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Abstract: 
 

Frequency conversion of lasers is a useful technique to reach a wide range of 
wavelengths, for example in the UV-region. The majority of ultrafast lasers 
operate in the infrared region, but by using frequency upconversion they can 
be made to deliver short UV pulses. 
 
In this Master Thesis frequency conversion of a Ti:Sapphire chirped pulse 
amplified laser is performed. The third harmonic is generated using two 
methods. The first is to use the nonlinear properties of air by tightly 
focusing the beam. The second is to use nonlinear crystals together with a 
birefringent group velocity compensation plate. 
A permanent setup is built and installed at MaxLab beamline D611 to be 
used in conjunction with a UV and X-ray sensitive streak camera in Time 
Resolved X-ray Diffraction (TXRD) experiments. 
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1 Introduction 
 
The majority of ultrafast lasers operate in the infrared region. Ti:sapphire 
lasers for instance operate around 800 nm. With the use of mode-locking 
and chirped pulse amplification they can deliver very short pulses with 
extreme peak powers. 
At MaxLab beamline D611 such a laser is used to perform time resolved 
pump-probe experiments where a sample is excited by the laser and then 
probed with x-rays. The experimental setup is described in detail in 
reference [1]. 
 
The main application is to make the pump laser beam visible to the X-ray 
detection system. The x-rays are detected by an ultrafast streak camera. 
When averaging the images from a number of shots, the synchronization 
between the laser and the camera has to be very precise or else the time 
resolution will suffer. In reality there will always be some jitter between the 
two. However if the camera can see the laser directly, the synchronization 
will not be so critical since every single-shot image will have a spot showing 
at which time the laser pulse arrived. 
 
Another application for frequency doubling and tripling is that it can be 
used to excite more sample materials. With just the wavelength region 
around 800 nm available, only sample materials which absorb in that 
particular region can be excited. 
If the laser is efficiently frequency doubled or tripled, it can be used to excite 
samples at shorter wavelengths. This opens up the opportunity to study for 
instance wide band gap semiconductors or insulators. 
 
The goal of this Master Thesis was to build a compact and easy to use 
frequency tripler with good conversion efficiency. 
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2 Nonlinear optics 
 
Nonlinear effects are always present when light propagates through all kinds 
of materials. Normally the electric fields are far too weak to make the effects 
noticeable. But if the field strength is high enough the nonlinear response of 
some materials can be very large. Some engineered crystals, like Potassium 
Dihydrogen Phosphate and Beta Barium Borate, have both strong 
nonlinearity and high damage threshold. Their full names are rarely used; 
instead they are referred to as KDP and BBO. 
 
When exposed to an electric field the material is polarized. This polarization 
of the material can be expanded into a Taylor series.  
 

K+++= )()()()( 3)3(2)2()1( tEtEtEtP χχχ  (2.1) 
 
The first term is the normal linear response of the material. But with higher 
field strengths the other terms will also be large enough to make a 
contribution. Of these the second order term will usually be dominant.  
 
The simplest possible nonlinear process is second harmonic generation, 
often abbreviated SHG. Here photons with frequency ω are merged two and 
two to produce new photons with frequency 2ω. This is actually just a 
special case of sum frequency generation, where photons of frequency ω1 
and ω2 are merged into new photons with frequency ω3. Sum frequency 
generation is the product of quadratic nonlinearities in the material. To be 
exact it comes from the second order term in the Taylor expansion of the 
nonlinear polarization. In order for this process to be efficient the phase 
matching condition has to be fulfilled.  
 

321 kkk =+  (2.2) 
 
So the sum of the wave vectors must be conserved. This is the same as 
saying that the momentum has to be conserved. The vector notation can be 
removed since all the processes described here are collinear, meaning that all 
the wave vectors are parallel. For the special case of second harmonic 
generation this can be rewritten and simplified. Here the pump beam has 
index 1 and the harmonic 2. 
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So for second harmonic generation the refractive index has to be the same 
for the fundamental and the harmonic. Normally this is not the case, since 
the refractive index almost always increases with decreasing wavelength. The 
solution is to use a birefringent material like BBO or KDP. These have 
different refractive indices depending on the polarization of the incident 
light. The refractive index in a polarization direction perpendicular to the 
optical axis of the crystal is fixed at no which is not angle dependant. This is 
called the ordinary wave. But light that travels though with the other 
polarization is called the extraordinary wave. In this direction the refractive 
index is dependant on the crystal cutting angle and is determined by the 
index ellipsoid. 
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Then by selecting the correct cutting angle of the crystal, the phase matching 
condition can be conserved.  This is known as type 1 phase matching. The 
laser used in this project has a center wavelength of 780 nm. So the 
wavelength of the second harmonic will be 390 nm. The following curve 
shows the different refractive indices for the two wavelengths at different 
cutting angles.  
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Figure 2.1 
 
 
The two curves intersect at 30 degrees. So this it the proper cutting angle for 
this application. 
 
Third harmonic generation, or THG, is then simply sum frequency 
generation with ω1= ω, ω2= 2ω and ω3= 3ω. Again using type 1 phase 
matching, meaning that both the pump beams have ordinary polarization, 
and the generated harmonic has extraordinary polarization. The phase 
matching condition (2.2) then reduces to: 
 

321 32 nnn =+  (2.5) 
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Figure 2.2 
 
 
The curves here intersect at 45 degrees giving the correct cutting angle for 
the crystal. 
 
So far the pump beams have had ordinary polarization and the generated 
harmonic extraordinary. This is referred to as type 1 phase matching. But 
there is another possibility, which is to let one of the pump beams have 
extraordinary polarization. This is known as type 2 phase matching. If this is 
used for second harmonic generation the phase matching condition 
becomes: 
 

321 2nnn =+  (2.6) 
 
Here n1 and n2 are the refractive indices for the fundamental in the ordinary 
and the extraordinary polarization, and n3 the refractive index for the second 
harmonic in the extraordinary polarization. 
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Figure 2.3 
 
 
The curves intersect at about 43 degrees, which means that it should be 
possible to use a THG-crystal if it is mounted a bit tilted. 
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3 Different approaches 
 
3.1 SHG + sum frequency 
 
The most widely used method for third harmonic generation is to use a two 
step process where the first step is to generate the second harmonic, and 
then generate the third harmonic by sum-frequency generation of the 
fundamental and the second harmonic. 
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Figure 3.1: Third harmonic generation. 
 
 
The first step is then to generate the second harmonic. This can for instance 
be done by using a BBO or KDP crystal cut for type 1 phase matching at 
the appropriate wavelength.  
 
When using type 1 phase matching for the THG, the polarization of the 
fundamental and second harmonic should be in the same direction. After 
SHG, the fundamental and second harmonic are polarized perpendicular to 
each other. This can anyway be used to generate the third harmonic in a 
setup like this: 
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Figure 3.2: Simple setup for THG. 
 
 
This setup works very well and is easy to align. The previous setup in the lab 
used this layout. However the efficiency is limited by several things. The 
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most obvious one is that the polarizations are wrong. And the group 
velocity difference makes the temporal overlap in the THG crystal less than 
perfect. This is covered in section 3.1.2. 
 
It is also possible to use type 2 phase matching for the second harmonic 
generation. The setup would then look like this. 
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Figure 3.3: Simple THG with type 2 SHG. 
 
 
Due to the higher group velocity for the extraordinary part of the 
fundamental, the two polarization directions of the fundamental will 
separate rather quickly. And since the second harmonic will only be 
generated in the overlap between the two, that will limit the conversion 
efficiency. If a thin crystal is used the ordinary part of the fundamental and 
the second harmonic will still overlap when they exit the crystal, but the 
extraordinary part of the fundamental will be ahead. Thus in the next crystal 
the third harmonic is generated only by the overlap of the ordinary part of 
the fundamental, and the second harmonic. So only half of the pump beam 
energy is part of the third harmonic generation which of course will limit the 
conversion efficiency. 
 
Nonlinear crystals are often mounted in protective housings, meaning that 
the crystal is mounted between thin glass windows. These windows then add 
a time delay for the second harmonic and thus the fundamental and second 
harmonic won’t overlap in the THG crystal. So for this setup to work both 
the crystals have to be openly mounted. These very thin crystals may also be 
grown on a glass substrate. This however is not a problem if the crystals are 
turned so that the nonlinear materials face each other. Then there will be no 
glass between the actual crystals. 
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3.1.1 Correcting the polarization 
 
The setup in figure 3.2 can be improved by inserting a half wave plate 
between the two nonlinear crystals. The plate should be chosen so that it is a 
half wave plate for the fundamental. This can then be used to rotate the 
polarization of the fundamental to any desired angle. The wavelength of the 
second harmonic is obviously one half of that of the fundamental. This 
means that if the plate is a half wave plate for the fundamental, it will be a 
full wave plate for the second harmonic. So while the polarization of the 
fundamental is changed, the second harmonic is unaffected since full wave 
plates do not affect the polarization. A setup could for instance look like 
this: 
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Figure 3.4: THG with half wave plate to correct the polarization. 
 
 
This setup will work fine for long pulse durations. However, when using 
pulses in the femtosecond-range this setup will not work at all. This is 
because the group velocity difference between the fundamental and second 
harmonic in the half wave plate introduces a delay between the two that is 
much longer than the pulse duration itself. 
 
 
3.1.2 The group velocity dispersion 
 
The general formula for group velocity is: 
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Here vp is the phase velocity, given by: 
 

n
cvp =  (3.2) 

  
It is then trivial to calculate the time needed for a pulse to pass a material of 
length L: 
 

gv
Lt =  (3.3) 

 
Half wave plate 
The largest contribution to the total delay comes from the half wave plate. 
This is commonly made of quartz. There are no reliable data for quartz since 
the exact composition of the material varies. However it is very similar to 
fused silica, so instead the data for fused silica is used as an approximation. 
The refractive index as a function of wavelength is then approximately given 
by: 
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The coefficients can be found in the product catalogs from most 
manufacturers. For simplicity they are included in Appendix B.  
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Figure 3.5 
 
 
The fairly weak birefringence of the material is not taken into account.  
The differential needed in eq. (1.1) is then given by: 
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SHG and THG crystals 
Two materials frequently used for second and third harmonic generation are 
BBO and KDP. Both these crystals have quite large differences in group 
velocity between the fundamental and the second harmonic. So the 
generated harmonic lags behind the pump pulses as the pulses propagate 
through the crystal. 
 
So for SHG the harmonic lags behind the fundamental. Since more 
harmonic is generated by the fundamental all the way through the crystal, 
the harmonic will be broadened to longer pulse duration than the 
fundamental. The solution is to use a very thin crystal so that the broadening 
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is small. Typical values are about 0.1 mm. Even if the peak power of the 
femtosecond lased is very high, the short crystal makes it difficult to 
efficiently generate harmonics. It is therefore vital to use nonlinear materials 
with large nonlinear coefficients. Here BBO has a large advantage over 
KDP. But the difference in group velocities is also larger in BBO meaning 
that a KDP crystal can be a made a little thicker. However the nonlinear 
coefficients for BBO are almost 6 times higher than for KDP, so BBO is 
still the better choice. 
 
Then when generating the third harmonic this is done by mixing the 
fundamental and second harmonic. This process is possible to phase match 
in both in KDP and BBO, but due to the low nonlinear coefficients of 
KDP, only BBO is used. Since the fundamental and second harmonic 
propagate at different velocities they will only overlap over a limited 
distance. If they get completely separated they cannot interact and the 
harmonic generation will stop. Because of this there is no point in using a 
thick crystal for THG.  
The third harmonic also has a group velocity which is a lot slower than both 
the fundamental and second harmonic. So the third harmonic will have even 
longer pulse duration than the second harmonic.  
 
The refractive index for the two materials can be described by the Sellmeier 
relations that give a good approximation of the refractive index as a function 
of wavelength. 
 
 
The group velocity for KDP and BBO is given by eq. (1.2). The difference 
from fused silica lies in the formula for the refractive index. First, the 
ordinary and extraordinary refractive index is given by the Sellmeier relation. 
The coefficients can easily be found in most crystal manufacturer’s 
datasheets, and are included in Appendix B.  
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Here the refractive indices are drawn as a function of wavelength. 
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Figure 3.6 
 
 
The indices o and e indicates ordinary or extraordinary. 
The differentials of these two will be needed: 
 

( ) ( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
+

−
−= 2222

1

o

j

j

jj

j

j

E

D

C

CB
nd

dn

λ

λ

λ

λ
λ

 (3.7) 

 
Here the index j is to be replaced by o or e.  
 
 
BBO: 
 
BBO differs from KDP in the form of the Sellmeier relation. The refractive 
indexes are given by: 
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Refractive indices drawn as a function of wavelength: 
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Figure 3.7 
 
 
With derivatives: 
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Both materials are highly birefringent. Thus the transmitted light is divided 
into two parts called the ordinary and the extraordinary wave. The ordinary 
wave behaves like it would in isotropic media. The extraordinary wave 
however will experience a refractive index that depends on the angle 
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between the surface normal and the optical axis of the crystal. This is given 
by the formula for the index ellipsoid: 
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When rewritten the refractive index becomes: 
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The differential is then given by: 
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The group velocities for the two waves thus become: 
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3.1.3 Correcting the time delay 
3.1.3a Delay line 
The time delay between the pulses can be corrected with a delay line 
consisting of beamsplitters and mirrors.  
 
 
 

 17



� �

�
�

� �

�

� �

 
Figure 3.7: A traditional delay line consisting of beamsplitters and mirrors. 
 
 
This gives the possibility to adjust the path length difference between the 
fundamental and second harmonic. The main drawback of this design is that 
the mirrors and beam splitters introduce severe losses. It is also very difficult 
to align, and once aligned very sensitive. For example, the pulses from a 
35 fs laser are about 10 µm long. So for the time delay to be reasonably easy 
to align, the precision of the translation stage will have to be better than this. 
  
 
3.1.3b Group velocity compensation plate 
An attractive alternative to the delay line is to use a tunable group velocity 
compensation plate to correct the time delay. This is a birefringent crystal 
which is cut with the optical axis oriented in a suitable angle. Two suitable 
materials are BBO and calcite. Both materials have lower refractive index for 
the extraordinary wave and are thus called negative uniaxial.   
When using type 1 phase matching the fundamental and second harmonic 
are polarized perpendicular to each other. If the compensation plate is 
oriented so that the optical axis is perpendicular to the polarization of the 
fundamental, the second harmonic will become the extraordinary wave and 
thus experience a lower refractive index than the fundamental. Then by 
turning the compensation plate the time delay can be adjusted. The 
compensation plate has to sit in front of the half wave plate, since it only 
works because of the different polarizations. Here is a schematic of how this 
will look. 
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Figure 3.8: THG with half wave plate and group velocity compensation. 
 
 
The behavior of the extraordinary wave is fairly complex due to the walk 
off. In negative crystals the extraordinary wave bends way from the optical 
axis. This is a simple example with normal incidence. 
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Figure 3.9: Unpolarized beam hits a birefringent material and is divided into two 
parts. 
 
 
Usually the energy transport is directed along the k-vector, which means that 
a beam propagates along its k-vector. In birefringent materials the energy in 
the extraordinary wave is shifted sideways by the birefringence, so that the 
beam no longer propagates along the k-vector. The k-vector is still however 
perpendicular to the wave fronts. This is illustrated below. 
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Figure 3.10: The wave fronts and the k-vector for the e-wave. 
 
 
In this simple case of normal incidence the time delay can be calculated just 
by using the index ellipsoid. However when the incidence of the light is not 
normal, a more complex approach is needed. One method is to solve 
Maxwell’s equations. This is done in reference [2]. and the result is discussed 
below. 
 
Depending on the angle of incidence and the orientation of the optical axis, 
the extraordinary wave can propagate in a direction closer to, or further 
away from the surface normal than the ordinary wave. When the direction is 
closer to the normal the path through the crystal for the extraordinary wave 
becomes shorter. This is one part of the behavior when the compensation 
plate is turned. The other effect is that the refractive index for the 
extraordinary wave changes with the angle of incidence.  
 
As illustrated below, θ is the angle between the surface normal and the 
optical axis, and φ is the angle of incidence, called tuning angle. 
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Figure 3.11: Illustration showing how the angles are defined. 
 
 
The solution for the extraordinary wave direction given in reference [2] is 
more complex than needed. For this application it can be simplified 
considerably. It is assumed that the crystals are surrounded by air, and that 
nair = 1. 
The direction of propagation for the extraordinary wave is then given by: 
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And the direction of the extraordinary wave’s k-vector is given by: 
 

eQ
sintan ϕα =k  (3.15) 

 
It is worth to notice that if ∆ε is set to zero, which would mean that the 
material is not birefringent, the expression (3.14) collapses into (3.15).  
 
The constants here are defined: 
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Then the direction of propagation is calculated for the ordinary wave: 
 

on
ϕβ sinsin =  (3.19) 

 
In figure 3.10 the wave propagation in a birefringent material is shown. The 
index ellipsoid gives the index of refraction for the direction of the k-vector. 
The beam however generally propagates in a slightly different direction. But 
it is the distance between the wave fronts along the k-vector that determines 
the propagation velocity. So in order to determine the propagation velocity it 
is the k-vector that should be considered. 
 
By using eq (1.10) with the angles defined above the index of refraction for 
the k-vector thus becomes: 
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And the differential: 
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If we now take a look at the beam paths through the crystal, we can derive 
expressions for the different path lengths from the geometry. 
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Figure 3.12: Illustration of the different paths through the crystal. 
 
 
The two waves separate at point A. And then from the cross section B they 
propagate parallel to each other again with a small offset. In the real setup 
this offset is much smaller than the beam diameter and which means it will 
not affect the result. To get to cross section B the ordinary wave passes 
through the crystal, AC, and then through air, CB.  
The e-wave only passes through the crystal, AB.  
Starting with the o-wave. The distance AC is given by: 
 

βcos
LAC =  (3.22) 

 
Then the distance CB is: 
 

( ) ϕβα sintantan −= LCB  (3.23) 
 
Then for the e-wave, the distance AB is not the true path length since the k-
vector is in another direction. The effective distance is instead given by the 
projection of AB onto the k-vector. 
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Then the group velocities are calculated using eq (1.2) 
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The time delay can then be calculated: 
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With this definition of the time delay a positive value means that the 
extraordinary wave passes faster. If the time delay as a function of tuning 
angle is drawn in a diagram the result can look like this. The curve is drawn 
by the MatLab program found in Appendix A. 
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Figure 3.13: Example curve for a BBO compensation plate. 
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Here BBO is used, but the compensation plate may be made of any strongly 
birefringent material. One possible choice is Calcite. It has the same 
formulation of the Sellmeier relation as BBO, only with other values for the 
coefficients. Therefore the exact same formulas can be used. Compared to 
BBO, Calcite has larger birefringence, which means that a Calcite 
compensation plate will have a larger tuning range. But the damage 
threshold is lower than for BBO, and the surface quality can not be made as 
good. Here is an example curve for a Calcite compensation plate. 
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Figure 3.14: Example curve for a Calcite compensation plate. 
 
 
Because of the larger birefringence the 2 mm Calcite compensation plate 
gives roughly the same tuning range as a 4 mm BBO. So when the damage 
threshold and surface smoothness are not a concern Calcite might be an 
interesting alternative. 
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3.2 Single crystal THG 
 
The third harmonic can also be produced by a one step process in a single 
crystal. That means that only one optical component is required, which 
makes for a very simple setup. 
The third harmonic generation is then dependant on the third order term in 
the nonlinear polarization. The process is possible in several materials, for 
instance both BBO and KDP can be used. Unfortunately the third order 
susceptibility is very weak The crystal therefore has to be thick, and due to 
the group velocity difference the generated third harmonic pulses then 
become much longer than the fundamental. 
This approach was never tested in the lab because no suitable crystal was 
available. 
 
 
3.3 Focusing in air 
 
Focusing in air is the easiest way to produce the third harmonic with high 
peak power lasers. The setup is simple and inexpensive since only standard 
optics is needed. Gases generally have very low nonlinear susceptibility, 
which means that the intensity has to be very high in order for the nonlinear 
effects to be noticeable. Because of the centrosymmetric nature of gases all 
the even order terms in the expansion of the nonlinear polarization is zero. 
Therefore only the odd harmonics are produced. And of these the third 
harmonic normally is dominant. By focusing the beam for instance with a 
lens the peak intensity in the beam waist can get extremely high. The peak 
intensity obviously depends on the diameter of the beam waist, which for a 
beam of diameter D and a lens of focal length f is given by: 
 

D
fw

π
λ42 0 =  (3.27) 

 
The peak intensity thus gets higher with a shorter focal length. But at the 
same time the focal region with high intensity becomes shorter. And if the 
intensity becomes too high there will be white light generation, which means 
that a broad continuum of wavelengths is produced instead.  
 
Phase matching is not a problem since the refractive index of air remains 
close to 1 for the different wavelengths. That also means that the group 
velocity for the fundamental and the third harmonic are almost the same, so 
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that the harmonic will not be broadened by group velocity mismatch. The 
weak nonlinear properties of air combined with the short interaction length 
means that the conversion efficiency is low.  
 
If the beam is focused into a capillary tube the interaction length can be 
greatly increased. The tube will then keep the beam focused for a long 
distance. But then the phase matching can be lost. This is solved by putting 
the tube into a vacuum chamber in which the pressure can be varied. The 
pressure is then adjusted until phase matching is achieved. The conversion 
efficiency can also be increased by using other gases such as argon. The 
advantages of this method are that very short pulses can be produced with 
good conversion efficiency, but the needed setup is large and fairly complex 
since a vacuum chamber is needed. For details see [4]. 
 
 
 
4 Experimental work 
 
The experiments were done in the laser hutch at MaxLab beamline D611. 
The laser consists of a Ti:sapphire oscillator and a Ti:sapphire chirped pulse 
amplifier. The oscillator is synchronized to the MaxII bunch clock to allow 
pump-probe experiments to be done with precision timing. 
The amplifier has a high repetition rate which is currently set to 5 kHz.  
The standard output power when the amplifier is perfectly aligned is about 
5 W which then translates to 1mJ per pulse. The optimal pulse duration is 
~30 fs. During the work on this Master Thesis the output power was around 
3.6 W, meaning that the alignment was not perfect. It is unknown if and 
how the pulse duration was affected. 
The laser output is divided into several beams, and the maximum power 
available in the beam used was around 2 W. 
 
 
4.1 Group velocity compensation plate. 
 
To test the effectiveness of the group velocity compensation plate a setup 
was built after figure 3.8. The crystals used initially were: 
 
SHG: 
KDP, θ=29.2°, 0.25 mm 
 
Group velocity compensation plate: 
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Calcite, θ=25°, 2.0 mm 
 
THG: 
BBO, θ=45°, 0.05 mm 
 
The half wave plate was made of quartz, 2 mm thick. 
A prism was used to separate the individual harmonics and the fundamental. 
The telescope consists of one positive and one negative lens, with tube 
length f1 + f2. This was put in to downsize the beam diameter to make the 
peak intensity higher. Another advantage is that smaller and thus cheaper 
crystals could be used. 
 
The third harmonic power was measured with a standard photo diode. 
Photo diodes are usually mounted in a metal housing with a glass window. 
This window will not transmit UV light, but if this protective glass is 
removed the bare diode will work very well in the UV range. The downside 
of the diode is that it is not at all calibrated, so it is unknown how linear it is, 
and what power a given diode current corresponds to. However at the low 
currents measured here it should be very linear. The current is also largely 
dependent on where the beam hits, the edges of the diode seemed to be 
more sensitive than the central region. In some measurements a piece of 
thin paper was put in front of the diode as a diffuser to reduce this problem. 
A Molectron PowerMax power meter was also used. This detector has a 
resolution of approximately 1 mW.  
 
A top view schematic of the setup: 
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Figure 4.1: Schematic view of the experimental setup. 
 
 
Here is a photograph of the setup. 
 

 
Picture 4.1: Photograph of the experimental setup. 
 
 
For the given optics the time delay between the fundamental and second 
harmonic from the half wave plate is 341 fs. The delay from the second 
harmonic crystal is 35 fs. 
It is also a good idea to pre-compensate for part of the delay between the 
fundamental and the second harmonic in the third harmonic crystal. This 
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gives the two pulses a longer distance to interact which will improve 
conversion. The delay in this case is 18 fs. 
This then gives a total delay of approximately 380 fs to be corrected. 
The compensation plate used has this time delay curve: 
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Figure 4.2 
 
 
The desired time delay of 380 fs is found at a tuning angle of almost 50 
degrees. When the setup was fully optimized the tuning angle ended up 
being slightly larger than this. This discrepancy is probably mainly because 
of the use of parameters for fused silica instead of quartz for the half wave 
plate. 
 
At this large angle of incidence the reflections from the compensation plate 
surface were quite large for the fundamental, which is s-polarized to this 
surface. This loss limited the efficiency of the third harmonic generation. 
The output power was too low to be measurable by the PowerMax power 
meter. 
 
To improve the setup the Calcite compensation plate was replaced by a 
borrowed one made of BBO with thickness 6mm, and θ=65°. 
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Figure 4.3 
 
 
This crystal has a tuning curve with is better suited to the setup. The desired 
delay of about 380 fs is reached almost at normal incidence, and with a fairly 
linear behavior around that angle. 
And the second harmonic generation crystal was changed to one made of 
BBO, with thickness 0.25 mm, and θ=29.2°. 
These changes boosted the third harmonic power considerably.  
 
A few measurement series was done to investigate the third harmonic power 
when the pump power, the second harmonic power and the tuning angle 
was varied.  
 
 
4.2 Air 
 
The third harmonic generation in air was not expected to give very efficient 
conversion. But the simple and inexpensive setup still makes it an interesting 
alternative. Therefore a setup was built to test the method. 
In these experiments the laser was simply focused in air with a BK7 plano-
convex lens. Then a fused silica lens was used to recollimate the beam 
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before harmonic separation. Here a BK7 glass lens would not have worked 
since it is not transparent to the third harmonic. The harmonic separator 
consisted of the same prism as before. The third harmonic was then 
measured with the photo diode. Unfortunately the power was too low to be 
reliably measured by the Moltectron PowerMax power meter. 
The focusing lens that gave the best result was one with f=150 mm. The 
short focal length made it troublesome to recollimate the light as only one 
fused silica lens was available, with f=300 mm. This meant that it was not 
possible to make the beam parallel again as it would then have too large a 
diameter to pass the harmonic separating prism. The solution was to instead 
make the beam convergent, so that it would pass the prism unhindered. One 
advantage of this was that the beam diameter on the photo diode was small 
enough so that the entire beam could hit the sensitive area. It would have 
been interesting to try focusing lenses with even shorter focal lengths, but 
then it would not have been possible to collect all the generated harmonic 
with the one available fused silica lens. 
 
The third harmonic power was then measured with the photo diode at 
various input powers. 
 
 
 
5 Results from the experiments 
 
5.1 Group velocity compensation plate.  
 
The measurements were done mainly to determine how the conversion 
efficiency depends on different parameters. The parameters that can be 
easily changed are IR power, second harmonic power and tuning angle. The 
second harmonic power can be varied by turning the SHG crystal slightly 
out of alignment, meaning that the phase matching will not be perfectly 
fulfilled. 
 
First, the third harmonic power as a function of tuning angle 
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Figure 5.1: The third harmonic diode current as a function of tuning angle. 
 
 
There is a clear peak at approximately 6 degrees, but it is surrounded by a 
fairly wide region where the setup produces some third harmonic. Because 
of this the time delay was very easy to align. 
 
Then, the third harmonic power as a function of IR power. Both the third 
and second harmonic power was measured while the input IR power was 
varied. The second harmonic power is lower than it should be since it was 
measured after some of it had been converted to third harmonic. 
Both the second and third harmonic powers show a clear quadratic 
behavior, which was verified by plotting them in a log-log diagram. 
The maximum third harmonic power was around 8 mW. 
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Figure 5.2: Second and third harmonic as functions of IR power. 
 
 
In the last measurement series the input IR power was held constant, and 
the SHG-crystal was turned out of alignment to adjust the second harmonic 
power. Also here the second harmonic power was measured after third 
harmonic generation, so the value is not entirely true. But the second 
harmonic power was so much greater than the third harmonic, that the error 
should be minor. 
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Figure 5.3: Third harmonic diode current measured as a function of SHG 
conversion efficiency. 
 
 
In the last figure it can be seen that the third harmonic power does not 
depend very strongly on the second harmonic generation efficiency. 
 
 
5.2 Air 
 
The third harmonic power from this experiment could not be measured 
with the PowerMax meter since the power was below the 1 mW resolution 
limit of the detector. So only the photo diode was used. 
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Figure 5.4: Third harmonic diode current as a function of IR power. 
 
 
Here it is evident that this method is very inefficient. A measurable signal 
was not produced until the input power reached ~1 W. Surprisingly the 
third harmonic power seems to depend linearly on the input power. But the 
uncertainties in the measurements were quite large, especially at the lower 
input powers. 
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6 The permanent setup 
 
From the experiments it was decided to build the permanent setup using the 
group velocity compensation plate. The available space in the lab was very 
limited so a more compact version had to be built. This was accomplished 
by using compact optical mounts on a small breadboard. 
Here is a photograph of the finished tripler. 
 

 
Picture 6.1: Photograph of the finished tripler. 
 
 
When this is being written the new crystals for the permanent setup have 
not yet arrived. The final configuration will be: 
 
SHG: 
BBO, θ=29.2°, 0.2 mm 
 
Group velocity compensation plate: 
BBO, θ=70°, 4.0 mm 
 
THG: 
BBO, θ=45°, 0.1 mm 
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The tuning curve for this compensation plate is shown as an example in 
figure 3.1.3. 
 
 
7 Summary 
 
The goal of this Master Thesis has been to construct a compact and efficient 
frequency tripler for a Ti:sapphire laser. Two possible solutions have been 
investigated. These were THG in air, and a nonlinear crystal-based setup 
using a group velocity compensation plate. The conversion in air did not 
provide enough conversion efficiency. But the setup using the compensation 
plate worked very well and provided good conversion efficiency, while still 
being easy to align.. Therefore the final setup has been built using the 
compensation plate. This is now installed at MaxLab beamline D611. 
A MatLab program has been written to show the time delay as a function of 
tuning angle for a given crystal when used as a group velocity compensation 
plate. The program can be found in Appendix A. 
 
This report and the MatLab program are also available on the internet: 
http://www-atom.fysik.lth.se/txrd/henrikexjobb.pdf 
http://www-atom.fysik.lth.se/txrd/henrikexjobbprog.m 
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Appendix A: comp_plate.m 
 
This source code is also available on the internet: 
http://www-atom.fysik.lth.se/txrd/henrikexjobbprog.m 
 
 
%Fundamental wavelength 
lambda1=780e-9; 
 
%Crystal thickness 
L=4e-3; 
 
%Crystal cut-angle 
thetadeg=70; 
 
%Crystal material, valid are 'BBO' and 'Calcite' 
ctype='BBO'; 
 
 
lambda2=lambda1/2; 
c=3e8; 
theta=thetadeg*pi/180; 
 
%Sellmeier 
if strcmp(ctype, 'BBO') 
    %Coefficients for BBO 
    Ao=2.7405; 
    Bo=0.0184e-12; 
    Co=0.0179e-12; 
    Do=0.0155e12; 
    Ae=2.3730; 
    Be=0.0128e-12; 
    Ce=0.0156e-12; 
    De=0.0044e12; 
end 
 
if strcmp(ctype, 'Calcite') 
    %Coefficients for Calcite 
    Ao=2.69705; 
    Bo=0.0192064e-12; 
    Co=0.01820e-12; 
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    Do=0.0151624e12; 
    Ae=2.18438; 
    Be=0.0087309e-12; 
    Ce=0.01018e-12; 
    De=0.0024411e12; 
end 
 
 
% 2:nd harmonic is the extraordinary wave 
epso=Ao + Bo/(lambda2^2-Co) - Do*lambda2^2; 
n2o=sqrt(epso); 
epse=Ae + Be/(lambda2^2-Ce) - De*lambda2^2; 
n2e=sqrt(epse); 
 
dn2odlambda2 = (1/n2o) * (-Bo*lambda2/(lambda2^2-
Co)^2 - Do*lambda2); 
dn2edlambda2 = (1/n2e) * (-Be*lambda2/(lambda2^2-
Ce)^2 - De*lambda2); 
 
 
% fundamental is the ordinary wave 
eps1=Ao + Bo/(lambda1^2-Co) - Do*lambda1^2;  
n1=sqrt(eps1); 
dn1dlambda1 = (1/n1) * (-Bo*lambda1/(lambda1^2-
Co)^2 - Do*lambda1); 
 
deltaeps = epse-epso; 
 
 
 
%vector of tuning angles 
fi=linspace(-pi/2,pi/2,600);  
 
 
 
D=sqrt(epso*epse*(epso+deltaeps.*(cos(theta).^2)-
sin(fi).^2));  
 
Q2=epso-sin(fi).^2; 
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Qe=(D-0.5*deltaeps*sin(2*theta).*sin(fi)) ./ 
(epso+deltaeps*cos(theta).^2); 
 
AxAz= (Qe.*sin(theta).*sin(fi)-(epso-
Qe.^2).*cos(theta)) ./ (Q2.*sin(theta)-
Qe.*sin(fi).*cos(theta)); 
 
%Extraordinary wave propagation angle 
alfa=atan(AxAz); 
 
%Extraordinary wave k-vector angle 
alfa_k = atan(sin(fi)./ Qe); 
 
%Ordinary wave propagation angle 
beta=asin(sin(fi)/n1); 
 
 
% Refractive index in the direction of the k-
vector 
n_alfa_k=1./sqrt(cos(alfa_k+theta).^2./epso+sin(a
lfa_k+theta).^2/epse); 
dn_alfa_k = n_alfa_k.^3 .* 
(dn2odlambda2.*(cos(alfa_k+theta).^2 ./ n2o.^3) + 
dn2edlambda2.*(sin(alfa_k+theta).^2 ./ n2e.^3)); 
 
 
%Path for the ordinary wave 
L1_kristall = L./cos(beta); 
L1_luft = L*(tan(alfa)-tan(beta)).*sin(fi); 
 
 
 
%Path for extraordinary wave projected on the k-
vector 
L2= L./cos(alfa).* cos(alfa-alfa_k); 
 
 
%Group velocities for fundamental and harmonic 
Vg1=c/n1 * (1 + lambda1/n1 .* dn1dlambda1); 
Vg2=c./n_alfa_k .* (1 + lambda2./n_alfa_k .* 
dn_alfa_k); 
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%Timedelay 
tdelay=( L1_kristall./Vg1 + L1_luft./c - 
L2./Vg2)*1e15; 
 
figure(20) 
plot(180/pi*fi,tdelay) 
xlabel('Angle of incidence / \circ') 
ylabel('\Deltat / fs') 
title(['Time delay for ' num2str(L*1000) 'mm ' 
ctype ', \theta = ' num2str(thetadeg) ' \circ']) 
grid 
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Appendix B: Coefficients for the materials 
 
All the coefficients given here are valid for wavelengths given in µm. 
 
BBO 
 no ne 
A 2.7405 2.3730 
B 0.0184 0.0128 
C 0.0179 0.0156 
D 0.0155 0.0044 
 
Calcite 
 no ne 
A 2.7405 2.3730 
B 0.0184 0.0128 
C 0.0179 0.0156 
D 0.0155 0.0044 
 
 
KDP 
 no ne 
A 2.259276 2.132668 
B 13.00522 2.2470 
C 400 400 
D 0.01008956 0.008637494 
E 0.012942625 0.012281043 
 
Fused silica 
A0 2.1026513 
A1 -8.5943075E-3 
A2 9.8576238E-3 
A3 -2.4538022E-4 
A4 4.4589827E-5 
A5 -1.9692608E-6 
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