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Department of Physics, Lund Institute of Technology, P.O. Box 118, SE-22100 Lund, Sweden

bju@com.dtu.dk

Abstract: There have recently been several studies of the performance
of laser frequency stabilization using spectral holes in solids, instead of
an external cavity, as a frequency reference. Here an analytical theory for
Pound-Drever-Hall laser frequency stabilization using spectral hole-burning
is developed. The interaction between the atomic medium andthe phase
modulated light is described using a linearized model of theMaxwell-Bloch
equations. The interplay between the carrier and modulation sidebands
reveals significant differences from the case of locking to acavity. These
include a different optimum modulation index, an optimum sample absorp-
tion, and the possibility to lock the laser in an inherent linear frequency
drift mode. Spectral holes in solids can be permanent or transient. For the
materials normally used, the dynamics and time scales of transient holes
often depend on population relaxation processes between ground state
hyperfine levels. These relaxation rates can be very different for different
solid state materials. We demonstrate, using radio-frequency pumping, that
the hyperfine population dynamics may be controlled and tailored to give
optimum frequency stabilization performance. In this way also materials
with initially non-optimum performance can be used for stabilization.
The theoretical predictions regarding the inherent linearfrequency drift is
compared to experimental data from a dye laser stabilized toa spectral hole
in a Pr3+:Y2SiO5crystal.
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8. T. Böttger, Y. Sun, G. J. Pryde, G. Reinemer, and R. L. Cone, “Diodelaser frequency stabilization to transient
spectral holes and spectral diffusion in Er3+:Y2SiO5 at 1536 nm,” J. Lumin.94, 565–568 (2001).

#83390 - $15.00 USD Received 25 May 2007; revised 17 Aug 2007; accepted 19 Aug 2007; published 24 Aug 2007

(C) 2007 OSA 3 September 2007 / Vol. 15,  No. 18 / OPTICS EXPRESS  11444
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1. Introduction

Frequency stabilization of lasers is an advanced topic in the science of optical physics, and the
use of optical cavities in the Pound-Drever-Hall scheme [1]is an often used technique, which is
also theoretically very well understood [2]. Since the late1990’ies, laser frequency stabilization
using spectral hole burning has been developed using semi-conductor lasers [3, 4, 5, 6, 7, 8, 9] or
a Ti:sapphire laser [10]. However, the theoretical understanding of this stabilization method is
not well developed. Such a theory must include the interaction between the laser to be stabilized
and the atomic reference material in which case the equations of motion are inherently non-
linear. In this paper we present an analytical, linearized theory, which gives physical insight to
the spectral hole burning dynamics and its implication on the frequency stabilization feedback
loop. The theory gives optimum design parameters for the stabilization feedback system, and
in particular we demonstrate that an inherent linear laser frequency drift can be avoided with
certain parameter choices.

The inherent linear frequency drift regime is also identified experimentally with a dye laser
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stabilized to the 606 nm transition in Pr3+:Y2SiO5 . In order to control the hole-burning dy-
namics in this material, we introduced an “RF-eraser”, which consists of RF magnetic fields,
allowing us to vary the hyperfine level lifetimes.

Optical cavities are widely used for laser stabilization, but in some cases the use of spectral
holes can be advantageous. Firstly, if one wishes to performexperiments on optical transitions
in the hole-burning material itself, it may be required thatthe phase coherence time of the laser
is similar to the coherence time,T2, of the optical transition. The hole-burning material itself
is then automatically sufficient as a phase reference. For instance, the 580 nm transition in
Eu3+:Y2SiO5has an optical coherence time as long as 2.6 ms [11]. Secondly, when using the
spectral-hole-burning technique, the sensitivity to vibrations requires that the atomic medium
moves much less than an optical wavelength in an optical coherence time. However, for the
mirrors in a high-finesse cavity this sensitivity is essentially multiplied by the average number
of round trips made by a photon in the cavity, which can be several orders of magnitude. In
practice, the hole-burning materials require cryogenic cooling in which case vibration stability
is more difficult than for an optical cavity. However, if it ispossible to use the same hole-
burning crystal for laser stabilization and for further experiments, the sensitivity to vibrations
is reduced significantly, and much of the technology for the experiments can be re-used in the
laser stabilization.

For transient spectral hole systems the long-term stability presents a challenge since the
spectral hole position may change over time. Rare-earth-metal-doped crystals are interesting
for, among others, implementing quantum information protocols [12, 13, 14, 15, 16].

In Sec. 2 the analytical theory of laser frequency stabilization using spectral hole burning is
developed as the main result of this paper. After a brief description of the experimental setup
in Sec. 3, we make an experimental study of the laser frequency drift dynamics in Sec. 4. The
paper is concluded in Sec. 5.

2. Theoretical description of laser stabilization using spectral hole burning

It is our intention in this paper to maintain the physical understanding, and hence we will restrict
ourselves to analytical derivations and make approximations, rather than numerical simulations,
when the calculations become difficult. Our theory is quantitatively accurate for many practical
systems. Below we derive in detail the basic model for the thelaser stabilization. In Sec. 2.4
we give briefly the main ideas and results behind the model of inherent linear frequency drift.
Additional details on the theory can be found in [17].

2.1. Two-level atoms and Maxwell-Bloch equations

We start with an ensemble of inhomogeneously broadened two-level atoms. We allow laser
light to propagate through these along thez-direction. With a large beam cross section a one-
dimensional theory is sufficient, and the Maxwell-Bloch equations can be written (see e.g. [18,
19, 20]):

∂
∂ t

(u− iv) = −(
Γh

2
+ i∆)(u− iv)− iΩw, (1)

∂
∂ t

w =
i
2

[Ω(u+ iv)−Ω∗(u− iv)]− 1
T1

(1+w), (2)
(

∂
∂ z

+
nb

c
∂
∂ t

)

Ω =
iα0

2π

∫ ∞

−∞
g(∆)(u− iv)d∆. (3)

Here(u,v,w) is the usual Bloch-vector which depends on timet, positionz, and detuning∆
(from a chosen reference point). The electric field is described in terms of the complex Rabi fre-
quencyΩ(z, t) = µE (z, t)/h̄, whereE is the complex electric field andµ is the dipole moment
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along the direction of the field (we consider only a single linear polarization mode).Γh = 2/T2

is the FWHM homogeneous line-width of the atoms in rad/sec,T1 andT2 are the life and co-
herence times of the optical transition, respectively. In Eq. (3) nb is the refractive index of
non-absorbing background atoms, andg(∆) is a dimensionless function describing the inho-
mogeneous distribution of atoms such thatg(∆) is proportional to the number of atoms with
transition frequency∆. We use an unconventional but experimentally convenient normalization
such thatg(∆0) = 1 if α0 is the absorption coefficient measured with a weak laser fieldat fre-
quency∆0. The integral over∆ in Eq. (3) effectively adds the contribution of the polarization
from all the atoms to the electric fieldΩ at positionz and timet.

Eqs. (1-3) are in general difficult to solve analytically. However, for our specific needs re-
garding laser stabilization we will make a number of approximations in the following. We start
by noting that in Eq. (3) the termnb

c
∂Ω
∂ t is only relevant when describing very fast changes on

the time scaleL/c whereL is the length of the sample, and it can be neglected here.

2.1.1. Linear regime of Maxwell-Bloch equations

The next approximation is to consider Eqs. (1-3) in the linear regime where,w ≈ −1 for all
atoms, i.e. the probability of being in the excited state is small. In Sec. 2.2 we discuss the
validity of this approximation. Inserting (withw = −1) the integral formu(z, t)− iv(z, t) =

i
∫ t
−∞ e−(

Γh
2 +i∆)(t−t ′)Ω(z, t ′)dt ′ of Eq. (1) into Eq. (3) and expressing the electric fieldΩ in terms

of its Fourier components,Ω(z, t) =
∫ ∞
−∞ Ω(z,ω)e−iωtdω, it follows that Eq. (3) can be written

in Fourier space as:

∂
∂ z

Ω(z,ω) = −α0

2π

∫ ∞

−∞

g(∆)d∆
Γh
2 + i(∆−ω)

Ω(z,ω)

≡−αR(ω)+ iαI(ω)

2
Ω(z,ω).

(4)

where we defineαR(ω) andαI(ω) as the real and imaginary absorption coefficients, respec-
tively. For a single frequency component of the fieldΩ(z,ω) = A(z,ω)e−iφ(z,ω) with real am-
plitudeA and phaseφ we have the relation:

∂A(z,ω)

∂ z
= −αR(ω)

2
A(z,ω), (5)

∂φ(z,ω)

∂ z
= +

αI(ω)

2
. (6)

HereαR is the normal absorption coefficient, andαI is related to the total index of refraction
by n(ω) = nb + λαI(ω)

4π with λ being the vacuum wavelength of the radiation. Eqs. (4-6) will
be the workhorse for many calculations in the following sections. Our goal is to model the
frequency variations of the incoming laser field, propagatethis field through the atomic medium
via Eqs. (5) and (6), and finally derive an error signal usefulfor frequency stabilization based
on the outgoing field. We will reach this goal in Sec. 2.3, but before that we introduce a model
which describes the effect of hole burning in terms of the shape function,g(∆).

2.2. Two-level atoms with a reservoir state

The calculations in the previous sections need to be refined in order to describe the effect of
spectral hole burning. So, in addition to the ground|g〉 and excited|e〉 states we add a third

#83390 - $15.00 USD Received 25 May 2007; revised 17 Aug 2007; accepted 19 Aug 2007; published 24 Aug 2007

(C) 2007 OSA 3 September 2007 / Vol. 15,  No. 18 / OPTICS EXPRESS  11447



reservoir state|r〉 (see Fig. 4(b)) and write the Bloch equations for these:

∂
∂ t

(u− iv) = −(
Γh

2
+ i∆)(u− iv)− iΩ(ρe −ρg), (7)

∂ρe

∂ t
=

i
4

[Ω(u+ iv)−Ω∗(u− iv)]− 1
T1

ρe, (8)

∂ρg

∂ t
= − i

4
[Ω(u+ iv)−Ω∗(u− iv)]

+
beg

T1
ρe −

1
Tgr

ρg +
1

Trg
ρr, (9)

∂ρr

∂ t
=

ber

T1
ρe +

1
Tgr

ρg −
1

Trg
ρr. (10)

We assume the optical field,Ω, only couples to the transition|g〉 → |e〉 and henceu andv still
refer to this transition, and only the factorw = ρe−ρg appears in the driving term in Eq. (7), as
was the case in Eq. (1). We add the possibility of decays from the excited state to the reservoir
state. The branching ratios from|e〉 to |g〉 and|e〉 to |r〉 are denotedbeg andber, respectively. We
also model relaxation between the|g〉 and|r〉 levels. The timescale for decays from|g〉 to |r〉 is
Tgr, which in general need not be the same as the timescaleTrg in the opposite direction. For the

homogeneous line-width,Γh, we now haveΓh
2 = 1

T2
= 1

T (0)
2

+ 1
2Tgr

, whereT (0)
2 is the coherence

time of the optical transition|g〉 → |e〉 in the absence of ground state relaxation, and the term
1

2Tgr
takes the finite lifetime of the state|g〉 into account.

2.2.1. Separation of timescales

Our next step is to derive expressions, which characterize the shape of spectral holes burned by
the laser field. From Eqs. (7-10) we compute the steady-statesolutions forρe, ρg, andρr while
u andv are still allowed to vary in time according to Eq. (7). This isa good approximation since
in our specific case we have naturally different timescales for the ground state populations
and the optical coherence,Trg,Tgr ≫ T2. Furthermore, when the laser is actively stabilized to
a line-width narrower thanΓh, it is a good approximation to assume a zeroth order starting
point,Ω = Ω0e−i∆0t , where the laser is running perfectly at a monochromatic frequency,∆0. If
the variations from this starting point are small, the populations will always be close to their
steady-state values. With a little work we obtain and expression for the population difference
ρg−ρe:

ρg−ρe = G



1−dhole

Γ2
hole
4

Γ2
hole
4 +(∆−∆0)2



 , (11)

wheredhole is the relative hole depth andΓhole is the FWHM of the hole. These parameters can
be written:

dhole =
(1+R) s0

2

1+(1+R) s0
2

, Γhole = Γh

√

1+(1+R)
s0

2
, (12)

wheres0 is the resonant saturation parameter:

s0 = |Ω0|2T1T2, (13)

and for our particular case of Eqs. (7-10) we have:

R =
1+

berTrg
T1

1+
Trg
Tgr

, G =
1

1+
Trg
Tgr

. (14)
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The saturation parameters0 is a measure of the probability of an atom being in the excitedstate
|e〉 at resonance. In steady state at∆ = ∆0 we haveρe

ρg
= s0

2 /
(

1+ s0
2

)

. The parameterG is a

measure of the fraction of atoms in the ground state|g〉 in equilibrium in the absence of the
laser light or when the detuning,∆−∆0, is large. The parameterR is a measure of how likely
it is for an atom to be trapped in the reservoir state. The essence ofR is in the termberTrg/T1,
which is the ratio of the rateber/T1 from |e〉 into the reservoir state|r〉 and the rate 1/Trg out
of the reservoir state. From Eq. (12) it is clear that a spectral hole can be deep and broad for
different reasons: Firstly, if the laser field is strong witha high saturation parameters0, although
R is small, and secondly, if the trapping parameterR is large even a weak field withs0 ≪ 1 is
capable of digging a deep, wide hole.

Now, we wish to employ Eq. (3) or (4) together with Eqs. (7-10). We insert the steady-state
value of Eq. (11) into Eq. (7) written in integral form. Sincethe steady-state value is time-
independent we may perform the same steps as those leading toEq. (4). We will incorporate
the value ofρg−ρe into theg(∆) shape function and just pretend that we never left the linear
approximation, Eq. (4), of a two-level system. This is done correctly when:

g(∆) =
ρg−ρe

G
= 1− dhole

Γ2
hole
4

Γ2
hole
4 +(∆−∆0)2

. (15)

The division byG (the fraction of atoms in|g〉 far off resonance) assures thatg(∆) is correctly
normalized to unity away from the spectral hole, i.e.α0 is the absorption coefficient for a weak
laser field in the absence of the spectral hole.

Let us retrace our steps so far and underline the approximations made. We have reached the
two important equations (4) and (15). Theg(∆) function for a spectral hole describes how many
atoms actually participate in the active two-level transition |g〉 → |e〉. We included the effect
of saturation where atoms can also populate the excited state |e〉 (which mathematically also
creates a hole inρg − ρe). However, since we assumed the populationsρe, ρg, andρr to be
essentially constant in time, we have restricted ourselvesto solutions where the laser field does
not deviate much from a perfect field,Ω = Ω0e−i∆0t (we have linearized the theory around this
zeroth order solution). Note, that the fieldΩ can still have fast variations in e.g. its phase, as long
as the phase excursions are not too large. Since both population trapping in the reservoir state
and the effect of saturation (leading to population trapping in the excited state) are incorporated
into the single parameterg(∆), we effectively model the three-level equations (7-10) with our
initial linear two-level system with low saturation, as described by Eq. (4).

Using Eq. (15) also requires another approximation. We notethatdhole andΓhole depend on
the resonant saturation parameter,s0. If the optical depth,α0L, of the atomic sample is large, the
saturation parameter will depend onz, and the use of az-independentg(∆) will be incorrect.
However, if the laser field burns holes, the attenuation willbe less thanα0L. Practically, the
equations will be applicable forα0L not too much greater than unity.

Finally, we point out thatdhole andΓhole, as defined in Eq. (12), refer to the structure in the
population, not to the depth and width which would be measured in an absorption experiment.
From (12) we always have the relation:

1−dhole =

(

Γh

Γhole

)2

. (16)
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2.2.2. Absorption and phase shift from a spectral hole

Let us now employ Eqs. (4) and (15) to calculate the attenuation and phase shift of a laser field
in the presence of a spectral hole. We take for theg(∆) function:

g(∆) =

Γ2
inh
4

Γ2
inh
4 +∆2



1− dhole
Γ2

hole
4

Γ2
hole
4 +(∆−∆0)2



 , (17)

i.e. we have a spectral hole burned at frequency∆0 into an inhomogeneously broadened
Lorentzian profile with widthΓinh centered at∆ = 0. Inserting this into Eq. (4) we find:

αR(ω)

α0
=

Γ2
inh
4

Γ2
inh
4 +ω2

−
Γ2

inh
4

Γ2
inh
4 +∆2

0

·
Γhole(Γhole+Γh)

4 dhole

(Γhole+Γh)2

4 +(∆0−ω)2
→ 1−

Γhole(Γhole+Γh)
4 dhole

(Γhole+Γh)2

4 +(∆0−ω)2
,

(18)

αI(ω)

α0
=

ω Γinh
2

Γ2
inh
4 +ω2

+

Γ2
inh
4

Γ2
inh
4 +∆2

0

·
Γhole

2 (∆0−ω)dhole

(Γhole+Γh)2

4 +(∆0−ω)2
→

Γhole
2 (∆0−ω)dhole

(Γhole+Γh)2

4 +(∆0−ω)2
, (19)

with Γhole and dhole defined in Eq. (12). In the first terms we assumed thatΓinh ≫ Γh. The
arrows indicate the limit whenΓinh → ∞, i.e. when we neglect the effect of the possibly very
wide inhomogeneous background. In case of a Gaussian inhomogeneous profile, the absorption
and dispersion factors containingΓinh must be replaced by Re{w(Z)} and Im{w(Z)} with Z =
2
√

ln2
Γinh

(ω + i Γh
2 ) known as the Voigt profile [19]. In general, the shape of the inhomogeneous

profile varies depending on the broadening mechanism [21, 22].
If we compare Eqs. (15) and (18) we see that in an absorption measurement with a weak field

(not changing the populations further) the measured width and depth of the hole are related to
Γhole anddhole by:

Γ(meas)
hole = Γhole+Γh, d(meas)

hole =
Γholedhole

Γhole+Γh
. (20)

2.3. Calculation of error signals

Now, let us turn to the calculation of real error signals usedin the locking procedure. In reality
the input light will vary in amplitude and frequency over time. Experimentally, the amplitude
variations are easy to measure directly and and correct for.Hence, in the following we con-
centrate solely on frequency errors. A convenient method isto assume the incoming laser field
to be of the formΩ(0, t) = Ω0e−i(∆0t+ε sin(ωt)) i.e. we have an almost single-frequency laser
at ∆0, but with an additional small harmonic disturbance of the phase with frequencyω and
magnitudeε, which we assume to be much less than unity. The complex Rabi frequencyΩ0 is

given byΩ0 = µ
h̄

√

2µ0cP
nbA whereµ is the electrical dipole moment,µ0 the vacuum permeability,

c the speed of light,P the optical power,̄h Planck’s constant divided by 2π, nb the background
refractive index of the atomic sample, andA the beam cross-sectional area. This model is valid
when the laser is running in the frequency stabilized mode with a narrow line-width. When
errors are small, the different frequency components will add linearly, and it is sufficient to
consider a particular frequencyω.

In order to employ the Pound-Drever-Hall method, we phase modulate the laser beam at
frequency,ωm, with modulation index,m, leading to spectral hole burning at the laser base
frequency,∆0, and at the sidebands∆0±ωm. AssumingΓinh ≫ ωm, the two sideband spectral
holes become identical, and takingε ≪ 1 we neglect hole burning effects from theω-sidebands.
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We describe the absorption and dispersion from the spectralholes by the transmission coef-
ficients,ηi and phase shifts,φi, wherei = c,s refer to “carrier” and “sideband”, respectively:

ηi(ω) = exp



−α0L
2



1−
Γhole,i(Γhole,i+Γh)

4 dhole,i

(Γhole,i+Γh)2

4 +ω2







 , (21)

φi(ω) = −α0L
2

Γhole,i
2 dhole,iω

(Γhole,i+Γh)2

4 +ω2
, (22)

We let the modulated field pass the atomic sample and collect it on a photo-detector. The de-
tected power has a term oscillating at frequencyωm given by:

P(out)
ωm (t) = 4P(in)J0J1Re

{

T (ω) ·εωeiωt} · sin(ωmt),

T (ω) =
ηc(ω)ηs(0)eiφc(ω) −ηc(0)ηs(ω)eiφs(ω)

iω + 1
Trg

.
(23)

HereJ0 andJ1 are Bessel functions corresponding to the modulation index, m, andP(in) is the
total incoming power. In the curly brackets the real part of the factorεωeiωt is just the instan-
taneous frequency of the incoming laser (relative to∆0). Hence, the factor,T (ω), acts as a
transfer function mapping this harmonic frequency excursion onto the measured power. This is
similar to the way in which a complex impedanceZ(ω) maps a complex currentI(ω) onto a
complex voltageV (ω) = Z(ω)I(ω) for individual Fourier components in electrical engineer-
ing. Hence, the transfer function,T (ω), is directly applicable for purposes of feedback loop
design for the laser stabilization system.

In the denominator ofT (ω), the term 1
Trg

is added in order to compensate for the fact that

g(∆) is not time-independent on timescales slow compared toTrg - the spectral holes are not
permanent. This term arises from an ad hoc model, where the center frequency of the spectral
hole, ∆0, is varied as the instantaneous laser frequency,ω inst = ∆0 + εω cos(ωt), weighted
exponentially back in time with time constant,Trg [17].

Eq. (23) is a very useful model for the atomic response to harmonic errors in laser frequency
on all timescales. The transfer functionT (ω) is important in the understanding of the interplay
between the carrier and sideband holes. However, the extra ad hoc term 1

Trg
in the denominator

is far from giving the full picture of laser stability at low frequencies. This is discussed further
in Sec. 2.4.

2.3.1. Evaluating the transfer function

The transfer function in Eq. (23) can be evaluated by using the expressions in Eqs. (21) and (22).
Whenω ≪ Γhole,i we obtain:

T (ω) ≈−α0L
Γh

iωTrg

1+ iωTrg
e−

α0L
2 ( 1

xc
+ 1

xs)[ f (xc)− f (xs)]. (24)

where the functionf (shown in Fig. 1) is defined by:

f (x) =
x−1

x(x+1)
, xc =

Γhole,c

Γh
, xs =

Γhole,s

Γh
. (25)
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Fig. 1. The functionf (x) defined in Eq. (25). Atx = 2.41 it attains its maximum value of
0.172. Physically,f (x) is proportional to the slope ofφi(ω) at ω = 0 in Eq. (22).

In the central regime,T−1
rg ≪ ω ≪ Γhole,i, the term iωTrg

1+iωTrg
is unity and the transfer function

is real. In the low-frequency limit,ω ≪ T−1
rg , the transfer function becomes imaginary and

proportional toω. In the high-frequency limit,ω ≫ Γhole, we find:

T (ω) ≈− 1
iω

e−
α0L

2 [e−
α0L
2xc − e−

α0L
2xs ]. (26)

The transfer functionT (ω) has been plotted in Fig. 2 for a choice of reasonable experimental
parameters. It is clear that there are three distinct regimes, as discussed above. Assuming that
the terms in the square brackets in Eqs. (24) and (26) are positive, the transfer function is a
negative real number timesiω, 1, and 1

iω for the low-, medium-, and high-frequency regimes,
respectively. This behavior is clearly seen in the magnitude of T (ω) shown on the upper plot
in Fig. 2. The fact that the transfer function is real at medium frequencies means that the error
signal∝ Re{T (ω)eiωt} will oscillate in phase with the actual frequency error∝ Re{eiωt}. For
high frequencies, the extra1i factor makes the error signal oscillate as Re{ei[ωt−π/2]}, i.e. the
response is 90◦ delayed. This is shown as the phase reaching−90◦ in the lower plot in Fig. 2.
For low frequencies the situation is the opposite; the phaseis advanced by 90◦. This behavior
of the gain and phase has been previously reported in experiments and numerical simulations
[5, 6].

In our calculations we always assume that the power in the carrier beam is higher than in
either of the sidebands, leading toΓhole,c > Γhole,s. Then, according to the definition in Eq. (25),
xc will be larger thanxs, and the term in the square brackets in Eq. (26) will be positive, as
we assumed above. For Eq. (24), however, we can have a situation where f (xc) < f (xs) if,
e.g. 2.41 < xs < xc, according to Fig. 1. In this case there is a 270◦ phase shift between the
medium- and high-frequency regimes which in practice meansthat the sign of the error signal
cannot be chosen correctly for all frequency components in aclosed feedback loop. Physically,
the sign change occurs when the slope ofφc(ω) aroundω = 0 equals the slope ofφs(ω) in
Eq. (22) and we must assure that this is never the case. Note also that prior to and in the
initialization of the laser locking feedback loop the spectral holes are broad and shallow (since
the laser is broadband). The carrier hole will be deeper thanthe sideband holes while the widths
are roughly the same, limited by the broad laser line-width.This in turn assures that the slope
of φ(ω) for the carrier is larger than for the sidebands. We must choose the right parameters
such that the sign will remain correct when the feedback loopis closed and the laser line width
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Fig. 2. The magnitude and phase of the transfer functionT (ω) calculated from Eq. (23)
(heavy lines). The light lines show the asymptotic cases discussed around Eqs. (24)
and (26). Parameters used areT1 = 150 µs, T2 = 18 µs, Trg = Tgr = 4 ms, ber = 0.5,
Ω0 = 2π ·1 kHz, andm = 0.40, giving Γh = 2π ·17.5 kHz, Γhole,c ≈ 2π ·21 kHz and
Γhole,s ≈ 2π ·18 kHz. These parameters are close to our experimental working values, as
we shall see in Sec. 4.

narrows.

2.3.2. Parameter choices for obtaining a large error signal

The theoretical observations above enable us to discuss theoptimum parameters in general. A
few design considerations are also given in connection withour particular experimental setup,
see Sec. 3.

In order to obtain a large error signal, our first observationis the fact that the detected power
given in Eq. (23) is proportional toP(in). It is no surprise that more light gives a higher signal at
the detector, but it is wrong to just naively increase the incoming light powerP(in) and expect
a better performance. Doing so will increases0 in Eq. (13) and in turn the hole widthsΓhole,i

in Eq. (12). However, increasing the incoming power and at the same time increasing the beam
area,A, leading to an unchanged intensity, will always help. Hence, it is a good idea to use an
atomic sample with a large area.

Next we observe in Eq. (23) that the front factorJ0J1 attains its maximum value of 0.339
when the modulation index ism = 1.08. This value is often used in laser stabilization setups
utilizing optical cavities [2]. However, as opposed to the resonance lines in a cavity, the shape
of spectral holes depends on the optical power. If the carrier and sideband powers were equal
the holes would be identical, i.e.ηc = ηs andφc = φs, leading to a zero error signal according
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to Eq. (23). For this reason the optimum modulation index is lower than 1.08, leading to a more
asymmetric power distribution between the carrier and the sidebands. We have searched our
parameter space with numerical methods while optimizing the signal in Eq. (23). The result is
that m = 0.56 is a good choice. However, there are further complications regarding the laser
stability which suggest thatm should be even lower. This will be discussed in Sec. 2.4.

Regarding the hole widthsΓhole,c andΓhole,s it is clear from Eq. (24) and Fig. 1 thatxc =
Γhole,c/Γh should not be much greater than 2.41, since a higher value simply makes thef -
function decrease again. Also, we would like to makexs = Γhole,s/Γh small in order to decrease
f (xs). We can do this by lowering the modulation indexm. Makingm too small will also lower
the factorJ0J1 and this is why we foundm = 0.56 to be the optimum choice seen solely from
the point of view of optimizing the error signal. However, the magnitude of the error signal is
not everything. The narrower the hole widthsΓhole,i, the longer the duration of the atomic phase
memory and hence potentially better phase stability of the laser can be obtained. We should also
note that a given width,Γhole,i, can be obtained in different ways according to Eq. (12). One
could choose a high intensity (highs0) and a short hole lifetimeTrg (low R according to (14))
if adjustable. On the other hand, a low intensity and a long hole lifetime could give the same
result. In general, the latter will give the better long-term stability of the spectral hole.

To estimate the optimum optical densityα0L let us assume thatxc ≈ 2 andxs≈ 1. This is not
far from optimum given the discussion above. Inserting thisinto either Eq. (24) or (26) leads
to the ballpark estimateα0L ≈ 1.15, corresponding to a background intensity transmission of
e−α0L ≈ 32%. Note, this is on the edge of our approximation thatα0L should not be too large
for quantitatively correct results.

2.4. Laser drift

In the previous sections we have calculated the error signals for laser locking based on the lin-
earized model with the time-independent distribution function g(∆). For slowly varying errors
on timescales slower than the hole lifetime,Trg, we presented in connection with Eq. (23) an
ad hoc model to describe the dynamics whenω → 0. However, this does not really illustrate
the real challenges in long-term stability of the laser frequency. First of all, note thatT (ω)→ 0
whenω → 0, which is a consequence of the fact that a transient spectral hole is not a fixed fre-
quency reference. This means that on long timescales the laser frequency stability will depend
highly on e.g. measurement noise and offset tolerances in the electronic system.

We discuss in the present section that, in addition to these problems, under certain conditions
there is a solution to the equations where the laser is locked, but the frequency is drifting linearly
with time. Below we will re-calculate the absorption coefficientsαR andαI in the presence of
laser drift, which leads to corrections to the error signal.

2.4.1. The drift model

We consider a situation where the incoming laser field is given by Ω(0, t) = Ω0e−i(∆0+
β t
2 )t

corresponding to an instantaneous linear frequency variation, ωinst = ∆0 + β t, whereβ is the
drift rate in rad/s2. This ansatz leads to a time-dependent version of Eqs. (7-10), which can
be solved by numerical methods. However, our aim is to derivean intuitive condition for the
presence of a linear laser drift, which can be done analytically in perturbation theory by making

a series expansion ofρe, ρg, andρr in the dimensionless parameterξ =
βTrg
Γhole

. This parameter
is a measure of how far the laser drifts during a hole lifetime, Trg, compared to the width of the
hole,Γhole.

By expandingρe = ρ(0)
e +ξ ρ(1)

e +ξ 2ρ(2)
e + . . ., and similarly forρg andρr, we may calculate

the corresponding distribution functiong(∆) = 1
G (ρg−ρe) = 1

G (ρ(0)
g −ρ(0)

e )+ ξ
G (ρ(1)

g −ρ(1)
e )+

O(ξ 2). The term linear inξ is our correction,gdrift(∆), to the shape functiong(∆) due to the
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Fig. 3. Thresholds for stable laser operation. Ifd(meas)
hole,c is below the solid line the square

bracket in Eq. (28) is positive and the zero-drift solution is stable. In order for the low-
frequency part of the laser locking to have the correct sign (f (xc)− f (xs) > 0 in Eq. (24))

we require the less stringent condition thatd(meas)
hole,c is below the dotted line. Between the

two lines the laser can be locked in a linearly drifting mode.

drift. By insertinggdrift(∆) into Eq. (4) and evaluating the result atω = ∆0, we calculate the
imaginary absorption coefficientαI experienced by the laser beam at frequency∆0 drifting at
rateβ . The calculations are quite cumbersome [17], we just present the result:

αI(∆0) = −α0

(

βTrg

Γhole

)

dhole×
T1
Trg

[

1+ 3
2

Trg
Tgr

+ 1
2

T 2
rg

T 2
gr

]

+ 1
2

[

ber(1+
Trg
T1

)−beg
Trg
Tgr

]

(

1+
Trg
Tgr

)(

2+
Trg
Tgr

+
berTrg

T1

) . (27)

The first-order drift contribution toαR(∆0) is zero by symmetry.

2.4.2. Error signal from drift

Expression (27) may look a little complicated, but all we really need to understand is the factor
to the left of the×-sign. This factor says, thatαI should be calculated by taking the background

α0 times “how far we climbed up the hole” (this isξ =
βTrg
Γhole

) times the relative depth,dhole, of
the hole. The rightmost fraction in Eq. (27) is merely a constant independent of laser power.
Hence, this constant is the same for the center and side holes. In the, not so uncommon, case
whenberTrg ≫ T1 (leading toR ≫ 1) the factor is approximately equal to[2(1+

Trg
Tgr

)]−1. For
brevity we make this approximation below. In the Pound-Drever-Hall scheme, the measured
power on a photo-detector oscillating atωm becomes:

P(out)
ωm (t) = −P(in)J0J1α0Le

− α0L
2

(

Γh
Γhole,c

+
Γh

Γhole,s

)

βTrg

1+
Trg
Tgr

[

dhole,c

Γhole,c
− dhole,s

Γhole,s

]

sin(ωmt). (28)

Comparing this expression to the low-frequency version in Eq. (24) we find most importantly
that the difference inf -functions has been replaced by the difference in the ratiosdhole,i/Γhole,i.
As discussed previously, there is a risk of obtaining the wrong sign for the error signal. The
difference in square brackets in Eq. (28) must be positive for zero drift withβ = 0 to be a stable
solution. If this is not the case, there will be a bi-stable solution with positive or negative non-
zero values ofβ . Since a particular value ofβ will give zero error signal, the frequency drift
must be linear.
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Fig. 4. Different level schemes used in this paper. We define timescalesfor relaxation be-
tween ground state levels and branching ratios from the excited state. The excited state
lifetime is always denotedT1. (a) The most naive scenario with two levels, considered in
Sec. 2.1 and in the first row of Tab. 1.(b) Our basic model for all calculations, described
in Secs. 2.2 and 2.4. Rows two to four in Tab. 1 refer to this case. Note, we may have
different relaxation timescalesTrg 6= Tgr. (c) and(d) Different schemes with three ground
states coupled as shown with RF-magnetic fields. Hence the timescale is the same in two
opposite directions. These cases are reflected by rows five and six in Tab. 1, respectively.
(e)The real Pr3+:Y2SiO5 level scheme.

We wish to operate the laser stabilization system without this inherent linear drift, and to this
end we derive a stability criterion based on convenient experimental parameters. The interplay
between the carrier and sideband holes depends on the saturation parameter,m, and the actual
strength of the hole-burning process, which can be parametrized by e.g. the measured carrier

hole depth,d(meas)
hole,c . The condition for the square brackets of Eqs. (24) and (28) to be positive,

which is required for stability, is shown in Fig. 3.
Note, that it is easier to fulfill the criterion for correct low-frequency behavior than the cri-

terion for no inherent linear drift. This is an important observation which shows that all the
calculations regarding the drift model are worthwhile and necessary to obtain a complete un-

derstanding of laser stability. It is indeed possible thatd(meas)
hole,c is in between the dotted and solid

lines in Fig. 3, in which case the laser stabilization systemis apparently locked but still the laser
is drifting linearly. We also wish to note that the ratio,dhole,i/Γhole,i, and thef -function describe,
respectively, approximately and accurately the slope of the phase shift versus frequency when
light passes the spectral hole. Hence, the physical origin (the interplay between the carrier and
sidebands) of the two criteria shown in Fig. 3 is similar, whereas the actual difference is more
of mathematical nature.

We conclude this section by pointing out that the drift calculations can be performed in a
similar manner for a simple two-level system in absence of a reservoir state|r〉, but the results
can readily be guessed by settingTrg = 0, Tgr = ∞, ber = 1, andbeg = 0. Then the three-level

case will reduce to the two-level case and Eq. (27) will reduce toαI(∆0) = −α0
2

βT1
Γhole

dhole.
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Table 1. The value ofG andR for the different setups shown in Fig. 4. The first row gives
the relations for the two-level atom (Fig. 4(a)) and the second row describes the two-level
plus reservoir state system considered in Sec. 2.2 (Fig. 4(b)). The third and fourth rows are
special cases of the second row. In the third row we assumeTgr = ∞, which describes a
one-way natural decay from states|r〉 to |g〉. In the fourth row we assumeTrg = Tgr which
describes the case when an RF magnetic field couples the otherwise uncoupled states|r〉
and|g〉. The fifth and sixth rows correspond to the cases shown in Fig. 4(c) andFig. 4(d),
respectively, where there are two reservoir states. These four-level cases are presented since
they resemble our experimental case using Pr3+:Y2SiO5 as the atomic medium.

Case G R
Two-level G = 1 R = 1

Three-level G = 1

1+
Trg
Tgr

R =
1+

berTrg
T1

1+
Trg
Tgr

Three-level,
natural decay

G = 1 R = 1+
berTrg

T1

Three-level,
RF eraser

G = 1
2 R = 1

2[1+
berTrg

T1
]

Four-level,
RF eraser (1)

G = 1
3 R = 1

3[1+
2becTcg+bef(2Tcg+Tfc)

T1
]

Four-level,
RF eraser (2)

G = 1
3 R = 1

3[1+ Tr1ber1+Tr2ber2
T1

]

2.5. General remarks on the calculations

Up until now we have considered a two-level system with a single reservoir state to model the
trapping of atoms in the hole-burning process. This is a simple system which allows for not too
complicated analytical solutions, thereby maintaining the physical understanding. This simple
system is actually found in Tm3+:Y3Al5O12[4, 10], and the even simpler pure two-level system
is found in Er3+:Y2SiO5 [7, 8] and Er:KTP [6].

However, more complicated cases exist. For our experimentswith Pr3+:Y2SiO5 there are
three ground state levels and three excited state levels, see Fig. 4(e). In order to be able to es-
timate whether our experimental case resembles the simplerthree-level system, we calculate
g(∆) for the more complicated case with three distinct ground states shown in Fig. 4(c,d). The
active optical transition is still|g〉 → |e〉, but two reservoir states are present. In Fig. 4(c) the
reservoir states are labeled|c〉 and|f〉 for “close” and “far”, respectively, describing their posi-
tion relative to the state|g〉. In Fig. 4(d) the symmetric case is shown with reservoir states|r1〉
and|r2〉. This distribution function,g(∆), is found to have exactly the same form as Eq. (12),
apart from new values ofR andG, which are given in Tab. 1 (fifth and sixth rows).

We see that adding more ground reservoir states only changesthe spectral holes quantita-
tively, but qualitatively we still have a Lorentzian-shaped hole fulfilling Eq. (12), as for the
simple case of two-levels plus a single reservoir state. However, when all the nine transitions of
Fig. 4(e) play the role of|g〉 → |e〉 due to the inhomogeneous broadening, the total distribution
function,g(∆), will in general be non-Lorentzian. We try in the experiments to keep this effect
small, in order to mimic the three-level system and demonstrate the qualitative features of the
theoretical calculations. The results in Tab. 1 will help usdo this.

We also wish to remind the reader that our theory generally assumes perfect lasers or perfect
lasers with harmonic errors. In practice, this is not the case, but our approximations are still
quite good if the stabilization system maintains a narrow line-width. If the laser line width
is e.g. 1 kHz and the hole width is 20 kHz, there will be some kind of folding effect of the
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order of 5%. Also, we have assumed thatα0L is not too large. If we, for example, setα0L ≈ 1
and assume a measured hole depth of around 50%, the transmission of the carrier beam is
e−1/2 ≈ 60%. This means that the saturation parameter varies by 40% over the sample, and
we can approximately take this into account by lowering the saturation parameter to 80% of
the calculated value. In this manner (for the two levels plusa single reservoir state) we should
be able to keep the theory quantitatively correct within around 10%, while all the qualitative
features should hold true.

Finally, in our theoretical derivations of the error signal, we assumed the inhomogeneous
profile of the transition to be infinitely broad with the consequence that the absorption of the
modulation sidebands became identical. Relaxing this condition leads to another term in the
error signal oscillating as cos(ωmt) and essentially being proportional to the derivative of the
inhomogeneous absorption profile versus frequency [23]. This effect can be utilized as a fixed
frequency reference for the laser stabilization [4, 24].

3. Experimental setup

We have stabilized a Coherent CR699-21 dye laser to the 606 nmtransition in Pr3+:Y2SiO5 .
The theoretical calculations of Sec. 2 assisted us in choosing the optimum parameters of the
electronic feedback system for best performance. It is not the purpose of this paper to describe
the electronic system, which consists of standard techniques. However, for completeness we
mention a few design considerations below. For further details we refer to [25, 26].

The main building blocks of the laser stabilization system are shown in Fig. 5. In the upper
right corner we show the commercial version of the dye laser,where we placed an intra-cavity
electro-optical modulator (EOM 1). We fed the two electrodes by two separate amplifier cir-
cuits, IC1 and IC2.

From the laser output the laser beam was directed through another electro-optical modulator
(EOM 2) applyingωm = 2π ·50 MHz modulation from a local oscillator. The modulated beam
was then expanded to cover the entire area of a Pr3+:Y2SiO5crystal with diameter of 19 mm,
thickness of 5 mm, and doping concentration 0.005%, kept in acryostat operated at 3.0 K. The
peak absorption of the inhomogeneous profile isα0L = 1.9 corresponding to a transmission of
e−α0L ≈ 15%.

Surrounding the crystal are two sets of coils allowing us to couple RF-magnetic fields to
the 10.19 MHz and the 17.31 MHz hyperfine level transitions. The RF fields are generated as
sawtooth sweeps, the 10.19 MHz signal is 100 kHz wide, and the17.31 MHz signal is 200
kHz wide. The sweep time is 0.82 ms, which is comparable to thehyperfine level coherence
time of 0.50 ms and hence the pumping becomes effectively incoherent. This procedure assures
smooth re-population over time of the hyperfine levels sinceatoms with different frequencies
on the inhomogeneous hyperfine transition are affected at different times.

After the light has passed the crystal it is detected and demodulated at the frequencyωm and
filtered to give the error signal. Based on this, the laser frequency is actuated using EOM 1
which is driven by the analog electronics shown in Fig. 5(a) around IC1 and IC2. The complex
electronic gain from the error signal to the voltage across the electrodes of EOM 1 is given by:

g(ω) =
R2

R1
·
iω(R3 +R4)C +1

iωR3C
. (29)

We see that there is a characteristic cutoff frequency,fc = ωc
2π = 1

2π(R3+R4)C , which separates this

gain into a low-frequency part proportional to1iω and a high-frequency part where the gain is
constant and real. We choose the component values such that the critical frequency,ωc, is close
to Γhole. In this manner the electronic gain of Eq. (29) together withthe medium- and high-
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Fig. 6. Experimental setup for characterizing the spectral hole dynamics. Apart from the
locking beam needed for the laser stabilization system, we place an additional probing
beam for characterizing the dynamics of the locking itself. AOM 1 is in doublepass con-
figuration and allows us to scan the laser beam frequency without any beam motion. AOM
2 allows us to shift back to the original stabilized laser frequency to characterize the holes
when the laser is locked. An extra crystal in another cryostat is used formeasuring the laser
frequency drift on long timescales.

frequency part of the atomic response shown in Fig. 2(a) add up to a total response proportional
to 1

iω .
The output of IC2 was also sent to a low-frequency, digital proportional-integral (PI) regu-

lator, i.e. an amplifier with gaing(ω) ∝ c1
iω + c2 ∝ 1/τ+iω

iω . We choseτ to be equal to a typical
value for the hole lifetime,Trg, matching the low- to medium-frequency response of Fig. 2(a).
The output was sent into the commercial parts of the laser control adjusting the Brewster plate
and the piezo-mounted mirror. In this manner, the total response of the atomic medium and our
electronic system at all frequencies becomes proportionalto 1

iω . This is known from feedback
theory [27] to assure stable operation.

For our study of the hole-burning dynamics, we have in addition to the stabilization setup of
Fig. 5 constructed the optical setup shown in Fig. 6. The combination of AOMs 1 and 2 allow
us to measure simultaneously the shape of the carrier and sideband holes using the coherent
readout technique described in [28, 29]. Examples of hole shapes are given in Fig. 8(a,b). These
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shapes can be correlated to the laser drift, which can be measured by burning a spectral hole in
an auxiliary crystal and measuring its position over time, see Fig. 7 for an example.

4. Experimental results

In this section we wish to present some experimental verification of the theory concerning the
drift dynamics in Sec. 2.4. In particular, in Sec. 4.2 we willstudy the correlations between
the hole shapes and the laser drift, and we will test the driftcriterion of Fig. 3. We will also
comment briefly on the short time stability of the laser in Sec. 4.3, but before that we will in
Sec. 4.1 compare our particular system using Pr3+:Y2SiO5 to the theoretical models of Sec. 2.
We conclude the experimental section with a discussion of our results.

4.1. Comparing Pr3+:Y2SiO5 to the theoretical model

As shown in Fig. 4(e), there are three ground and three excited states in Pr3+:Y2SiO5 . The
transition strengths between these are very different; thestrongest are±1

2 →±1
2 (0.55),±1

2 →
±3

2 (0.38),±3
2 →±1

2 (0.40),±3
2 →±3

2 (0.60), and±5
2 →±5

2 (0.93), while the remaining four
are weak (0.07 or less) and have smaller influence on the locking. The numbers in parentheses
are the relative strengths taken from [30] and we assume thatthese are also valid for branching
ratios in the decay process. We see that the ions typically stay within the±1

2,±3
2 space or in

the±5
2 state, and only seldom change between these (the total crossing probability being 7%).

If this crossing occurs, the RF pumping on the ground state hyperfine transition±5
2 →±3

2 at
17.31 MHz transition will counteract it. Since the crossingis infrequent, the timescale for this
RF transitionT17MHz can be relatively slow (in order to maintain a certain hole depth). On the
other hand, an ion resonant on, e.g., the±1

2 →±1
2 optical transition will decay to the ground±3

2
state with a high probability (40%), and the RF pumping on thehyperfine transition±3

2 →±1
2

at 10.19 MHz must counteract this with a relatively short timescaleT10MHz (to maintain the
same hole depth for this atomic species). In all experiments(apart from some of those illustrated
in Fig. 8) we have setT17MHz = 10·T10MHz. Hence, by combining a small branching ratio for
the optical decay taking an atom away from the resonant transition with a long timescale for
the RF pumping bringing the atom back to the resonant transition (or vice versa), we ascertain
that the parameterR is similar for the atomic species resonant on the five transitions mentioned
above (according to the results in Tab. 1). Since, also, the strengths of these five transitions
are not that different, we expect to see experimental results not too different from the simple
three-level model of Fig. 4(b).

4.2. Laser drift dynamics

Let us now turn to the experimental results concerning the laser drift and the hole shapes in the
locking crystal. A direct evidence of linear frequency drift of the laser is shown in Fig. 7(a),
and in the following we will connect the observation of laserdrift to the hole shapes.

In Sec. 2.4 we argued that if the spectral holes used for locking are too deep, the laser may be
locked but drifting linearly in frequency, which in turn will cause the hole shape to be asymmet-
ric. Such asymmetry is demonstrated in Fig. 8(a,b), showingin each color pairs of shapes for
the carrier and sideband holes. From the measured hole shape, αR(ω)L, we can calculate the
imaginary part,αI(ω)L, by using the Kramers-Krönig relations [31]. In our case, the Kramers-
Krönig relations take a slightly simpler form than usual sincethe onlyω-dependence in Eq. (4)
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Fig. 7. (Color online) Example of drift measurements.a)Total observation time is 3 seconds
and we see a drift rate of roughly 160 kHz/s, where the direction changes occasionally.b)
Total observation time is 20 s and the drift is 0.3 kHz/s over this time.

is in the denominatorΓh
2 + i(∆−ω). It can be shown that:

αR(ω0) = + lim
δ→0

1
π

∫ ∞

−∞

αI(ω)(ω −ω0)dω
(ω −ω0)2 +δ 2 ,

αI(ω0) = − lim
δ→0

1
π

∫ ∞

−∞

αR(ω)(ω −ω0)dω
(ω −ω0)2 +δ 2 .

(30)

SinceαI(ω0) is an integral ofαR(ω) times an odd function inω −ω0, the value ofαI(∆0)
directly measures the hole asymmetry. In Fig. 8(c) we compare this measure for the center and
side hole shapes. The data points are taken for a number of different settings ofT10MHz and

T17MHz. We see a clear proportionality,α(side)
I (∆0) = 0.72·α(carrier)

I (∆0).

We expectα(carrier)
I (∆0) andα(side)

I (∆0) to be equal, since from Eq. (6) the phase shifts, of

the carrierφc and sidebandφs are proportional toα(carrier)
I (∆0) andα(side)

I (∆0), respectively,
and with a closed laser stabilization feedback loop we must have zero error signal withφc = φs.
The reason for the slope not being unity is unknown.

The direct observations of the drift, as exemplified in Fig. 7(a), the proportionality in
Fig. 8(c), and the fact that the electronic error signal is small shows that the laser may drift
linearly, while the feedback loop is still locked.

The hole asymmetry is correlated to the laser drift rate. Thedetailed understanding of this
correlation requires a complete solution of the equations of motion discussed in Sec. 2.4 and
is outside the scope of this paper. Instead, in the followingwe will examine the measured drift
rate,β , for various parameter settings. The results of these measurements are shown in Fig. 9.
The light intensity is kept constant with the saturation parameters0 ≈ 0.09. The modulation
index,m, has the values 0.14, 0.20, 0.28, 0.40, and 0.56, and each color in Fig. 9 corresponds
to one of these values. The hole shapes are controlled by employingT10MHz = 1

10 ·T17MHz at the
six values 2 ms, 4 ms, 8 ms, 20 ms, 40 ms, and 80 ms. In Fig. 9 the six corresponding data

points are plotted for each color from left to right since thehole depthd(meas)
hole,c increases with

T10MHz.
We have obtained low drift rates in the left part of the Fig. 9 (the lowest measured being

below 0.5 kHz/s). However, the drift rates increase when thehole depth increases. In order to
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Fig. 8. (Color online) In the two upper graphs the measured absorption,αR(ω)L, is plotted
for comparison under different conditions for a number of center holes (a) and side holes
(b). With increasing hole depth, the asymmetry of both increases. The imaginary part,
αI(∆0), of the absorption coefficient at the hole center is a quantitative measureof this
asymmetry, and can be calculated fromαR(ω) using the Kramers-Kr̈onig relations (30). In
(c) we see, for several measurements under different conditions, a clear linear relationship
between this asymmetry for the center and side holes. The straight line is a fit through the
origin with a slope of 0.72, theoretically we expect a slope of unity.

obtain these data, we had to carefully adjust the phase of thedemodulation of the error signal
while observing the drift rate decreasing for one of the parameter settings in the left-side of
9. This is a consequence of the fact that the transient spectral hole is not a fixed frequency
reference, and if there is an offset in the feedback system, the locking point would be slightly
off-center in the hole leading to a frequency drift. We placed the laser frequency on the side
of the inhomogeneous profile in order to decreaseα0L from the peak value of 1.9 to a more
moderate and useful value of 0.66 corresponding toe−α0L ≈ 0.5. Hence, being away from
the inhomogeneous profile center, we expect small corrections to the calculated error signal
Eq. (23) since the phase shift from the background inhomogeneous profile plays a minor role
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Fig. 9. (Color online) Measured drift rates versus measured hole depth. The hole shapes are
changed by varyingT10MHz andT17MHz. Red circles,m = 0.56; green crosses,m = 0.40;
blue squares,m = 0.28; cyan triangles up,m = 0.20, purple triangles down,m = 0.14. The
vertical dashed lines indicate the values of the corresponding thresholdsshown in Fig. 3.

(see the approximation of Eq. (19)). Also, a small error in the phase setting would mix in a part
of the cos(ωmt) quadrature, which is also dependent on the inhomogeneous absorption profile.
The joint effect of these corrections is effectively a smalloffset, but the small phase adjustments
counteracted this.

However, the drift rates on the right-hand side of Fig. 9 did not decrease in this fine-tuning
procedure. A slight change in error signal offset cannot change the fact that zero drift is an
unstable solution if the criterion in Fig. 3 is not met. The vertical lines in Fig. 9 represent this
threshold value for each modulation index, and the drift rates increase consistently for hole-
depths above these values.

We have observed examples of much higher drift rates than 25 kHz/s, see e.g. Fig. 7(a) where,
in addition to a high drift rate of 160 kHz/s, we also saw that the direction changed occasionally.
In this example, the drift rate is similar in both directions, which is consistent with a bi-stable
solution to the equations of motion with inherent linear frequency drift.

4.3. Laser phase stability

In the previous section we demonstrated that with the right parameter choice, the inherent linear
frequency drift could be excluded leaving us with a low driftof the order of 1 kHz/sec limited
by offset tolerances and possibly by detection noise. In this section we demonstrate that with
the same parameters the short term phase stability can also be satisfactory.

In the experiment we modified the setup shown in Fig. 6 slightly such that the zeroth-order
diffracted beam from AOM 2 (which is not turned on) is sent to the locking crystal. AOM 1 is
operated around its 200 MHz center frequency and hence, withthe frequency shifted around
400 MHz in double pass configuration, the probing beam will not interfere with the laser lock-
ing system.

We used optical FID to measure the laser stability and to thisend we programmed the pulse
sequence shown in Fig. 10(a). The laser is scanned back and forth during pulse “1” within a 10
MHz interval removing all ions herein by optical pumping. The frequency of pulse “4” is then
later chosen such that it falls within this interval, which is empty of absorbing ions. In this way
pulse “4” does not induce any polarization on its own. When pulse “2” is applied a coherence is
set up in the atomic medium and when pulse “2” is turned off theatoms will keep radiating for
a time limited by the optical coherence time,T2, (which in our case is around 18µs) and also by
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Fig. 10. (Color online) Illustration of the phase stability measurements. Inset a) shows the
pulse sequence for the experiment: (1) is a 10 ms burn pulse scanning between 40 MHz and
50 MHz (relative to the AOM double-pass center). After waiting 100µs, pulse (2) with a
constant frequency of zero and duration 40µs sets up a coherence in the atoms which leads
to the FID at (3). Finally, pulse (4) at a frequency of 45 MHz beats with theFID, leading to
the detector signal shown (after filtering) in the main panel. The traces in insetsb) andc)
show this signal in a 200 ns window around time 0 and 10µs, respectively, and the phase
of these oscillations can be calculated with a good signal-to-noise ratio. Inset d) shows the
calculated phase as a function of time for the stabilized (black) and unstabilized (green)
laser.

the inverse bandwidth of the actual coherence. This decaying radiation “3” gives a fingerprint
of the phase of the laser during pulse “2”. At the same time, weapply another pulse, “4”, shifted
45 MHz in frequency carrying its own phase. The beating of pulses “3” and “4” hence compares
the present phase and the past phase, and comparing the measured oscillations with a 45 MHz
local oscillator allows us to calculate the short term characteristics of the laser.

The data in Fig. 10 is obtained withT10MHz = 1
10 ·T17MHz = 4 ms, modulation indexm = 0.20,

and saturation parameters0 ≈ 0.09. These settings is represented in Fig. 9(c) giving a driftof
(0.34±0.76) kHz/s. Performing the experiment of Fig. 10 several times allows us to determine
the statistics of the phase fluctuations. On the 10µs timescale the laser phase standard deviation
is below 4 degrees corresponding to a linewidth of approximately 1 kHz. We conclude that a
slow frequency drift rate can be obtained together with a high phase stability.

4.4. Discussion of the results

Let us briefly summarize the experimental results. Our main objective of the experimental part
of this paper is to study the hole-burning dynamics in connection with laser frequency drift.
We have demonstrated that the asymmetry of the spectral holeincreases with increasing hole
depth, and for holes deeper than the threshold of Fig. 3 an increased drift rate has been observed.
Also, the direct observation of a bi-stable drift underlines the interpretation that a linear laser
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frequency drift can be an inherent solution to the equationsof motion, even though the feedback
loop is closed and the error signal is small. The calculated threshold values for this inherent
linear drift are consistent with our observations. Adjusting the experimental parameters, we
were able to obtain a linear frequency drift rate below 1 kHz/sec, and for these parameters
we also demonstrated a short term stability corresponding to a linewidth of 1 kHz on 10µs
timescales.

We also wish to note that we have considered different experimental parameter settings. In
general, the best phase stability performance is found for the parameters of the example in
Sec. 4.3. Together with our chosen optical power these parameters give rise to a measured hole

depth,d(meas)
hole,c , around 0.5 to 0.6 in Fig. 9. This value for the hole depth gives a large error

signal (corresponds tox = Γhole
Γh

≈ 2, which is essentially the optimum choice according to the
f -function Eq. (25) shown in Fig. 1). We have also investigated a few different positions on
the inhomogeneous profile. These measurements indicate that a transmission above 30% is a
good choice, which is also consistent with theoretical expectations. We conclude that in general
the stabilized laser performs very well with settings closeto the optimum values discussed in
Sec. 2.3.2.

Laser stabilization using a spectral hole or the inhomogeneous profile has been reported
previously for semiconductor lasers in several publications [5, 6, 4, 7, 8, 3, 9, 24]. Compared
to the results herein, our stabilized laser performs very well for short timescales, whereas much
slower drift rates have been reported on long timescales than our value of 1 kHz/sec. The
reason for the latter is the fact that we did not incorporate the inhomogeneous profile as a fixed
frequency reference, but this is straightforward to do, seee.g. [4]. To improve stability, we
believe that the threshold condition for inherent laser drift is also important in cases where the
inhomogeneous profile is included as a fixed frequency reference.

5. Conclusion

By introducing an analytical theory, we have contributed tothe understanding of laser stabiliza-
tion using spectral holes to an extent that we hope will enable other scientists to further improve
existing technology. In particular, we calculated a transfer function describing the atomic re-
sponse to errors in the laser frequency, and we have identified a solution to the equations of
motion with an inherent linear frequency drift of the stabilized laser. We have provided experi-
mental support for the part of the theory concerning the laser drift, and our general experience
tell us that the optimum parameters suggested by theory alsogives the best performance in
practice.

Acknowledgments

We are grateful to Mike Jefferson and Pete Sellin for sharingtheir detailed knowledge on laser
stabilization. We also wish to thank Krishna Rupavatharam for introducing the coherent read-
out technique. This work was supported by the European Commission through the ESQUIRE
project and the integrated project QAP under the IST directorate, by the Knut and Alice Wal-
lenberg Foundation, and the Swedish Research Council. B. Julsgaard is partly supported by the
Carlsberg Foundation.

#83390 - $15.00 USD Received 25 May 2007; revised 17 Aug 2007; accepted 19 Aug 2007; published 24 Aug 2007

(C) 2007 OSA 3 September 2007 / Vol. 15,  No. 18 / OPTICS EXPRESS  11465


