therldrift and the hole shapes in the
locking crystal. A direct evidence of linear frequency tdf the laser is shown in Fig. 7(a),
and in the following we will connect the observation of ladgft to the hole shapes.

In Sec. 2.4 we argued that if the spectral holes used formgckie too deep, the laser may be
locked but drifting linearly in frequency, which in turn Wiause the hole shape to be asymmet-
ric. Such asymmetry is demonstrated in Fig. 8(a,b), showireach color pairs of shapes for
the carrier and sideband holes. From the measured hole,sigfze)L, we can calculate the
imaginary parta; (w)L, by using the Kramers-Kinig relations [31]. In our case, the Kramers-
Kronig relations take a slightly simpler form than usual sitimeonly w-dependence in Eq. (4)
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Fig. 7. (Color online) Example of drift measuremeiatsTotal observation time is 3 seconds
and we see a drift rate of roughly 160 kHz/s, where the direction clsamggasionallyb)
Total observation time is 20 s and the drift is 0.3 kHz/s over this time.

is in the denominato%h +i(A— w). It can be shown that:

~ 1 an(w)(w— wn)dw
ar(w) =+lm > | o— a2+ 2

1 r* ar(w)(w—wp)dw

a'(ab)zilsllnoﬁ —e (W— )24 52

9

(30)

Sincea;(wp) is an integral ofar(w) times an odd function i — ay, the value ofa;(Ao)
directly measures the hole asymmetry. In Fig. 8(c) we comfyas measure for the center and
side hole shapes. The data points are taken for a numberfefetif settings off1omnz, and

Ti7muz We see a clear proportionalitg,“ide) (Do) =0.72 -a,(ca"ier) (Do).
We expecta“™ (1g) and a®®? (Ag) to be equal, since from Eq. (6) the phase shifts, of

the carrierg:. and sidebanda are proportional tax'“"® (Ag) and /% (Ao), respectively,
and with a closed laser stabilization feedback loop we mangt lzero error signal withy, = @..
The reason for the slope not being unity is unknown.

The direct observations of the drift, as exemplified in Fi¢a)y the proportionality in
Fig. 8(c), and the fact that the electronic error signal ilsishows that the laser may drift
linearly, while the feedback loop is still locked.

The hole asymmetry is correlated to the laser drift rate. détailed understanding of this
correlation requires a complete solution of the equatidnaation discussed in Sec. 2.4 and
is outside the scope of this paper. Instead, in the followwegwill examine the measured drift
rate,3, for various parameter settings. The results of these mem&unts are shown in Fig. 9.
The light intensity is kept constant with the saturationgpaetersy =~ 0.09. The modulation
index, m, has the values 0.14, 0.20, 0.28, 0.40, and 0.56, and eaghicdtig. 9 corresponds
to one of these values. The hole shapes are controlled byogmg@ITiomnz = 1—10 -T17mHz at the

six values 2 ms, 4 ms, 8 ms, 20 ms, 40 ms, and 80 ms. In Fig. 9xthmomiesponding data

points are plotted for each color from left to right since tiede deptrdr(]';]z? increases with

TioMHz-
We have obtained low drift rates in the left part of the Figii®e(lowest measured being

below 0.5 kHz/s). However, the drift rates increase wherhthle depth increases. In order to
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Fig. 8. (Color online) In the two upper graphs the measured absorjpiidm)L, is plotted
for comparison under different conditions for a number of centégd{@) and side holes
(b). With increasing hole depth, the asymmetry of both increases. The inmagiaat,
a,(Ap), of the absorption coefficient at the hole center is a quantitative mea$itnés
asymmetry, and can be calculated from(w) using the Kramers-Kmig relations (30). In
(c) we see, for several measurements under different conditionsaiiclear relationship
between this asymmetry for the center and side holes. The straight ling thratigh the
origin with a slope of 0.72, theoretically we expect a slope of unity.

obtain these data, we had to carefully adjust the phase afahmdulation of the error signal
while observing the drift rate decreasing for one of the peat@r settings in the left-side of
9. This is a consequence of the fact that the transient spdutle is not a fixed frequency
reference, and if there is an offset in the feedback systeenlocking point would be slightly
off-center in the hole leading to a frequency drift. We pthtlee laser frequency on the side
of the inhomogeneous profile in order to decreagk from the peak value of 1.9 to a more
moderate and useful value of 0.66 correspondingt®" ~ 0.5. Hence, being away from
the inhomogeneous profile center, we expect small correstio the calculated error signal
Eqg. (23) since the phase shift from the background inhomeges profile plays a minor role
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Fig. 9. (Color online) Measured drift rates versus measured hoté dEfpe hole shapes are
changed by varyin@1omHz and Ti7mnz. Red circlesm = 0.56; green crossesy = 0.40;
blue squarean= 0.28; cyan triangles upn= 0.20, purple triangles dowm = 0.14. The
vertical dashed lines indicate the values of the corresponding threstwds in Fig. 3.

(see the approximation of Eq. (19)). Also, a small error mphase setting would mix in a part
of the cogwmt) quadrature, which is also dependent on the inhomogenesosgion profile.
The joint effect of these corrections is effectively a smoéfibet, but the small phase adjustments
counteracted this.

However, the drift rates on the right-hand side of Fig. 9 ditl cecrease in this fine-tuning
procedure. A slight change in error signal offset cannongkathe fact that zero drift is an
unstable solution if the criterion in Fig. 3 is not met. Thetieal lines in Fig. 9 represent this
threshold value for each modulation index, and the driesahcrease consistently for hole-
depths above these values.

We have observed examples of much higher drift rates thaf2Eksee e.g. Fig. 7(a) where,
in addition to a high drift rate of 160 kHz/s, we also saw thatdirection changed occasionally.
In this example, the drift rate is similar in both directipmgich is consistent with a bi-stable
solution to the equations of motion with inherent lineagfrency drift.

4.3. Laser phase stability

In the previous section we demonstrated that with the righumeter choice, the inherent linear
frequency drift could be excluded leaving us with a low doifthe order of 1 kHz/sec limited
by offset tolerances and possibly by detection noise. s dbction we demonstrate that with
the same parameters the short term phase stability canelsatisfactory.

In the experiment we modified the setup shown in Fig. 6 slgtich that the zeroth-order
diffracted beam from AOM 2 (which is not turned on) is senthe tocking crystal. AOM 1 is
operated around its 200 MHz center frequency and hence,thétifrequency shifted around
400 MHz in double pass configuration, the probing beam willinterfere with the laser lock-
ing system.

We used optical FID to measure the laser stability and toghiswe programmed the pulse
sequence shown in Fig. 10(a). The laser is scanned back ahdlfging pulse “1” within a 10
MHz interval removing all ions herein by optical pumping.eTiiequency of pulse “4” is then
later chosen such that it falls within this interval, whisteimpty of absorbing ions. In this way
pulse “4” does not induce any polarization on its own. Whers@U2" is applied a coherence is
set up in the atomic medium and when pulse “2” is turned offatoens will keep radiating for
a time limited by the optical coherence tinfe, (which in our case is around 1&) and also by
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Fig. 10. (Color online) lllustration of the phase stability measurementst éshows the
pulse sequence for the experiment: (1) is a 10 ms burn pulse scamtimgdn 40 MHz and

50 MHz (relative to the AOM double-pass center). After waiting 160 pulse (2) with a
constant frequency of zero and durationisets up a coherence in the atoms which leads
to the FID at (3). Finally, pulse (4) at a frequency of 45 MHz beats wittHiie leading to

the detector signal shown (after filtering) in the main panel. The traceseéisinsandc)
show this signal in a 200 ns window around time 0 andi$Qrespectively, and the phase
of these oscillations can be calculated with a good signal-to-noise ratio dnsleows the
calculated phase as a function of time for the stabilized (black) and unstab(izeen)
laser.

the inverse bandwidth of the actual coherence. This degayidiation “3” gives a fingerprint
of the phase of the laser during pulse “2”. At the same timegpm@y another pulse, “4”, shifted
45 MHz in frequency carrying its own phase. The beating o$esil'3” and “4” hence compares
the present phase and the past phase, and comparing theretkascillations with a 45 MHz
local oscillator allows us to calculate the short term chimastics of the laser.

The datain Fig. 10 is obtained wiligmuz = 1% T17mHz = 4 ms, modulation indem = 0.20,
and saturation parametsy =~ 0.09. These settings is represented in Fig. 9(c) giving a dfift
(0.34+0.76) kHz/s. Performing the experiment of Fig. 10 several tim&sad us to determine
the statistics of the phase fluctuations. On thegd@imescale the laser phase standard deviation
is below 4 degrees corresponding to a linewidth of approtetgdl kHz. We conclude that a
slow frequency drift rate can be obtained together with & Iplgase stability.

4.4. Discussion of the results

Let us briefly summarize the experimental results. Our mbjaative of the experimental part
of this paper is to study the hole-burning dynamics in cotineowith laser frequency drift.
We have demonstrated that the asymmetry of the spectraiimigases with increasing hole
depth, and for holes deeper than the threshold of Fig. 3 aeased drift rate has been observed.
Also, the direct observation of a bi-stable drift underiribe interpretation that a linear laser
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frequency drift can be an inherent solution to the equatidnsotion, even though the feedback
loop is closed and the error signal is small. The calculateeshold values for this inherent
linear drift are consistent with our observations. Adjogtthe experimental parameters, we
were able to obtain a linear frequency drift rate below 1 lddz/ and for these parameters
we also demonstrated a short term stability correspondiray linewidth of 1 kHz on 1Qus
timescales.

We also wish to note that we have considered different exprial parameter settings. In
general, the best phase stability performance is foundherparameters of the example in
Sec. 4.3. Together with our chosen optical power these peteaingive rise to a measured hole

depth,d™® around 0.5 to 0.6 in Fig. 9. This value for the hole depth giadarge error

holec
signal (corresponds to= FFO'e ~ 2, which is essentially the optimum choice according to the
f-function Eq. (25) shown in Fig. 1). We have also investidadefew different positions on
the inhomogeneous profile. These measurements indicata thensmission above 30% is a
good choice, which is also consistent with theoretical etqi@®ns. We conclude that in general
the stabilized laser performs very well with settings claséhe optimum values discussed in
Sec. 2.3.2.

Laser stabilization using a spectral hole or the inhomogeserofile has been reported
previously for semiconductor lasers in several publicwtifb, 6, 4, 7, 8, 3, 9, 24]. Compared
to the results herein, our stabilized laser performs veryfaeshort timescales, whereas much
slower drift rates have been reported on long timescales ¢ha value of 1 kHz/sec. The
reason for the latter is the fact that we did not incorporageimhomogeneous profile as a fixed
frequency reference, but this is straightforward to do, eee [4]. To improve stability, we
believe that the threshold condition for inherent laseit tialso important in cases where the
inhomogeneous profile is included as a fixed frequency redere

5. Conclusion

By introducing an analytical theory, we have contributethtounderstanding of laser stabiliza-
tion using spectral holes to an extent that we hope will enatiier scientists to further improve
existing technology. In particular, we calculated a trans@inction describing the atomic re-
sponse to errors in the laser frequency, and we have idehéf@olution to the equations of
motion with an inherent linear frequency drift of the stetatl laser. We have provided experi-
mental support for the part of the theory concerning therldg&, and our general experience
tell us that the optimum parameters suggested by theorygales the best performance in
practice.
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