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Abstract

Spectroscopic analysis of scattering media is difficult because the effective path
length of the light is non-trivial to predict when photons are scattered many times.
The main area of research for such conditions is biological tissues, which scatter
light because of variations of the refractive index on the cellular level. In order to
analyze tissues to diagnose diseases, or predict doses during, for example, laser
treatment, it is necessary to be able to model light propagation in the tissue, as well
as quantify the scattering and absorption properties. Problems of this type occur in
many other areas as well, for example in material science, and atmospheric and
ocean-water optics.

This thesis deals with light propagation models in scattering media, primarily based
on radiative transport theory. Special attention has been directed to the Monte
Carlo model to solve the Boltzmann radiative transport equation, and to develop
faster and more efficient computer methods. A Monte Carlo model was applied to
solve a spectroscopic problem in monitoring the emission of gases in smoke
plumes. An important theme in the thesis deals with measurement of the optical
properties, with emphasis on biomedical applications. Several different
measurement techniques based on a wide range of instruments have been
developed or improved upon, and the strengths and weaknesses of these methods
have been evaluated. 

The measurement techniques have been applied to analyze the scattering and
absorption properties of some biological tissues. Much devotion has been directed
to optical characterization of blood, which is an important tissue from a health-care
perspective. At present, the complex scattering properties of blood prevents
detailed optical analysis of whole blood. The work presented here is also aimed at
acquiring a better understanding of the fundamental scattering processes at a
cellular level.



8

List of papers

This thesis is based on the following papers:

Paper I. J. Swartling, A. Pifferi, A. M. K. Enejder, and S. Andersson-
Engels, “Accelerated Monte Carlo model to simulate fluorescence
spectra from layered tissues,” Journal of the Optical Society of
America A, in press (2002).

Paper II. J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of
spatially and temporally resolved diffuse reflectance measurement
systems for determination of biomedical optical properties,”
submitted to Applied Optics (2002).

Paper III. J. Swartling, A. Pifferi, E. Giambattistelli, E. Chikoidze, A. Torri-
celli, P. Taroni, M. Andersson, A. Nilsson, and S. Andersson-
Engels, “Measurements of absorption and scattering properties
using time-resolved diffuse spectroscopy – Instrument
characterization and impact of heterogeneity in breast tissue,”
manuscript (2002).

Paper IV. J. Swartling, S. Pålsson, P. Platonov, S. B. Olsson, and S. Anders-
son-Engels, “Changes in tissue optical properties due to radio-
frequency ablation of myocardium,” submitted to Medical &
Biological Engineering & Computing (2002).

Paper V. A. M. K. Enejder, J. Swartling, P. Aruna, and S. Andersson-
Engels, “Influence of cell shape and aggregate formation on the
optical properties of flowing whole blood,” Applied Optics,
returned after minor revisions (2002).

Paper VI. J. Swartling, A. M. K. Enejder, P. Aruna, and S. Andersson-
Engels, “Polarization-dependent scattering properties of flowing
whole blood,” manuscript for Applied Optics (2002).

Paper VII. P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano,
D. Condarelli, G. Cecchi, and L. Pantani, “Optical monitoring of
volanic sulphur dioxide emissions – Comparison between four
different remote-sensing spectroscopic techniques,” Optics and
Lasers in Engineering 37, 267-284 (2002).



9

Additional material has been presented in:

1. S. Andersson-Engels, A. M. K. Enejder, J. Swartling, and A. Pifferi,
"Accelerated Monte Carlo models to simulate fluorescence of layered
tissue," Photon Migration, Diffuse Spectroscopy, and Optical Coherence
Tomography: Imaging and Functional Assessment, S. Andersson-Engels,
J.G. Fujimoto, Eds. Proceedings of SPIE Vol. 4160, 14-15 (2000).

2. J. Swartling, P. Aruna, A. M. K. Enejder, and S. Andersson-Engels, "Optical
properties of flowing bovine blood in vitro," Optical Techniques and
Instrumentation for the Measurement of Blood Composition, Structure and
Dynamics In vitro and In vivo. CLEO/Europe 2000, Conference Digest p.
354 (2000).

3. J. Swartling, C. af Klinteberg, J. S. Dam, and S. Andersson-Engels,
"Comparison of three systems for determination of optical properties of
tissue at 785 nm," European Conferences on Biomedical Optics (2001).

4. J. Swartling and S. Andersson-Engels, "Optical mammography - a new
method for breast cancer detection using ultra-short laser pulses," DOPS-
NYT 4, 19-21 (2001).

5. J. Swartling, S. Andersson-Engels, A. M. K. Enejder, and A. Pifferi,
"Accelerated reverse-path Monte Carlo model to simulate fluorescence in
layered tissue," in OSA Biomedical Topical Meetings, OSA Technical
Digest, 615-617 (2002).

6. J. Swartling, S. Pålsson, and S. Andersson-Engels, "Analysis of the spectral
shape of the optical properties of heart tissue in connection with myocardial
RF ablation therapy in the visible and NIR region," in OSA Biomedical
Topical Meetings, OSA Technical Digest, 607-609 (2002).

7. M. Ozolinsh, I. Lacis, R. Paeglis, A. Sternberg, S. Svanberg, S. Andersson-
Engels, and J. Swartling, "Electrooptic PLZT ceramics devices for vision
science applications," Ferroelectrics 273, 131-136 (2002).

8. M. Soto Thompson, J. Swartling, S. Andersson-Engels, S. Pålsson, X. Zhao,
“Dosimetry and fluence rate calculations for fiber-guided interstitial
photodynamic therapy: tissue phantom measurements and theoretical
modeling,” BiOS 2003, San Jose (Accepted).



10



11

1. Introduction

The concept of spectroscopic analysis of materials is of profound importance in
science and technology. In traditional spectroscopy, the presence of a substance
can be detected and quantified by means of its spectral signature – wavelength
bands in which light is absorbed (or emitted), defined by the electronic energy
levels of the atoms and molecules that constitute the substance. Measurements of
this kind are performed routinely in thousands every day, to the benefit of the
medical services, to industry and as a tool in basic research to promote the
advancement of our understanding of nature.

The conventional spectroscopic measurement requires that the material is optically
clear. A simple definition of a clear material is that the refractive index is constant
on spatial scales ranging from microscopic, in the order of the wavelength of the
light, up to macroscopic. Any spatial variation in the refractive index within this
range will scatter light in a beam into new directions. To obtain quantitative
information from spectroscopy, it is necessary to know the path-length of the light
beam through the medium. If the scattering of light is severe, the path-length no
longer represents the shortest distance from the light source to the spectrometer
through the medium, but a longer one, which is not trivial to predict. Light scatters
to some extent in all media, but in many cases the effect is so small that it may be
neglected. In an intermediate regime, the scattering may be significant, but still
small enough so that the assumption of a clear medium can be used with suitable
corrections. One of the main objectives of this thesis is to deal with the prediction
of the light path-length through media where the scattering is so strong that such
corrections are no longer valid.

There is no clear delineation where the weakly scattering regime stops and the
strongly scattering regime starts – it depends on the problem. Often, one talks
about multiple scattering. If light is regarded as photons, multiple scattering occurs
when there is a large probability that any given photon in a beam will scatter more
than once. Then it is evident that a strongly scattering medium is characterized by
two things: the probability of scattering, and the dimensions of the medium. For
example, a piece of paper has a very high probability of scattering, and scatters
light strongly even though its physical dimensions are small. On the other hand, the
probability of scattering in the atmosphere is comparably low, but taken over
several kilometers, the scattering of a light beam may still be significant. Another
objective of this thesis is to show that the same models and principles may be
applied to very small geometries, such as sheets of paper, and very large ones, such
as atmospheric measurements.

Examples of strongly scattering media that are interesting from a spectroscopic
point of view include the already mentioned paper and atmosphere, ocean water, a
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large number of solid materials around us, and most biological tissues. Since the
invention of the laser in the 1960s, and its rapid adoption by the medical
community, tissue optics has been the major field of research where strongly
scattering media have been studied. In the study of tissue optics, the third main
objective of this thesis becomes clear: the scattering of a material is not only a
nuisance in spectroscopic measurements. By analyzing the scattering properties,
important information of the material may be obtained. Thus, the scattering itself
becomes an object of analysis rather than just a parameter to be controlled.

Although research in tissue optics took off during the 1970s, it is of historical
interest to note that much of the fundamental theory was developed earlier, in other
branches of physics. As will be described in this thesis, light scattering is usually
modeled from a starting point of either of two theories: wave theory (Maxwell’s
equations) or transport theory. Much of the theory of scattering from single
particles using wave theory was developed in the early years of the 20th century.
Transport theory originates from the late 19th century, but the development was
accelerated with the need to model neutron transport in nuclear reactors. Much of
the relevant literature and computer code used for light propagation was inherited
by research in neutron transport.

In medical applications of light and lasers, the whole range of important issues of
light propagation in scattering media is demonstrated. A fundamental
categorization is the forward problem and the inverse problem. The forward
problem is, given that the optical properties of the medium are known, to predict
how light will propagate through the medium. The practical importance of this in
medical applications is mainly in therapy, for example to calculate the dose in a
laser treatment. The inverse problem is, given that light that has penetrated the
tissue is measured, to deduce what the optical properties inside the medium are.
The practical importance here is mainly in diagnostics, since both the absorption
properties – the traditional spectroscopic signal – and the scattering properties
carry information on the state of the tissue. The other important aspect of the
inverse problem is to provide input data for calculations of the forward problem.
However, as will be seen, it is not possible to solve the inverse problem without
first solving the forward problem.

This thesis concerns models of light propagation in scattering media, with the
emphasis on transport theory. Specifically, the Monte Carlo method was used
extensively in Papers I and VII. Measurement of the optical properties is another
major part of the thesis, and Papers II – VI are devoted to this problem. Most work
has been done within the framework of potential practical applications, primarily in
medicine (Papers I – VI) but also in environmental monitoring (Paper VII).



13

2. Formulation of the problems

From a very general perspective, consider Fig. 2.1. A turbid medium, delineated by
a boundary, is illuminated from the outside, or by light sources from inside, with
light Xin(r,s,t). The denotation X represents some suitable radiometric quantity, r
represents the spatial coordinates, s is a direction and t time. For simplicity the light
is assumed monochromatic. The medium has optical properties denoted p(r), for
the moment disregarding their physical origin. It is usually assumed that p(r) is
quasi-constant in time, i.e., any changes in the optical properties occur on a longer
time scale than the propagation of light. Light that either propagates through the
medium or has emerged is denoted Xprop(r,s,t). 

The Forward Problem

The first task is to find a way to predict Xprop(r,s,t), given that we know p(r).
Thus, we want to find the transfer function f: 

f[Xin(r,s,t);p(r)] → Xprop(r,s,t) (2.1)

The Inverse Problem 

The next task is to find a way to deduce p(r), given that we have measured
Xprop(r,s,t), or some part of it. This means finding the inverse to the above: 

f-1[Xin(r,s,t);Xprop(r,s,t)] → p(r) (2.2)

These problems comprise the fundamental questions posed in this thesis. In order
to solve the forward and the inverse problem for a turbid medium, a number of
physical theories, assumptions and approximations are needed. In the next chapter,
the forward problem will be discussed, followed by the inverse problem in
Chapter 4. To conclude, some practical aspects concerning tissue optics,
instrumentation issues, and applications are discussed in Chapter 5.
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. 2.1 The geometry of light propagation in a turbid medium, in general terms. The
dium is delineated by a boundary, and it is illuminated by light represented by
(r,s,t). The light that propagates through the medium, or has emerged, is denoted
op(r,s,t). The optical properties are denoted p(r).
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3. The forward problem – light propagation models

The definition of the optical properties p(r) in Fig. 2.1 depends on the physical
theory one chooses to describe the light propagation. As mentioned in the
introduction, either of two physical theories of light is considered: wave theory or
transport theory. Wave theory, or electromagnetic wave theory, relies on solutions
of the Maxwell equations. In this context, the optical properties are defined by the
complex dielectric constant, ε(r). The variation in Re{ε(r)} describes the
scattering, while Im{ε(r)} represents the absorption properties. Only in special
cases is it possible to solve the wave equation for large macroscopic problems, as
will be discussed later. In most problems, especially those related to tissue optics, it
is intractable both to solve the wave equation and to cope with the vast complexity
of the variation of ε(r) on a microscopic level. To deal with such problems, the
transport theory of radiative transfer is better suited. In transport theory, light is
heuristically regarded as energy propagating according to the rules defined by the
transport equation, a conceptually simple equation of conservation. The optical
properties p(r) are defined by means of a scattering coefficient, an absorption
coefficient and a scattering phase function which relates to the probability of
scattering in different directions.

In the next sections, some relevant parts of electromagnetic wave theory, transport
theory and their relation will be described. Because of the vast number of
publications on the basic theory of these subjects already available, the following
treatment will focus on the use of the models rather than full theoretical
derivations.

3.1 Electromagnetic wave theory
Maxwell’s equations form the starting point of the description of light propagation
as electromagnetic waves propagating through a dielectric medium. The fields are
classically described by:

t∂
∂

−=×∇
BE (3.1)

FDH +
∂
∂

=×∇
t

(3.2)

ρ=⋅∇ D (3.3)

0=⋅∇ B (3.4)
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where E [Vm-1] and H [Am-1] are electric and magnetic field vectors, B [Vsm-2] is
the magnetic flux density vector, D [Asm-2] is the electric displacement vector, F
[Am-2] is the current density vector (the conventional notation J is in this thesis
reserved for the radiometric quantity radiant flux density, see Eq. (3.8) – (3.11)),
and ρ [Asm-3] is the volume charge density. The electric and magnetic fields can be
related to the displacement field and flux density fields by constitutive relations,
depending on the properties of the medium. In a non-dispersive isotropic medium,
which we are interested in here, the relations are D = εE and B = µH, where ε
[AsV-1m-1] is the permittivity and µ [VsA-1m-1] is the permeability. The current
density and the electric field are also coupled by F = σE, where σ [AV-1m-1] is the
conductivity.

The Maxwell equations can be solved directly using numerical methods, which will
be discussed below. The computations for large problems are daunting, however,
and clever use of expansion methods and approximations can greatly reduce the
calculations needed for some problems. Typically, it is assumed that the medium is
nonconductive, and one can then derive the vector wave equations (or Helmholtz
equations)1:

022 =+∇ EE k (3.5)

022 =+∇ HH k (3.6)

where k = 2π/λ is the wavenumber (λ is the wavelength).

Often, one is interested in prediction of the scattering from single particles, both
because many scattering media in fact consist of ensembles of particles, and also
because sometimes it is possible to assume that a scattering medium may be
approximated by scattering particles. Scattering from particles can be described in
terms of diffraction2,3 or approximations such as those presented by Rayleigh-
Gans-Debye2-4, but more general approaches are given by Mie theory and T-matrix
theory. Mie theory deals with spherical particles, while T-matrix theory is
applicable to particles of arbitrary shape, although in practice only particles of
spheroidal symmetry are useful. The general idea in Mie and T-matrix theory is to
expand the fields in vector spherical functions.

3.1.1 Models for single scattering based on electromagnetic wave theory
Mie theory (or Lorenz-Mie theory) provides a quick and relatively simple way of
calculating light scattering2,3. The relevant input parameters to a Mie calculation
are the ratio of the refractive index inside the particle to that in the surrounding
medium, m = nparticle/nmedium, and the size parameter x = 2πa/λ, where a is the
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radius of the particle. The result of a Mie calculation is a map of the scattered field
from an incident plane wave. Usually, one is interested in the extinction cross
section Cext [m2], scattering cross section Csca [m2], and the absorption cross
section Cabs [m2] of the particle. These can be obtained through integration of the
scattered field, and are related as Cext = Csca + Cabs. It is also convenient to define
relative extinction, scattering and absorption cross sections, Qext, Qsca and Qabs
(dimensionless). The relative scattering cross section is defined as Qsca = Csca/πa2,
and the others analogously. Another property of interest is the scattering anisotropy
factor, g = <cosθ>, where θ is the scattering angle. The anisotropy factor is a
measure of how close to isotropic the scattering is. For entirely isotropic scattering,
such as Rayleigh scattering, g = 0. In this context it can also be noted that Mie
theory collapses to the classical Rayleigh expression for scattering when x → 0 (cf.
Eq. 5.6).

The applicability of Mie theory on a problem depends on several factors. Particles
that are spherical by nature are of course prime candidates. Examples of this kind
are liquid aerosols such as water droplets. Particles of irregular shape can also be
modeled successfully using Mie theory under certain conditions. Several studies
have shown that in an ensemble of randomly oriented particles of nonspherical
shape, the average scattering can often be represented by Mie theory of spheres of
equivalent size. However, this is not always the case, as some authors have pointed
out5. Mie theory is also important for validation purposes. Instruments designed to
measure the scattering of a medium can be tested on samples with microspheres
with known size and refractive index, to serve as a verification against theory. This
is discussed in more detail in Sect. 5.2. Finally, Mie calculations are useful to
provide quick and approximate results when only order-of-magnitude numbers are
needed for media that consist of irregular scattering structures.

Mie calculation is not entirely trivial, and the computations are susceptible to
round-off errors in the numerical routines. New Mie codes therefore have to be
tested thoroughly. For this reason, it is usually best to try to find an existing, well-
tested program. In this thesis, all Mie calculations were performed using the
program by Bohren and Huffman, BHMIE3. Mie programs are available on the
Internet, also as interactive web scripts6.

T-matrix theory presents a more general method to calculate scattering from
particles of other shapes than spherical5,7. In principle, any shape is possible, but
due to the fact that the field vector expansion is based on vector spherical
functions, spheroidal particles are best suited. The calculations are even more
sensitive to round-off errors than Mie theory, especially as the size parameter
increases. For practical purposes, only particles of some spherical symmetry are
possible because of this. T-matrix calculations were performed to study the
scattering from red blood cells in Paper V. A modified version of the code by
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Barber and Hill was used8,9. Single-precision (16 digits) T-matrix computations are
possible for size parameters x < 25, but with extended precision (32 digits) size
parameters up to around x = 65 are possible with good accuracy10.

3.1.2 Models for multiple scattering based on electromagnetic wave theory
Ensembles of particles are possible to model using Mie or T-matrix theory, as long
as the distances between the particles are large. The total scattering coefficient can
then easily be calculated, because the individual particles are in the scattering far-
field with respect to their neighbors. When the interparticle distances become
small, the particles start to influence each other in their near-field, and the
assumption of single, independent scatterers breaks down. In some cases,
aggregates of a small number of particles are possible to model using Mie or T-
matrix theory using a superposition approach7,11, but for more complicated
geometries more general methods are required. The perhaps most straightforward
method of solving a wave problem for an arbitrary geometry is by discretizing
Maxwell’s equations, the spatial coordinates and time. This method is called Finite
Difference Time Domain (FDTD), and can in principle solve any problem.
However, due to the computational requirements, FDTD is limited to rather small
problems. As a rule of thumb, the spatial discretization must be λ/15 or smaller,
which means about 106 points for a problem of size 5λ. For each time step, one
operation is required for every point in space. More information on FDTD can be
found in Refs. 12 and 13. Calculation of light scattering from single biological cells
using FDTD has been demonstrated14-16.

An alternative approach to FDTD is to use the Finite Element Method (FEM) to
solve Maxwell’s equations. In general, FEM is best suited to solve partial
differential equations on closed domains, i.e., boundary value problems. FEM
requires the medium to be represented by a mesh, and one of the principal
advantages of the method is the versatility of the mesh design and flexibility of
representing complicated shapes and variations in dielectric constant. Another
advantage of FEM is that the matrices are typically sparse, so that the numerical
machinery that pertains to sparse matrix computation can be utilized. A drawback
of the method is that special care has to be taken when modeling unbounded
domains, to terminate the mesh using the proper boundary conditions. Several
commercial and free FEM codes are available, ranging from very simple 2D
representations to advanced packages. Examples of free codes are EMAP17 and
Student’s QuickField18, while commercial software packages include FEMLAB (a
Matlab toolbox)19 and EMFLex20. 
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A slightly less direct approach is presented by the Method of Moments (MoM). In
this method, the problem is reduced to smaller domains, where the Maxwell
equations are formulated as integral equations21. An example of a free MoM code
is PCB-MoM22. 

The methods mentioned so far suffer from being restricted by the computational
resources required for problems larger than a few wavelengths. Larger problems,
up to a few hundred wavelengths, can be solved using the Fast Multipole Method
(FMM)23. FMM utilizes an efficient method for numerical convolution of the
Green’s function for the vector wave equation, which leads to a reduction of the
numerical complexity. The method does not inherently involve any
approximations, but by utilizing problem-specific properties the computation can
be made even more efficient. One such assumption may be that the variation in
refractive index in the medium is small. This condition is fulfilled in human blood,
which renders FMM a possible candidate for modeling the complex scattering
properties of blood (see also Sect. 5.1.9; Optical properties of blood).

To solve even larger problems, approximation methods can be used. The
approximation methods are sometimes denoted asymptotic methods, which in turn
can be categorized into four classes: approximations of partial differential
equations and integrals, geometrical optics, physical optics, and other methods. As
an example from the first area, the vector wave equation, which is elliptic, may be
approximated by a paraxial equation, which renders the parabolic equation
method24. This method is suitable for large problems with a clear, preferred
direction of propagation. A closely related approach is the Bremmer series
method25.

Geometrical optics is valid when the curvature of the object is large compared with
the wavelength, i.e., typically for large objects. The ray trajectories are given by the
famous Fermat’s principle, stating that the path of a ray is always such that the
optical path length is minimized. Geometrical optics problems can be solved using
ray tracing software. Physical optics depends on integral representations of the far
field, for scatterers that are perfectly conducting. The requirement of large objects
holds for physical optics as well. The two methods can be combined with other
methods, such as MoM, if smaller objects are involved in the problem. The last
category, other methods, includes simple optical models such as ray tracing
without a phase front, and Fraunhofer and Fresnel diffraction.

The results from the wave equation can also be used as a starting point for a
rigorous, analytical derivation of statistical quantities relevant for multiple
scattering problems. This leads to differential or integral equations that, in
principle, include all wave effects. However, the solutions are complicated and in
practice various approximations are employed. Examples of methods include
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Twersky’s theory, the diagram method, and the Dyson and Bethe-Salpeter
equations. An overview of analytical theory is given by Ishimaru26. Twersky’s
theory has been applied on the problem of light scattering in human blood27,28 (cf.
Sect. 5.1.9; Optical properties of blood). However, the result of Twersky’s theory
is equations with parametric dependence, where the parameters cannot be easily
deduced from considerations of the fundamental geometrical and dielectric
properties of the medium. In terms of practicality, the theory is therefore more
similar to transport theory, which is the topic of next section.

3.2 Transport theory of radiative transfer
The radiative transport equation (RTE) (or Boltzmann equation) can be stated as 

),,q()(d)',p(),,(),,()(),,(   

),,(1

4

ttLtLtL
t

tL
c

ssa srssssrsrsrs

sr

+ωµ+µ+µ−∇⋅−=

=
∂

∂

∫
π

(3.7)

The RTE is an equation of conservation, describing the change in radiance L in the
direction s inside a small volume element dV. Thus, the first term on the right hand
side describes the losses over the boundary of dV, the next term the losses due to
absorption and scattering, the third term the gains due to scattering from other
directions into s, and the last term gains due to any source q inside dV29,30. Defining
the remaining designations introduced, starting from the left, we have the light
speed in the medium c [m/s], the absorption coefficient µa [m-1], the scattering
coefficient µs [m-1], and the scattering phase function p(s,s') [-]. The scattering
phase function gives the probability of scattering from direction s' into direction s.
In the integral, dω(s) denotes an infinitesimal solid angle in the direction s.

Classical, and still essential, references on transport theory include the works by
Chandrasekhar31, Case and Zweifel29, and Ishimaru26. A recent treatment, oriented
toward tissue optics, is given in Ref. 30.

3.2.1 Radiometric quantities
Before discussing the RTE further, it is useful to define some radiometric
quantities and their relationships. The radiant flux density J [W/m2] is defined as
the power P transferred through a surface area A:
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AP
A

d ∫ ⋅= nJ , (3.8)

where n denotes the normal vector to the surface element dA. The scalar quantity
inside the integral, i.e., the power per unit area, is called the irradiance E(r,t)
[W/m2]:

)(),(),( rnrJr ⋅= ttE (3.9)

The intensity I(r,s,t) [W/sr] is defined as the power per unit solid angle. The
radiance L(r,s,t) [W/m2sr] is defined as the power per unit solid angle and area.
The relationship between J and L is given by

)(d ),,(),(
4

sssrrJ ω= ∫
π

tLt . (3.10)

The hemispherical flux, which is the flux through the area element dA in either
direction, is a useful quantity. It is defined as

)(d ))(,,(),(
2

snssrr ω⋅= ∫
π

+ tLtJ n . (3.11)

If the hemispherical flux is measured from a surface, it is called the radiant
exitance or emittance [W/m2].

In transport theory, light transport is often regarded as a transport of photons,
interpreted as classical particles. Although the RTE does not inherently specify the
nature of the transported energy as particles, there are several reasons for this
interpretation. Historically, neutron transport was the major field where methods in
transport theory were developed. The context is thus suited for a particle
interpretation. In addition, in the Monte Carlo method, as will be apparent in Sect.
3.2.10, the particle representation is natural. For these reasons it is convenient to
define a photon distribution function N(r,s,t) [m-3sr-1], which is the volume density
of photons per unit solid angle. The relationship between the radiometric quantity L
and the photon density N is then

λ
=

2

),,(),,( hctNtL srsr , (3.12)

where h is Planck’s constant.

Another important quantity is the fluence rate φ [W/m2], which describes the power
incident on a volume element per surface area:
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The fluence rate is useful since by knowing the absorption in the medium, the
absorbed energy W [J/m3] can be calculated as

ttW a d),()()( ∫ φµ= rrr . (3.14)

This equation is important, since it couples the deposited energy – dose – in a
medium, to the radiometric quantity fluence rate.

3.2.2 
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Fig. 3.1 Illustration of Beer-Lambert’s law.
Transport properties
ng to the discussion about the RTE, one identifies four medium-dependent
ters: the light speed c – determined by the refractive index, the absorption
ttering coefficients µa and µs, and the scattering phase function p(s,s'). The
ents µa and µs should be interpreted as the probability of absorption and
ng per unit path length, respectively. Their meaning is clear when
ring the generalized Beer-Lambert law,

[ ]dEE sa )(exp0 µ+µ−= , (3.15)



which describes the attenuation of a collimated beam (plane wave) of initial
irradiance E0 through a medium of thickness d (see Fig. 3.1). Within the
framework of the particle interpretation, the reciprocal of µa + µs, 1/(µa + µs), is
interpreted as the mean free path length between photon interactions with the
medium. The quantity µt ≡ µa + µs is called the total attenuation coefficient.

3.2.3 Scattering phase function
The scattering phase function p(s,s') describes the angular probability of scattering
from direction s' to s. The phase function is sometimes written as p(cosθ) to
emphasize the angular dependency, and although this is only possible when there is
no absolute directional dependency, physically realistic phase functions virtually
always only exhibit relative angular dependency. It is usually assumed that the
scattering probability is symmetric for the azimuthal angle ψ, although this is not a
strict requirement. The phase function is normalized:

1)d(cos )p(cos
1

1

=θθ∫
−

. (3.16)

To exemplify the 
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the diameter incre

Fig. 3.2 Sc
In the calc
attered field from spherical particle calculated with Mie theory.
ulation, m = 1.5, and x = 2π. The anisotropy factor is g = 0.58.
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importance of the phase function, consider the scattering from a
e, as described by Mie theory (see Fig. 3.2). As a general rule, as
ases the scattering gets increasingly forward-favored. Lobes are
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visible in certain angles due to interference effects. In a polydisperse ensemble of
particles, the lobes average out and the phase function becomes more or less
smooth. The most widely used phase function to approximate this shape is the
Henyey-Greenstein phase function32, which has the functional form

2/32

2

)cos21(2
)g1()p(cos

θ−+
−

=θ
gg

, (3.17)

where g is called the scattering aniostropy factor or simply “g-factor,” and is
defined as g = <cosθ>. The shape of the Henyey-Greenstein function is shown in
Fig. 3.3 for three values of g. The g-factor can be calculated for any phase function,
and is a measure of how forward-favored the scattering in the medium is. Other
phase functions have also been used in the literature, such as the Reynolds-
McCormick phase function (also called Gegenbauer-kernel phase function)33. It is
also possible to directly incorporate phase functions from Mie or T-matrix
computations, which will be discussed more in connection with Monte Carlo
simulations (Sect. 3.2.10).

3.2.4
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Fig. 3.3 The Henyey-Greenstein phase function for three different values of
the scattering anisotropy factor g.
 Reciprocity
re going into the various methods of solving the transport equation, the
ept of reciprocity within transport theory will be discussed. Let us, for now,
 recognize the fact that many numerical solutions to transport problems start
 point-like light sources, and the solution evolves during the computation as a
t spreading process. Real light sources are spatially finite, and it may be
ssary to convolve this “Dirac response” with the actual spatial shape of the
ce. In a large class of problems, however, the light source is distributed over a
me, and the detector is almost point-like and may also be directional. This kind
roblem may be computationally very inefficient to model in a straightforward
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way. The reciprocal situation could then be a much more efficient model, provided
that one can show that the two situations are equivalent.

Reciprocity was used in both Papers I and VII, and therefore a more detailed
derivation of the reciprocity theorem within transport theory will be presented here.
The derivation essentially follows that in Ref. 29. Consider the RTE, Eq. (3.7). The
time-dependent RTE can always formally be reduced to a time-independent
equation through a Laplace transform29. Therefore, we only have to derive the
reciprocity theorem for the time-independent RTE:

),()(d)',p()',(),()(),(
4

srssssrsrsrs QLLL ssa +ωµ=µ+µ+∇⋅ ∫
π

. (3.18)

Let L1(r,s) be the unique solution to Eq. (3.18) for a given source Q1(r,s) and
incident distribution Linc,1(ρ,s) on the surface S of the volume V: 

),,()(d)',p()',(),()(),( 1
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111 srssssrsrsrs QLLL ssa +ωµ=µ+µ+∇⋅ ∫
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A unique solution always exists if µa > 0. Let ),(~
1 srL  be the solution to an RTE

identical to (3), except that 

),'p()',p( ssss −−→ , (3.20)

i.e.,
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(3.21)

Now, if the phase function p is invariant under time reversal, we have

)',p(),'p( ssss =−− , (3.22)

and it is clear that ),(),(~
11 srsr LL =  since they are both unique solutions to the

same equation with the same boundary conditions. Furthermore, we can define two
solutions L2(r,s) and ),(~

2 srL  in a similar way. Since we are deriving an expression
for reciprocity, the quantity we are interested in is ),(~

2 sr −L . This gives the
equation
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Now, multiply Eq. (3.19) by  ),(~
2 sr −L , and integrate over V and s:
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Similarly, multiply Eq. (3.23) by L1(r,s) and integrate over V and s, and subtract
from Eq. (3.24). The divergence term can be simplified to a surface integral using
Gauss’ theorem, and we obtain:
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The last term vanishes because we can make the variable transformation 'ss ↔ .
Since we had assumed that p(s,s') was invariant under time reversal, and thus that

),(),(~
22 srsr LL = , we finally obtain
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Equation (3.26) expresses the reciprocity theorem on integral form.

Proceeding to derive the reciprocity theorem in the case usually encountered in
tissue optics, consider the geometry in Fig 3.4. It is clear that Q1 is an isotropic
source inside the volume V:
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Q . (3.27)
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ig. 3.4 Reciprocity used in tissue optics. The refractive indices outside and inside the
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enoted n. In (a), the forward case, we have an isotropic light source Q1 at r1 that
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e collection angle of a detector at r2. In (b), the reverse case, a surface source Q2 at
 gives rise to a fluence rate at r1. The source Q2 emits in the solid angle ∆ω.
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re P1 is the power emitted by the source. For the reciprocal case, the definition
he light source is less obvious. Apparently, we could define an incident light on
boundary Linc,1(ρ,s) and let Q2 be zero. However, it turns out that it is always
sible to replace an incident light distribution with an equivalent surface
rce29. This means that the left-hand side of Eq. (3.26) vanishes, and we can
ine a surface source Q2 as







ω∆

ω∆−δ−⋅
ω∆=

 insidenot  is  if                                  0

 inside is  if   )()(
),( 2

2

2
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srrns
sr FrP

Q (3.28)

re P2 is the emitted power, rF is a factor that accounts for Fresnel reflection at
interface, and the solid angle ∆ω is defined by the critical angle for total

ection at the boundary (or the collection angle of a detector at r2). In case the
active indices are equal, ∆ω = 2π. Hence, we get:
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The integral on the left-hand side is exactly the fluence rate at r1 due to the surface
source Q2(r,s), while the integral on the right-hand side is exactly the radiant flux
density at the surface at r2 due to the isotropic source Q1(r,s). In practice, we are
interested in the case when these two quantities are equal, and we get

12 4
PP

π
ω∆

= . (3.30)

Thus, to get the same result from two reciprocal computations, the powers of the
two reciprocal sources should be scaled according to Eq. (3.30). A more detailed
derivation of Eqs. (3.27) – (3.30) is given in Paper I.

As we have seen, the reciprocity theorem is valid under the assumption that the
phase function is invariant under time-reversal,

)',p(),'p( ssss =−− . (3.31)

A natural question is whether there are any physically relevant phase functions that
do not exhibit this kind of invariance. Starting with the Henyey-Greenstein phase
function, Eq. (3.17), we see that there is no dependence on the direction s and thus
we are free to make the variable substitution in Eq. (3.31) without violating the
equality. The same is true for any phase function computed from Mie theory,
which is clear because of the symmetry of spherical particles. For any normal
scattering conditions it seems that we can assume that the time-reversal invariance
of the phase function holds.

3.2.5 Solving the transport equation
A range of different techniques to solve the RTE are available, each with its
advantages and drawbacks. First, we note that no analytical solutions to the RTE
are available in 3D, for any geometry other than such that can be represented in one
or two dimensions. Full solutions of the RTE are only possible using numerical
methods, e.g. by discretization of the equation. The most widely used discretization
method is the discrete ordinates method, which will be described in Sect. 3.2.7. The
other option is the use of Monte Carlo simulations, a method that has been widely
adopted by the tissue optics community. 

Instead of attempting a full solution, various methods based on simplifications or
approximations are available. Sometimes, the dimensionality of the problem can be
reduced. For a few, special, but important geometries, polynomial approximations
have been developed. Perhaps the most important approximation is the diffusion
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approximation, which is based on the first terms in a spherical harmonics
expansion.

In the next few sections, emphasis will be turned to the Monte Carlo simulation
method, but most of the other important methods for solving the transport equation
will be reviewed or at least be given reference to. As before, the treatment focuses
on the practical aspects of the methods rather than derivations, which can be found
in the references.

3.2.6 Polynomial approximations
Polynomial approximations have no physical meaning and are not solutions to the
RTE per se, but they may be useful tools for quick calculations. The idea is to find
a polynomial expression describing the optics of the medium using one parameter.
A useful example is the total reflectance from a semi-infinite medium, illuminated
with diffuse light. This has been found to follow34
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and a is the albedo, a = µs/(µa+µs). The error of prediction has been shown to be
less than 0.003 for any combination of µs, µa and g. More on polynomial
approximations can be found in Ref. 34. Approximations for collimated incident
light, also for index mismatch between the semi-infinite media, can be found in
Ref. 35. 

3.2.7 Discretization methods; Adding-Doubling method; Discrete ordinates
As already discussed in connection with the vector wave equations, the most
straightforward way of solving complex equations is by direct discretization and
subsequent numerical computations. A first step in discretization of the RTE is to
discretize the radiance in angular components, s1, s2, ...sN. The equation can then be
written as 
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where wj are weighting factors used in the quadrature. This general approach is
called the discrete ordinates method or the N-flux method. The simplest way of
dealing with this equation is to include only one angular component, the forward
direction. In this context the radiance is not a useful quantity since it is defined by
means of solid angles. Instead, one must use the irradiance. The RTE is then
reduced to 

)()( xE
dx

xdE
tµ−= , (3.35)

which has the solution

)exp()0()( txxExE µ−== (3.36)

recognized as Beer-Lambert’s law.

Increasing complexity slightly, we include two angular components, the forward
and the reverse directions. This is the 2-flux, or one-dimensional, transport theory.
The one-dimensional transport equation is a set of coupled differential equations:

)()()()(
1 xExE
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a −+
+ σ+σ+µ−= (3.37)
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xdE
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− σ+σ+µ−=− . (3.38)

Here, E+(x) propagates in the positive x direction, and E-(x) in the negative. µa1 is
the one-dimensional absorption coefficient, and σ = µs1p(–x,x) = µs1p(x, –x), where
µs1 is the one-dimensional scattering coefficient. A full derivation of Eqs. (3.37)
and (3.38) can be found in Ref. 30. A historically important version of one-
dimensional transport theory is given by the Kubelka-Munk theory36, which
assumes diffuse light flux. If the scattering dominates over absorption, one can
show that the one-dimensional properties are related to their three-dimensional
counterparts by

2
1a

a
µ

=µ , (3.39)
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Kubelka-Munk theory was used extensively in the early days of tissue optics, and
still finds applications. A modern example where Kubelka-Munk theory is used is
for rendering skin and other scattering surfaces in computer graphics, such as video
games and special effects in motion pictures37. Publications of later date testify that
the method may still be useful for some applications in tissue optics38.

The solution to Eqs. (3.37) and (3.38) depends on the boundary conditions.
Solutions for various geometries can be found in Refs. 30 and 39.

The next step in complexity for solutions of the RTE is presented by the adding-
doubling method, which assumes cylindrical symmetry. The radiance is discretized
in terms of cones, defined by νi = cosθi and ψ = [0, 2π]. The phase function is
rewritten as a redistribution function on matrix form, h(νi,νj), which describes the
probability of scattering from cone νi to cone νj. The adding-doubling method first
assumes that the reflectance R(νi,νj) and transmittance T(νi,νj) from a thin,
homogeneous, layer of infinite extension are known. By juxtaposing two identical
layers and summing the contributions from each, the reflectance and transmittance
from a layer twice as thick can be obtained. In this fashion, the reflection and
transmission properties of a slab of arbitrary thickness can be calculated. In a
similar way, layers of different optical properties can be added together, hence the
name adding-doubling.

The adding-doubling scheme consists of integrating discrete reflection and
transmission functions. The numerical integration, quadrature, is therefore an
important part. Different quadrature schemes are discussed in Ref. 40. Typically
between 4 and 32 cones, equal to the number of quadrature points, are used in
adding-doubling calculations.

The reflectance and transmittance from the first layer can be calculated in several
ways. The most widely used method is diamond initialization, which assumes that
the radiance can be approximated by the average of the radiances at the top and
bottom of the layer. The requirement for this approximation to be valid is that the
layer is optically thin. Furthermore, the RTE is written as time-independent, one-
dimensional, and with the angular components discretized according to the cone
approach:
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Solutions of R and T for diamond initialization can be found in Refs. 40 and 41.
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The advantage of the adding-doubling method is that the solutions are accurate for
any combination of µa, µs and g. Index mismatch between layers is also handled
correctly. The limitations of the method are that it is restricted to layered
geometries and uniform irradiation, that it does not readily give light fluences
inside the media, that each layer must be homogeneous, and that the method is not
time-resolved. Computer code for adding-doubling calculations, by Prahl, is
available for download42.

Continuing with the discretization approach, the next step would be to solve the
RTE for a full 3D geometry with N angular components. A seven-flux method has
been used in tissue optics43. In this method, the six directions along the axes of a
Cartesian coordinate system are used, and a seventh flux along the direction of the
incident light beam is introduced. Using only seven angular components is not
optimal in terms of obtaining accurate results, and higher numbers of N are needed
for truly versatile discrete ordinates models. Extensive development in discrete
ordinates has been performed to model neutron transport, but surprisingly little of
these results have spilled over to light propagation. One reason for this may be that
discrete ordinates computations, up until recently, have required the use of
supercomputers to perform within reasonable time limits. Light propagation
problems are actually simpler than neutron propagation, because all photons move
at a constant speed, which is not the case for neutrons.

The principle of the discrete ordinates method will be sketched briefly. To solve
the RTE in a full 3D geometry, the spatial coordinates need to be discretized in
addition to the angular directions. The spatial discretization can be done, e.g., using
the Crank-Nicolson method44. A large number of strategies for discretization have
been investigated (see the review in Ref. 45). With these discretizations, the RTE is
transformed into a set of coupled integro-differential equations. The next step is to
expand the phase function in a series of Legendre polynomials Pl(cosθ),
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The reader should note that this step is identical to the procedure used when
deriving the diffusion approximation, as will be described in Sect. 3.2.8. In general
terms, the RTE has now been converted to an equation system that can be written
on the form46

QLBA =− )( , (3.43)

where A and B are discretized versions of the linear operators 
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and Q is a source function (cf. Eq. (3.7)). In principle, this can be solved by matrix
inversion:

QBAL 1)( −−= . (3.46)

However, the matrix (A – B) is computationally very costly to invert, while A can
be inverted much faster on its own. The discrete ordinates method therefore makes
use of an iterative solution strategy:

QBLAL =−+ ll 1 . (3.47)

Solving for Ll+1 we get:

QABLAL 111 −−+ += ll . (3.48)

The operator A-1B is known as the iteration operator. Equation (3.48) can be used
directly to iterate to the discrete ordinates solution, but for tissue optics problems
the so called method of diffusion synthetic acceleration has been employed to
accelerate the convergence of the iterations46,47. For the nth iteration, the RTE can
then be written as

)()(),(),()(),( 1 rrsrsrrsrs −φµ+=µ+∇⋅ nsntn QLL . (3.49)

A corrected diffusion equation (cf. Sect. 3.2.8) is introduced as

)()(')()()()( rrrrrr nnan RQD −=φµ+φ∇⋅∇− , (3.50)

where D = [3(µa + µs(1 – g)]-1 is the diffusion coefficient, and the correction term
R is defined as

)(~)()(~)( rrrJr nnn DR φ∇⋅∇+⋅∇= , (3.51)

where )(~ rJ n  and )(~ rnφ  are calculated from Ln using Eqs. (3.10) and (3.13),
respectively. The idea behind synthetic acceleration is to split the iteration into two
parts, where the corrected diffusion equation, Eq. (3.50), is the inner part. The
acceleration is obtained from the fact that the diffusion equation is faster to solve
than the entire discretized RTE46.
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The method works as follows: by using φn-1 from the previous iteration, Eq. (3.49)
is solved for Ln. The correction term R can then be calculated from Eq. (3.51).
Next, φn is calculated using Eq. (3.50), and one cycle is completed. For the first
iteration, R is set to zero, and the solution of Eq. (3.50) is identical to the diffusion
solution. Thus, after the first iteration, the discrete ordinates method with diffusion
synthetic acceleration yields the same result as a Crank-Nicolson (finite difference)
solution of the diffusion equation (cf. Eq. (3.54)). The subsequent iterations are
improvements of the diffusion solution, which converge toward the full transport
solution.

Hielscher et al. used the computer code DANTSYS (diffusion accelerated neutral
particle transport code system) to perform discrete ordinates computations for light
propagation problems47. The number of angular components was 168 in these
calculations. The model has been further developed for use in optical
tomography48,49. The computation time of the discrete ordinates method depends on
the size of the spatial grid and the number of angular components.

3.2.8 Expansion methods; The diffusion approximation; The PN-approximation
The next major approach for solving the RTE is by expansion of the radiance in
some suitable function series. One way of attacking this problem is by finding the
solution, in terms of eigenfunctions, of the homogeneous part of the RTE:
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After finding the eigenfunctions of Eq. (3.52), one can attempt to expand the
general solution of the RTE in this function space. This approach has been
followed by Case and Zweifel29, but no practical method based on it seems to have
emerged. The reason may be the complexity of the mathematics; the function space
turns out not to be a conventional Hilbert space, and the eigenfunctions are
distributions in the Schwarz sense. Instead, the expansion method that is almost
always used is based on spherical harmonics. This expansion leads to the diffusion
approximation, which has several attractive properties, as we will see. The
expansion of L is written as
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As always with expansion methods, we have gained an advantage if the quantity of
interest, in this case radiance, is well approximated by as few components in the



expansion as possible. Spherical harmonics form a complete orthogonal set of
functions on the unit sphere, and are thus suited for problems with spherical
symmetry. We can expect that the expansion is very efficient in problems where
the radiance propagates more or less uniformly in all directions, i.e., in a diffuse
manner. The phase function is handled by expansion in Legendre polynomials (cf.
Sect. 3.2.7; The discrete ordinates method). For practical use, the expansion is
truncated after N terms. The resulting approximation is called the PN-appro-
ximation. If only the 0th and 1st terms are used, the result is the P1-approximation.
Next, two approximations are assumed: that the light source is isotropic, and that
the flux vector J is constant in time, and we arrive at the diffusion approximation.
The time-resolved diffusion equation is written as
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Note that the relevant quantity here is the fluence rate, φ. D is called the diffusion
coefficient, and is defined as
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The property µs' ≡ µs(1 – g) is called the reduced scattering coefficient. Its meaning
is schematically illustrated in Fig. 3.5. The diffusion equation generally describes
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 coefficients are the same in (a) and (b), since
opic on the scale defined by 1/ µs'.
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diffusive processes, and similar equations can be found in various branches of
physics, e.g., particle diffusion and heat conduction. The validity of the diffusion
equation is restricted by the assumption that the light propagates diffusely, i.e.,
almost isotropically. This means that the reduced scattering coefficient, µs', must be
much larger than µa, and that φ is calculated far away from the light source. These
requirements justify the assumption of a time-constant flux vector J, which
otherwise is clearly erroneous. Instead of assuming that J is constant in time, one
can assume that J is dominated by an exponentially decaying term,

)exp(),( tct λ−=rJ . (3.56)

This leads to a different definition of the diffusion coefficient50:

[ ]λ−µ+µ
≡

'3
1'

sa
D (3.57)

The value of λ has been debated in the literature. Yamada51 and Durduran et al.52

argue that λ = µa, which means that D' should be independent of the absorption.
This was supported by comparison with Monte Carlo simulations. Hielscher et al.
compared the diffusion solution with the transport solution using the discrete
ordinates method47, and tested various values of λ. The conclusion was that for
every combination of µs' and µa, there is a value of λ that best fits the transport
solution, but no single definition of D' fits all situations. In general, however, it
seems that Eq. (3.57) with λ = µa is more appropriate than Eq. (3.55).

Analytical solutions to the diffusion equation are calculated by means of Green’s
functions. The solutions obtained are due to point sources, which may seem like an
overly simplistic approximation for any real situation. However, since the solutions
are only accurate far from the source, and many real light sources illuminate the
medium at a small spot, Green’s functions directly yield useful results for many
practical problems. The boundary conditions must also be considered. If the
refractive indices are matched, a physical requirement is that there should be no
photon flux back into the turbid medium at the surface, i.e., Jn-(ρ) = 0. A good
approximation is to introduce a virtual, or extrapolated, boundary, at some distance
ze outside the physical boundary, and there apply the condition φ = 0. For index
matching, one can derive the value ze = 3·0.7104D ≈ 2D 26. An index mismatch will
change this distance, because of the internal reflection at the boundary53,54. For
n = 1.4, an extrapolated boundary at ze ≈ 5.5D is appropriate. Using this approach,
relatively complicated geometries can be handled by the method of images, as
exemplified in Fig. 3.6.
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he important case of a semi-infinite homogeneous geometry
 time-resolved fluence rate is written as 
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sition of the source. For an incident pencil beam, an
 source of z0 = 1/µs' was proposed by Patterson et al55. The
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+ µs')]1/2. The reflectance is traditionally calculated by
ross the boundary,
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which yields
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where r1
2 = z0

2 + r2 and r2
2 = (z0 + 2ze)2 + r2 for the time-resolved case. The

corresponding steady-state reflectance is written
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Improved expressions for the reflectance can be obtained by instead taking the
integral of the radiance over the backward hemisphere. For n = 1.4, this leads to
the, more accurate, expression for the reflectance56:

),(306.0),0,(118.0),( trRtzrtrRimproved +=φ= (3.63)

Kienle et al. have derived a solution for a two-layer geometry, where the upper
layer has a finite extension, while the lower layer is infinite57,58. Analytical
solutions for embedded spheres have also been derived59. A comprehensive
treatment on various analytical solutions of the diffusion equation is also presented
in Ref. 30.

For more complicated geometries, numerical methods are required to solve the
diffusion equation. Two methods have been widely used: a finite-differencing
method and a finite element method. Finite differencing (cf. Sect. 3.1.1) is a
straightforward method, based on discretization of the diffusion equation and the
medium. Usually, the Crank-Nicolson method is applied44. In three dimensions, the
method is called alternating direction implicit (ADI). This method is made efficient
by iterating along one spatial coordinate at a time (“operator splitting”), which
makes the inversion of the matrices simpler44,60,61. The drawback of the ADI
method is that the spatial grid is uniformly discretized, which is not optimal for
geometries that involve both large homogeneous regions and small complicated
inhomogeneities. This problem is solved by FEM, where the mesh spacing can be
adapted to be crude for large structures and fine for small structures. General-
purpose commercial FEM-packages like the FEMLAB toolbox for Matlab can be



39

used to solve the diffusion equation. FEM is well suited as a forward model for
inverse problems, for other reasons in addition to the versatile mesh, as will be
discussed in Sect. 4.5; Optical tomography. Treating boundary conditions is
usually not a problem for FEM since the computations always take place on closed
domains. FEM has been used by several researchers62-68. 

As an alternative to deriving the diffusion equation for the P1-approximation, one
can derive the telegraph equation in the P1-approximation50,69. The flux J is then
allowed to vary in time, and the equation includes a second derivative in time. If D
is constant, the dependence of J vanishes and we have the homogeneous telegraph
equation:
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The addition from the second derivative term is numerically small, and the result of
Eq. (3.64) is very close to the ordinary diffusion equation, Eq. (3.54). A physical
interpretation of this is that for diffusive propagation, the variation in J is slow
compared with the variation in φ, which is why one can assume that ∂J/∂t = 0 when
deriving Eq. (3.54).

The PN-approximation is discussed in Ref. 30 for higher values of N. 

3.2.9 Probabilistic methods; Photon migration; Path integrals
A random-walk type approach to treat light propagation in turbid tissue was
presented by Bonner et al.70,71. This model, like the diffusion approximation,
assumes isotropic scattering. The method calculates the path-length distributions of
photons re-emitted at arbitrary points on the surface. Following the ideas behind
this approach, the method of path integrals was introduced72-74. This method is
based on reformulation of the RTE, to solve for the path probabilities of photon
trajectories in a non-absorbing medium. The usual radiometric quantities, such as
the radiance, can then be calculated using path integrals along the trajectories. 

The term ‘photon migration’ is sometimes used to denote either, or both, of the
methods just described, but often it just refers to light propagation in turbid media
in general.
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3.2.10 The Monte Carlo method
Monte Carlo simulation owes its name to the famous casino, because the method is
based on, figuratively speaking, “throwing the dice.” The method relies on tracing
individual photon trajectories in a random walk fashion, where the scattering and
absorption events are governed by the probabilities given by µs and µa, as well as
the phase function p(s,s'). The key decisions to be made in a simulation are the
mean free path between scattering events, and the scattering angle. In addition, the
absorption of photons must be handled. The method is statistical and requires a
large number of photon histories to be computed. The number of photons needed
depends on the problem and the wanted accuracy. 

Sampling random variables from non-uniform probability distributions is the core
of a Monte Carlo simulation. Let us denote a random variable x, which may be the
step size s to the next scattering event, or the scattering deflection angle θ. The
distribution of x is described by a probability density function pp(x) over the
interval a ≤ x ≤ b:

1d)(p =∫
b

a
p xx (3.65)

The cumulative distribution function Fx(x1) describes the probability that
a ≤ x ≤ x1:
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Computers generate random numbers, here denoted ζ, in the interval [0,1], which
are uniformly distributed: pp(ζ) = 1. The distribution function in this case becomes 
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By letting a computer draw ζ, the method of sampling the variable x is to set Fx(x1)
equal to Fζ(ζ1). The principle is illustrated in Fig. 3.7. This results in the important
equation
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e basic equation for sampling random variables from non-uniform
 using uniformly distributed random numbers. Now, using Eq. (3.68),
y to derive how the random variables for step size s, scattering
gle θ, and scattering azimuthal angle ψ are sampled. According to the

f µs and µa, the probability of interaction per unit pathlength in the
ween s1 and s1 + ds1, is µtds1. This can also be expressed in terms of
ities:
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f Eq. (3.69) yields

)exp()( 11 sssP tµ−=≥ . (3.70)

this result to be useful, we need the probability density function used in
nd we start by rearranging:
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)exp(1)( 11 sssP tµ−−=< . (3.71)

We can directly identify this equation with the result of the integral in Eq. (3.68),
so we disregard the step of differentiating Eq. (3.71) to get the probability density
function and then integrating back again. Thus, we have
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(we now drop the subscript 1:s for simplicity). Solving for s gives

t
s

µ
ζ−−

=
)1ln( . (3.73)

Lastly, we substitute 1 – ζ → ζ, motivated by the fact that ζ is a random number in
the interval [0,1], and obtain

t
s

µ
ζ−

=
)ln( . (3.74)

Note that Eq. (3.74) also shows that 1/µt can be interpreted as the mean free path
between photon interactions, since the statistical average of – ln(ζ), with this
distribution of ζ, is equal to unity.

The scattering deflection angle θ is sampled from the Henyey-Greenstein
distribution, Eq. (3.17). Inserting Eq. (3.17) in Eq. (3.68), and solving for cosθ,
yields
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Equation (3.75) is undefined for g = 0, so in the limit another expression is needed.
g = 0 represents isotropic scattering, so p(cosθ) = ½ and the correct expression
becomes

12cos −ζ=θ . (3.76)

Other phase functions are seldom used in Monte Carlo simulations within the field
of tissue optics, but, e.g., the more general Reynolds-McCormick phase function33

can easily be incorporated with only slightly increased complexity:
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where α is an additional parameter and
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For α = 0.5 the Reynolds-McCormick function is equal to the Henyey-Greenstein
function. Note that in general, g ≠ <cosθ> for the Reynolds-McCormick phase
function. 

The azimuthal scattering angle is uniformly distributed in the interval 0 < ψ < 2π,
so we get

πζ=ψ 2 . (3.79)

Following from the definitions of µs and µa, the probability of absorption at any
photon interaction site is µa/(µs + µa). Unless µa is very low, this implies that the
probability that a photon will survive more than a few scattering events is low. This
leads to a problem in photon economy, in that a very large number of photons have
to be traced to yield acceptable accuracy at large distances from the source. To
improve the accuracy for smaller number of photons, a variance reduction method
is used. Instead of terminating a photon at absorption, photon packets are launched,
with initial weights W that can take on any number < W. This, effectively, is the
equivalent of tracing a bunch of photons, which is reduced in number at every
scattering event. The weight should then be decreased by the amount 

t

aW
µ
µ

(3.80)

at every interaction point. Using this technique, the photon packet would be traced
forever (or until it escapes a boundary) unless there was some procedure for
terminating the trajectory. The termination method is called the roulette. At some
point, W is so low that the photon packet contributes little to the simulation. When
the weight falls below this threshold value, e.g., 1:1000, there is a one in m chance
that the photon packet will survive the roulette procedure. In case it survives, its
weight is increased m times, otherwise it is terminated. In this way, the total
amount of launched energy in the simulation is conserved.
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The number of photon packets needed for a simulation depends on the geometry
and the quantity of interest in the problem. For example, to compute the total
reflection from a semi-infinite medium, only about 5000 photons may suffice, and
the simulation takes less than a second on a PC. To compute the spatial distribution
at different radial distances from the source, at least an order of magnitude more
photons are needed. Time-resolved data at distances more than 1 cm from the
source (for optical properties typical of tissue) needs tens of millions of photons to
yield acceptable statistics.

Computer code for Monte Carlo simulations is easy to write using the guidelines
above, however, since speed is imperative, a good knowledge of programming at
both machine and programming language level is necessary to write efficient code.
The finished code should also be validated thoroughly. An important point is the
random number generator, which, in computers, usually is in the form of a pseudo-
random number generator. Since very long sequences of random numbers are
needed, it is essential that the pseudo-random numbers are sufficiently random in a
statistical sense, and that the sequence does not repeat itself. Computer-generated
random numbers have been discussed in Refs. 44 and 75. The program Monte
Carlo simulation for Multi-Layered media, MCML, by Jacques and Wang76,77, has
become somewhat of a standard in the field of tissue optics. The program was
written in C. All simulations performed in this thesis were done using codes based
on MCML. An adaptation to time-resolved data and more complex geometries was
implemented by Berg78, but the photon propagation routines are the same for all
subsequent versions of the program.

3.2.11 Variations on Monte Carlo simulations
In addition to the extended time-resolved version of MCML mentioned in the
previous section, other variations on Monte Carlo simulations have been explored.
The phase function, which typically is sampled from the analytical Henyey-
Greenstein distribution, can instead be incorporated in the simulations using
scattering patterns computed with Mie theory or T-matrix theory. Phase functions
taken directly from T-matrix computations have been used with MCML within our
group79.

Another powerful approach is the so-called white Monte Carlo method. The
amount of computations needed for Monte Carlo simulations can be reduced by
performing only one simulation with µa = 0, and then adding the absorption
afterwards using the Beer-Lambert law. The number of free parameters is then
reduced to two: µs and g. In case the medium is homogeneous and infinite or semi-
infinite, the method is especially powerful, since then it is possible to rescale µs by
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rescaling the spatial coordinates. The g-factor can often be considered constant,
and thus only one single simulation is necessary to yield solutions for all
combinations of µa and µs 

80,81. 

An important question is whether the white Monte Carlo method is equivalent to
the conventional approach. The conventional step size is, on average,
1/µt = 1/(µa+µs), while it is 1/µs with the white method. This will result in different
photon distributions. The photon weights are also handled differently. Using the
conventional procedure, the photon weight is decreased according to Eq. (3.80) at
each interaction. After N steps, the photon packets have, on average, traveled a
distance d = N/µt, and the weight is 
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where W is the initial weight. After the same distance, for a corresponding white
simulation, the weight would be
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(note that N still stands for the number of steps in the conventional simulation – in
the white simulation the number of steps would be different). 

First, let us consider the extreme cases, and start with when the albedo a → 1.
Now, the average step sizes of the two approaches become equal, and Eq. (3.82) is
mathematically equivalent with Eq. (3.81). Clearly, the white approach is
equivalent with the conventional in this limit. This is the regime usually
encountered in tissue optics problems. In the other extreme, a → 0, which means
no scattering. Physically, this case is described by Beer-Lambert’s law for a purely
absorbing medium. In the conventional method, the photon paths are now given by
s = ln(ζ)/µa, and the photons are absorbed at the first interaction site. This is
statistically equivalent with Beer-Lambert’s law. In the white approach, the step
size s → ∞, but the photons are in practice always terminated due to interactions
with interfaces or a detector. The weights are then updated according to Beer-
Lambert’s law, and it is clear that again the conventional and the white approaches
are equivalent.

In the intermediate regime, when µa ≈ µs, equivalence is not guaranteed because of
the difference between the functions in Eqs. (3.81) and (3.82). A practical example
illustrates this. In Fig. 3.8 (a), the results of simulations, using each method, are
shown. The spatially resolved reflectance is depicted as a function of the radial
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Fig. 3.8 Comparison between the conventional and the white Monte Carlo method. The input
parameters were µa = µs = 10 cm-1 in the first case, and µs = 10 cm-1, µa = 20 cm-1 in the
second. The anisotropy factor was g = 0.5. A total of 106 photon histories were traced for the
conventional method, and 105 for the white method. In (b), the ratio between the methods is
presented.
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distance from a point source on the surface of a semi-infinite medium. The optical
properties were, in the first case, µa = µs = 10 cm-1, g = 0.5, and in the second case,
µa = 20 cm-1, µs = 10 cm-1, g = 0.5. The ratio between the two methods is also
presented in Fig. 3.8 (b), which reveals that the difference is a constant factor,
however dependent on the properties µa and µs.

The white Monte Carlo method has been shown to provide accurate results for
tissue optics problems80-83, and was also used in Paper I.

Transport theory in the form described by the RTE, Eq. (3.7), does not account for
any of the wave characteristics of light, such as coherence, interference effects or
polarization. It is, however, possible to introduce a description of polarization using
the Stokes vector formalism. The scalar radiance must then be replaced by a vector
whose components are the Stokes parameters for radiance26. This extension is
especially well suited for Monte Carlo simulations. The polarization becomes a
parameter to be logged for each photon packet, described by the Stokes vector, and
the depolarization due to scattering is an additional optical property of the turbid
medium, given by the Mueller matrix for each scattering event. A polarization
Monte Carlo code has been developed by Wang and co-workers84, based on the
Mueller-Stokes formalism, where the Mueller matrix is calculated from Mie
theory. Birefringent media are also possible to simulate85.
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3.2.12 Time-resolved and frequency-resolved calculations
So far in this treatment, frequency-resolved calculations have not been discussed.
By frequency-resolved calculations, a procedure where the amplitude of the light
source is sinusoidally modulated at a certain frequency is meant, and the detection
is performed at the same frequency. From a mathematical perspective, time-
resolved and frequency-resolved calculations are equivalent, coupled by the
Fourier transform. In some instances, performing the calculation in either domain
may be advantageous for numerical reasons, and then the other solution can be
obtained by transformation using the Fast Fourier transform (FFT). 

In the frequency domain, the propagating light may be conceptually visualized as
photon density waves. Care should be taken not to push this picture too far – the
photon density is for example always positive and interfering photon density waves
can therefore never cancel each other out in the traditional sense, but instead, the
modulation becomes zero. The spatial characteristics of photon density waves are
also somewhat different from the usual conception of waves, since the fluence rate
always obeys φ(r1) > φ(r2) for all distances from the source r1 < r2 for diffuse
propagation. One may define wavelength, amplitude, and phase properties for
photon density waves.

More aspects on frequency-resolved vs. time-resolved measurements are discussed
in Sects. 5.3.2 and 5.3.3; Instrumentation.

3.2.13 Fluorescence and inelastic scattering
Fluorescence may be widely defined as a process where light energy is absorbed
and re-emitted at a different wavelength than the original light. For the purpose of
this thesis, this is as detailed an explanation as is necessary. In a light transport
problem, fluorescence phenomena add complexity, but no fundamental new
physics. The basic approach to a description of fluorescence within transport theory
is to regard the propagation of the excitation light and emission light as two
different problems, and find a way to handle the transition of excitation light to
fluorescence light. Various Monte Carlo models on this theme were developed in
Paper I.

Fluorescence spectroscopy of tissues is a very vivid field of research aiming at
developing modalities for diagnostics. Reviews of this research are presented in,
e.g., Refs. 86 and 87.

To the level of sophistication of the description presented above, inelastic
scattering processes, such as Raman scattering, are treated identically to
fluorescence processes. The difference is that while the fluorescence process



usually occur on a time scale of nano- or microseconds, Raman scattering occur on
much shorter time scales (femtoseconds).

3.2.14 Photon hitting density and photon measurement density functions
The concept of the photon hitting density describes the expected local time spent
by photons traveling from a source to a detector88. Another way of expressing this
is the probability that any given detected photon at some point has visited a small
volume at point r in the medium. The photon hitting density is useful to calculate
the sampling volume of a measurement, i.e., where the light has been on its way
from the source to the detector. This gives rise to the “banana” functions
schematically demonstrated in Fig. 3.9 for various measurements. The photon
hitting density is time-dependent, which is also illustrated. Schotland et al. have
derived expressions for time-resolved photon hitting densities in the diffusion
approximation88. The photon hitting density at r can be calculated by considering
Fig. 3.10, and using the following equation:
Incident 
light

Detected
light

(a) (b) (c)

1.

2.

Fig. 3.9 Schematic illustration of sampling volumes (photon hitting densities) of the
detected light for various measurements and geometries. In (a), time-resolved
reflectance is sketched for early (1) and late (2) light. In (b), similar for a transmission
measurement. In (c), the cw reflectance for different source-detector distances is
schematically depicted.
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where φ is the fluence rate at r due to a source a r1, and E is the escape function
from r to a detector at r2. The concept of photon hitting density was generalized to
any type of measurement by Arridge, under the name photon measurement density
functions89. Photon measurement density functions are a measure of the sensitivity
of a measurement with respect to small changes in the optical properties50,89. As
such, they play an important role in reconstruction methods, since they can be used
to build the Jacobian matrix in the optimization problem (cf. Sect. 4.5; Optical
tomography).

Monte Carlo simulation is a convenient way of obtaining photon hitting densities
for arbitrary geometries, since the ensemble of photon trajectories directly yield the
photon hitting density. The problem with the Monte Carlo method, however, is its
slowness. In Paper I, a variance reduction technique was utilized to improve the
efficiency of fluorescence Monte Carlo methods. It was based on separating the
computation of the excitation light and the fluorescence light, and furthermore,
reversing the computation of the fluorescence light by means of the reciprocity
principle. In an analogous fashion, it would be possible to compute the photon
hitting density more efficiently by reversing the computation of the escape function
E and applying the convolution method in Eq. (3.83). Another option for complex
geometries is to use FEM to solve the diffusion equation. Arridge and Schweiger
have implemented this in connection with tomographic reconstruction, and utilize
the reciprocal computation (they call it the “adjoint” problem) to compute the
escape function in their FEM model50,65.
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3.3 Discussion – solving the forward problem
In the previous sections, a map of various methods to solve the forward problem
has been presented. The method of choice for a particular problem is sometimes
obvious, but, often, tradition and familiarity governs what method people choose,
even though it might not be the optimal choice. Here, we will discuss some general
properties of the most widely used methods, and compare them with each other.
Often, the method is to be used as a means to solve the inverse problem, which is
the topic of next chapter. Therefore, this discussion should also be taken as a
starting point for the review of inverse methods in the next chapter.

The diffusion approximation is probably the most widely used method in tissue
optics. The method has many attractive properties. Analytical solutions exist for
several geometries that are useful in practice. Numerical computations using finite-
differencing schemes or FEM are conveniently manageable on personal computers.
The diffusion equation directly gives the fluence rate everywhere in the medium,
which makes it simple to calculate the absorbed dose, by multiplication with the
absorption coefficient, Eq. (3.14). Diffusion theory is therefore often used for dose
calculations. The obvious drawback of the method is the restricted validity: the
requirement µa << µs', and that the solutions are inaccurate close to the source.
Many complex media consist of different regions, some with high µs' where the
diffusion approximation is perfectly valid, but others where the scattering is low. In
some cases, high absolute accuracy is not a great concern, and in such situations
the method can still be useful. An example is reconstruction in optical tomography,
which will be discussed in more detail in Sect. 4.5. 

The discrete ordinates method and the Monte Carlo method are similar in the sense
that both, in principle, solve the RTE accurately without approximations or
limitations. These methods are based on entirely different principles, but both
consume large amounts of computer power. The Monte Carlo method is preferred
whenever the distance between the light source and detector is small. The number
of photons required for acceptable accuracy increases exponentially with the
distance, so at distances larger than a few hundred mean free paths (2 – 3 cm in
typical tissue), the computation time becomes unrealistic. Discrete ordinates
computation time is proportional to the grid size, i.e., to the number of mean free
paths cubed, so although the computation requires powerful computers, it may still
be realistic to perform a discrete ordinates calculation in situations when the Monte
Carlo method is impossible.

The Monte Carlo method, thanks to its high accuracy, has gained a position as a
reference method that other methods are measured against. A large number of
models based on diffusion theory have been validated by means of Monte Carlo
simulations 53,56,90-100. Several authors have also presented hybrid models, where the
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region close to the source is modeled using Monte Carlo simulations, while in the
diffusive region far from the source diffusion theory takes over92,98,99.

3.3.1 Relationship between wave theory and transport theory
The relationship between electromagnetic wave theory and transport theory is a
question of fundamental interest. The two theories represent two different views of
light propagation on different levels of description. However, a link between these
two levels have already been discussed in connection with the phase function,
which can be calculated using, e.g., Mie theory, and incorporated into transport
models. The relation between wave and transport theory has been discussed by
Fante101 and Ishimaru26. Their analysis shows that the quantity radiance, as used in
transport theory, can be regarded as a statistical average of the time-varying
Poynting vector in wave theory, and thus that there exists a formal link between the
two theories.

Links between the wave and transport representations are important for practical
reasons as well. In the transport models, the scattering properties can only be
measured; there is no way of calculating the scattering coefficient from knowledge
of the composition of the medium. The simple example of scattering microspheres
shows how the scattering coefficient can be calculated using wave theory, and then
be applied in a transport model. In some media, the transport scattering coefficient
changes dramatically due to microscopic configurational changes. An example is
blood, which was studied in Papers V and VI. The only way to predict the
complicated variation of the scattering coefficient in blood under different
conditions is by means of applying wave theory on the scattering problem on the
microscopic level. Another example is when polarization effects are included in
transport models. Within the context of transport theory, depolarization of an
incident light beam is a property that can only be measured. On the other hand,
using for example Mie theory, it is relatively easy to calculate the depolarization in
connection with scattering from spherical particles84.
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4. The inverse problem

Returning to the very general description as posed in the introduction (Fig. 2.1), we
repeat the formulation of the inverse problem: find the optical properties p(r),
given that we have measured the propagating light Xprop(r,s,t), or some portion of
it. A linear representation of the forward problem would be

ApX = , (4.1)

where A is a matrix describing the forward mapping, and the solution to the inverse
problem simply becomes

XAp 1−= . (4.2)

This matrix representation implies that we assume that the problem is discretized:
we always search for the properties p(r) in a finite number of regions, each of
which is considered homogeneous, and measure Xprop(r,s,t) in a finite number of
independent measurements (Fig. 4.1). Unfortunately, the forward problem of light
propagation in turbid media is not linear, so the inverse problem cannot usually be
solved by simple matrix inversion without approximations. Instead, the general
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hematic picture of the general discretized inverse problem. The medium is
to N voxels, here indexed by i. Each voxel is assumed to have the optical
 µa,i, µs,i, and gi. The medium is illuminated with light denoted Xk, at positions
 k. The detected light denoted Xk,l, where the detection points are indexed by l.
umber of measurements is M, and the total number of unknowns is 3N.
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 4.2 The principle of solving a non-linear inverse problem by means of
erative algorithm.
or non-linear inverse problems is iterative. This procedure is illustrated
. The process is started by guessing initial values of p(r), which are fed
ard model. The computed values of Xprop(r,s,t) are then compared with
ed, and using a suitable minimization algorithm the values of p(r) are
he process is repeated until the computed and the measured values
in required accuracy, at which point the current values of p(r) are taken
 result.

pter, we will focus on some of the more important aspects of the inverse
he first consideration is the number of unknowns in the problem. This is
umber of spatial regions times the number of optical properties in each
 sometimes there are also geometrical parameters as unknowns, such as
ess of a layer. An important special case is when the medium is
 homogeneous, and the number of unknowns is reduced to the number
parameters. When the number of spatial regions is large, what we are
 is effectively three-dimensional mapping, or imaging, of the internal
f the turbid medium. The ultimate goal of this branch of tissue optics is a
r complete reconstruction of the optical properties at every point in the
his topic is covered in the section on optical tomography, Sect. 4.5.
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The first choice is which forward model to use. Methods based purely on
electromagnetic wave theory have never really been applied to inverse problems in
complicated turbid media, due to the computational requirements. Mie theory can
be used to characterize the properties of aerosols by measuring the scattering
pattern. Determining the geometry of aircraft from radar signals is another inverse
problem of this kind, albeit more complicated. In Paper V, an attempt was made to
explain the optical response from whole blood by means of T-matrix calculations.
However, the comparison was mainly qualitative, and the model cannot at present
be used as a forward model for the inverse problem. In the following treatment,
only models based on transport theory will be considered.

Next, the type of measurement is an important factor. Ideally, the number of
measurements should equal the number of unknowns, and they should all be
orthogonal in measurement space. In reality, the inverse problem is often ill
conditioned – some measurements are almost parallel in measurement space, and in
the case of imaging the number of measurements is smaller than the number of
unknowns. In image reconstruction, regularization methods are used to handle
these problems. For measurements of homogeneous media, the way to handle ill-
conditioned inverse problems is usually by one or several of the following
methods: (A) choose the measurement carefully to avoid or minimize the ill-
conditioned inverse; (B) minimize noise and errors in the measurement; (C) use
appropriate numerical methods to handle ill-conditioned problems.

The third part is the choice of optimization method. Many minimization algorithms
use the derivative, or an estimation of the derivative, to calculate the step δp that
p(r) will change in each iteration. Examples of standard algorithms are the
downhill simplex method (which does not require the use of the derivative) and the
conjugate gradient method (which does use derivatives)44. For image
reconstruction, efficient minimization routines are even more important because of
the high computational cost of evaluating the forward model for complicated
geometries; as few iteration steps as possible is desirable. This topic will be
discussed more in Sect. 4.5.

4.1 Two-parameter methods
The lowest number of unknowns possible is N = 1, meaning that only either the
scattering or the absorption is unknown. The other parameter is then assumed
known. We will, however, start the discussion with two-parameter methods, where
both the reduced scattering µs' and the absorption µa are unknowns, and the
medium is assumed homogeneous. An important fact immediately comes up: it is
not possible, using any two-parameter method, to measure µs. Either µs' is



measured, or both µs and g are measured, the latter which renders the method a
three-parameter method. Two-parameter methods are based on measurements of
the diffuse reflectance or transmittance from the medium, which can be spatially
resolved, time-resolved or frequency-resolved. These three methods are depicted in
Fig. 4.3. The bulk refractive index of the medium is assumed to be known in these
methods.
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Fig. 4.3 Three types of measurements to obtain the two parameters µs' and µa. (a) Cw
spatially resolved reflectance measurement; (b) time-resolved measurement by injecting a
short pulse and measuring the temporal point-spread function (either reflectance or
transmittance mode); and (c) frequency-modulated measurement (either reflectance or
transmittance mode). In (c), the phase shift ϕ and the modulation depth = (C/D)/(A/B) are
measured.
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4.1.1 Spatially resolved diffuse reflectance
Spatially resolved diffuse reflectance measurements based on continuous wave
(cw) light can be evaluated by fitting the measurement, R(r), with the diffusion
equation, Eq. (3.62). A measurement of R(r) generally leads to an over-determined
inverse problem, since only two values, R(r1) and R(r2), in principle are necessary.
The optimal distances r1 and r2, in the sense that the measurements are orthogonal,
can be found by considering Fig. 4.4. The “hinge” and “pivot” points indicate the



distances of invariance in terms of µa and µs', respectively. Typically, for optical
properties that are relevant for biological tissue, r1 ≈ 0, while r2 ≈ 3 mm102. In
practical situations, measuring at more than two positions is sensible, to make the
method more robust with respect to measurement errors or small inhomogeneities
at the measurement position. Since measurements close to the light source are
necessary to obtain orthogonal measurements, the diffusion equation is not an ideal
forward model. Still, several authors have shown good results using the diffusion
equation103-106. Alternatives to the diffusion equation are to use the Monte Carlo
method107, or simply to calibrate the measurement on phantom samples with known
optical properties102. The latter method requires the use of a non-linear calibration
method (cf. Sect. 4.4).
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4.1.2 Time-resolved diffuse measurements
Time-resolved measurements are performed by using short light pulses, in the
picosecond regime, and measuring the temporal point-spread function (TPSF) at
some distance from the injection point. The standard way of evaluating these
measurements is by fitting with the diffusion equation, Eq. (3.61). Diffusion theory
is well suited for this problem, since the distance between the source and the
detection point can be kept rather large. The fitting is performed with a non-linear
curve-fitting algorithm, e.g., the Levenberg-Marquardt method44,108. In an analogy
with the spatially resolved measurements, in principle only two values from the
TPSF are necessary to deduce µs' and µa. In rough terms, the early part of the TPSF
curve is invariant with respect to µa, while the tail is invariant with respect to µs'. In
fact, a reasonably good estimation of µa can be obtained by simply measuring the
slope of the trailing edge in a lin-log graph, as can be seen from the exponential
expression in Eq. (3.61). 

Although diffusion theory is often adequate as the forward model, sometimes one
wishes to measure with short source-detector distances. The Monte Carlo method
then useful. The problem is the computation time required when the Monte Carlo
method is incorporated in an iterative scheme like in Fig. 4.2. The computation
time can be reduced substantially by applying the white Monte Carlo method (Sect.
3.2.11). Only one simulation is then necessary, and the fitting can be performed by
rescaling the curve and adding absorption80,81.

Time-resolved measurements solve some of the problems associated with spatially
resolved cw measurements. The method is less sensitive to small inhomogeneities,
since only the shape of the TPSF curve and not the absolute intensity is used. A
small absorbing spot close to the detection point will thus only act as a gray filter,
and reduce the amplitude of the TPSF. The method is also ideal for measurements
of large volumes, as long as the intensity of the light is high enough to be detected.
The major drawback of the method is the expensive and complicated
instrumentation (cf. Sect. 5.3.3; Instrumentation). Like spatially resolved
measurements, time-resolved measurements are ideal to perform in vivo.

Measurements with sinusoidally amplitude-modulated light are mathematically
equivalent with time-resolved measurements. Expressions that directly link the
measured phase and modulation from frequency-resolved measurements to µs' and
µa have been developed, based on diffusion theory109,110.



4.2 Three-parameter techniques; The integrating sphere method

An elegant way of determining all three optical properties – µs, µa and g – is
presented by the integrating sphere method. The technique requires small samples,
which may be an advantage in some situations, but usually it is the main limitation
of the integrating sphere method, since in-vivo measurements of tissue are
impossible. An integrating sphere is designed to collect all light flux that enters the
sphere, and a portion of it, α, is detected by a detector that is mounted at a position
on the sphere wall. The samples are cut into thin slabs (usually around 1 mm for
biological tissue), which can be placed either at the entrance port or the exit port of
the sphere (see Fig. 4.5). The sample is illuminated by a collimated light beam that
is aligned with the optical axis of the two ports of the sphere (other measurement
geometries are possible, e.g., diffuse illumination of the sample111,112). This set up
enables measurement of the transmittance (T) and reflectance (R) of the thin
sample. When the transmittance measurement is performed, the exit port is covered
with a calibrated plug with known (high) reflectance, Rref. A reference
measurement is carried out with no sample, which yields a measure of the
Detector

Reference
sample

Sample Sample

Reference
sample

Entrance
port

Exit
port

(a) (b)

(c) (d)

Fig. 4.5 Integrating sphere measurements. (a) shows the basic set-up, with a collimated
beam along the port axis of the sphere. This is also used to perform background
measurements. In (b), a reference measurement is performed on a calibrated sample which
yields αE0. In (c), the transmitted signal αET is measured. Finally, in (d), the reflected
signal αER is measured.
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unattenuated beam, αE0. From the sample measurements, αET and αER, the
transmittance and reflectance can be calculated as

00 E
E

E
ET TT =

α
α

= (4.3)

and
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R
E
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RR R
ref

R
ref =

α
α

= . (4.4)

So far, the method described is a two-parameter method: knowledge of R and T is
sufficient to determine µs' and µa. In this way, the integrating sphere method was
used in Paper V to measure the optical properties of flowing whole blood. To
determine the g-factor, and thus separate µs' in µs and g, a third measurement is
necessary. The usual procedure is to measure the collimated transmittance and
derive µt using Beer-Lambert’s law, Eq. (3.36). The three parameters, R, T and µt,
are sufficient to give a reasonably well-conditioned inverse problem.

To solve the inverse problem, the adding-doubling method has been used
extensively as the forward model112-114. Adding-doubling provides quick
computations, but suffers from an important weakness. In practice, there are always
lateral losses of light due to the finite size of the sample and/or integrating sphere
ports. Such losses lead to underestimation of R and T compared with the ideal case,
which in turn lead to overestimation of the absorption properties of the
sample115,116. Another approach is to use the Monte Carlo method, where the lateral
losses easily can be incorporated in the model. The problem with Monte Carlo
simulations is again the long computation time. To overcome this, one can compute
a database of values of R and T which spans the region of µs, µa and g of interest,
and then interpolate in this database to find the correct values117-119. The solution of
the inverse problem is thus transferred to a method of using look-up tables. The
interpolation algorithm can be made in different ways, e.g. by using spline
interpolation117-120, which was applied in Papers V and VI, or by means of a
polynomial regression technique121. The latter method has proved to be superior,
and was used in Papers II and IV. The polynomial regression technique is
described in more detail in Sect. 4.4.

Several sources of error have to be considered when performing integrating sphere
measurements. One type has to do with the sphere itself, and occur because the
ratio between the area of the various ports of the sphere and the total area of the
sphere is not zero. Fundamental integrating sphere theory has been treated by
several authors111,122-124. The most influential sphere error occurs in the



measurement of the transmittance. The sphere geometry is affected slightly by
introducing the sample at the entrance port, so that the sample itself can reflect
some of the light inside the sphere. The reference measurement, taken without
sample, should therefore be corrected. An alternative, superior, to Eq. (4.3) for
calculating T is given by
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= , (4.5)

where εs is the ratio of the sample port to the total sphere area, and Rw is the
reflectance of the sphere wall124. An example of the correction factor compared
with Eq. (4.3), for the sphere used in the experiments in this thesis (Papers II, IV –
VI) is shown in Fig. 4.6. The correction in Eq. (4.5) can be improved further by
incorporating effects due to the fact that some of the transmitted light is still
collimated, but this correction is small compared with Eq. (4.5)125.
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on factors become more important when two integrating spheres are
neously, because of cross talk through the sample between the spheres.
integrating sphere set up has been used as a means to provide

s measurement of R and T 111,112,114,118. However, the derived correction
the double integrating sphere are dependent on the assumption of
nsmitted and reflected light from the sample, and the accuracy is
en this requirement is not fulfilled. The double integrating sphere
ld therefore be used with caution.
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The next important potential source of error has already been mentioned: lateral
losses of light due to the finite size of the ports. This leads to overestimated
absorption properties for samples with low absorption115,116. The losses can easily
be 5% for a typical measurement on a sample with low absorption, which means
that R + T ≈ 0.95 instead of the true R + T ≈ 1. The lateral losses can be corrected
when the Monte Carlo method is used for evaluation. Measurement of low
absorption coefficients is, in general, a weak point of the integrating sphere
technique, even if the above corrections are included. The absolute error in the
evaluation of µa is directly determined by the error in the measurement of R and T.
If µa is small, even an error as small as 1% in the measurement will lead to relative
errors of several hundred per cents in µa.

The collimated-beam measurement has its own potential sources of error. The
fundamental idea behind this measurement is to detect only the light that has
penetrated the sample without being scattered. Ideally, this implies measuring in a
zero collection angle. In practice, the measured signal is proportional to

scatteredcolmeas EEE ε+= , (4.6)

where ε is the fraction of the scattered light that falls inside the collection angle of
detection. Suppressing the scattered light in the set up is imperative, but at some
point the fraction of scattered light can no longer be neglected. The error increases
linearly with sample thickness and scattering coefficient, quadratically with the
collection angle, and is inversely quadratically proportional to (1 – g) and the
refractive index of the sample126. In practice, the range of possible measurements
can be increased either by making the samples thinner, or increasing the radiance
of the light source to enable a smaller collection angle of the detector. Before any
collimated attenuation measurements can be trusted, a thorough characterization of
the experimental set-up must be performed. This is done by recording Emeas for a
series of samples with known values of µt, and then plotting these in a lin-log graph
to determine the linear range, and upper threshold value of µt for which the
measurements are relevant. The dynamic range of the measurement with the
sample compared with the reference measurement is also a problem, which can be
solved by using neutral density filters for the latter measurement. This was
practiced in Papers II and IV.

Using a laser for the collimated beam measurement would seem ideal, because of
the high radiance. Unfortunately, the high coherence of most lasers introduce other
errors in the measurement. The sample is usually placed in a glass cuvette, or
clamped between two glass plates. When using a high coherence light source,
interference effects in the glass plates can cause large variations in the detected
signal.
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The collimated beam measurement can be combined with the double integrating
sphere for simultaneous measurement of all three parameters. However, in this
situation, some of the scattered light from the sample will reflect off the wall of the
second sphere, reflect again off the sample and interfere with the measurement.
The problems associated with this kind of measurement have been discussed in
Ref. 120. The conclusion was that often only relative measurements of the optical
properties are possible using this set up, due to the errors. This can, in some
instances, be a price worth paying for the benefit of being able to measure all three
properties simultaneously.

The integrating sphere method is ideal for situations where destructive testing can
be tolerated. It has been used on paper, plastics, and other materials. One
interesting application is transparent PLZT ceramics, which change their scattering
characteristics when a voltage is applied127. For biological tissues, the situation is
more complicated. If in-vitro sampling can be tolerated, additional problems arise
because the tissue is affected by the handling. The absorption properties in vivo
depend on both the blood circulation and the oxygen saturation of the tissue. These
effects are not present in in-vitro measurements, which means that the obtained
absorption coefficients do not reflect the in-vivo situation. The scattering properties
are, however, usually relatively unchanged by in-vitro handling, with the exception
of fatty tissue if the temperature is allowed to drop to room temperature, which
causes crystallization of the fatty acids. Some of these aspects are discussed in
Paper IV.

The integrating sphere method, combined with a collimated beam measurement, in
practice provides almost the only way to measure all three parameters (µa, µs, and
g) of bulk material accurately. The g-factor can also be measured using a
goniometric technique128, but this method is more complicated, and yield the same
problems with in-vitro handing as the integrating sphere method. A technique that
resembles the integrating sphere method has been proposed by Dam129, which does
not require the use of an integrating sphere. Instead, the method relies on
measurements of the scattered light in only a few, well chosen positions and angles
from a thin sample. The optical properties can then be determined using an inverse
Monte Carlo method, much like for the integrating sphere.  

One technique for measurement of the g-factor in moving, scattering liquids (such
as blood) has been proposed, based on laser Doppler measurements130. The method
utilizes the fact that for high values of g, a small change in g is related to a large
relative change in the average scattering angle. The Doppler shift is proportional to
sin(θ/2), which means that the Doppler spectrum is sensitive to small variations in
g. The g-factor can be determined by fitting the measured Doppler spectrum with
theoretical spectra from Monte Carlo simulations. However, the method requires
that µs is known, and is thus not a true three-parameter method.
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4.3 Layered media and simple embedded inhomogeneities
N-parameter methods where N is small and the medium is inhomogeneous, yet still
simple, can be generalized from the homogeneous methods. A semi-infinite, two-
layered medium is interesting from a tissue optics perspective, since a two-layer
geometry, while far from perfect, presents a much more realistic model than a
homogeneous in many situations. For example, the skin usually has different
optical properties than the underlying tissue (cf. Sect. 5.1; Optical properties of
tissue). Here, one can assume that N = 5 for the full inverse problem (provided that
the bulk refractive index is assumed known): µs1', µa1, µs2', µa2, and the thickness
of the upper layer. At this level of complexity, hope of measuring µs and g
separately is given up. The problem can be simplified if one or more of these
properties are known a priori. A natural measurement would be to perform time-
resolved detection at two or three distances from the source: at close distances,
primarily the top layer is probed, while at longer distances, more of the lower layer
will be probed. This two-layered problem has been approached by several
investigators57,96,97,131,132. Typically, the diffusion approximation is used as the
forward model, although a hybrid Monte Carlo-diffusion model has also been
presented99. The optimal source-detector distances depend on the optical properties
and the thickness of the upper medium, so some prior knowledge of the medium
greatly helps in the measurement.

A method to solve the inverse problem for many layers has been presented by
Hielscher et al.133. The method is based on tomographic reconstruction techniques,
which is the topic of Sect. 4.5. An analytical approach for the multiple-layer
problem was adopted by Ripoll et al.132

Other examples of simple inhomogeneous geometries include spherical inclusions.
This geometry has often served as a simple model of a tumor inside the tissue.
Analytical solutions for the diffusion equation exist59, and some investigators have
developed inverse models134-136. Inverse models for cylindrical inhomogeneities
have also been treated137.

4.4 Polynomial regression
The high computational cost of most forward models is a fundamental problem for
the inverse problem. When the number of unknowns is low, as for the two- or
three-parameter methods, an alternative to performing the forward computation in
an iterative fashion is to approximate the solutions to the forward model with N-
dimensional polynomials. The inverse problem can then be solved using a fast root
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solver. In Papers II and IV, this method was used to evaluate the integrating sphere
measurements, where N = 3. A pre-computed database of Monte Carlo results was
generated, yielding maps of R and T as functions of µs, µa and g (see Fig. 4.7). The
Monte Carlo data were then fitted to an expansion of Chebychev polynomials with
least-squares regression, as is shown in Fig. 4.7. Chebychev polynomials form a
complete orthogonal function set and are thus suited for this kind of expansion. The
result is the polynomials Rcheb(µs,µa,g) and Tcheb(µs,µa,g). To determine the optical
properties from the measured values Rmeas, Tmeas and µt,meas, the new polynomials 

measaschebas RgRgF −µµ=µµ ),,(),,( (4.7)

measaschebas TgTgG −µµ=µµ ),,(),,( (4.8)

meastasas gH ,),,( µ−µ+µ=µµ (4.9)

are formed. The solution is obtained by finding the common roots of the
polynomial equations formed by setting these polynomials equal to zero. A
Newton-Raphson solver was used for this.

The advantage of the polynomial regression technique over spline interpolation is
that the former smoothes the statistical errors in the individual Monte Carlo data
points, yielding better accuracy than splines, which tend to follow the small
deviations of every data point exactly121. The polynomial regression technique is
also faster than spline interpolation, although computation time is not, in practice, a
problem for either method on a modern computer.

The use of regression methods is also convenient when, instead of a forward
model, a calibration is performed to determine the optical properties. The database
of Monte Carlo results is then replaced by measurements on samples with known
optical properties (phantoms, see Sect. 5.2). This technique was employed in Paper
II to calibrate the spatially resolved fiber probe system.
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Fig. 4.7 Polynomial regression for Monte Carlo data to solve the inverse problem for
integrating sphere measurements. (a) and (c) show the Monte Carlo-computed data for T and R,
respectively. (b) and (d) show the corresponding fitted polynomials. (e) and (f) show the
relative error between the Monte Carlo data and the polynomials. Data are shown for g = 0.9.
66



67

4.5 Optical tomography
An initial step toward a full reconstruction of the optical properties at every point
in a medium is to perform a series of measurements using one of the methods
previously described, either in scanning mode or in parallel. This procedure yields
a spatial (topographic) map of the approximate optical properties between the
source-detector pairs. An example of this kind of measurement in reflectance mode
is monitoring the oxygen saturation state in brain cortex (parallel mode)138-140.
Transmission mode measurements of this kind have been done through female
breasts to detect tumors (scanning mode)136,141. The measurements can be either
time-resolved or frequency-resolved. 

In some instances, recovery of the scattering and absorption properties may not
even be necessary. Examples of this are when only a contrasting region is to be
detected, or when searching for a dynamic change in a region. In the case of breast
cancer detection, the time resolved data (the TPSFs) can be analyzed directly in
terms of early or late light time windows136,142, in order to find the optimal spatial
contrast function. Dynamic changes in blood flow in different areas can be detected
by direct correlation coefficient analysis140. However, finding contrast by using
direct methods can be problematic for several reasons. The shape of the sampling
volume of the light through a scattering medium implies that most of the contrast
will emanate from structures close to either the source or the detector, while deep
structures tend to stay unrevealed. In addition, these methods yield little or no
information on the functional origin of the contrast, which makes it difficult to
optimize the contrast function, and also knowing what one actually sees.

True 3D reconstruction of the optical properties, i.e., µs' and µa, is often denoted
optical tomography (or diffuse optical tomography). The inverse problem is usually
denoted reconstruction in this context. An early proposal to solve the
reconstruction problem was made by Singer et al.143. The forward model was in
this case a simple six-way flux model, and the inverse problem was solved in the
way depicted in Fig. 4.2, using a gradient descent method to minimize the
difference between the computed and measured data. During the last decade,
extensive research has been conducted within the field, both in terms of instrument
development and theory. The difficulties on the theoretic side can be categorized
by the need to reduce the amount of computations, and how to best handle the ill-
posed nature of the inverse problem. 

An issue of fundamental interest is whether a unique solution to the reconstruction
problem exists in general. This question has been explored and it can be shown that
if only cw measurements are performed, there is no unique solution even in
principle144; many solutions exist that give identical measurement data. For time-
resolved and frequency-resolved measurements, a unique solution exists in
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principle, but only in the limit of continuous source distribution and measurements.
In practice, therefore, reconstruction problems should be considered non-unique.
The implications are that the reconstruction problem is fundamentally ill
conditioned, and that reconstruction from cw measurements is even more so.
Nevertheless, some authors have reported that reconstruction using cw data is
possible in practice145,146.

The brute-force approach, i.e., incorporating a full-solution forward model and a
standard minimization algorithm in an iterative manner, has proven to be
computationally intractable. A large variety of proposals for the reconstruction
problem has been put forward, starting with simple backprojection methods such as
found in x-ray tomography (see the review by Arridge50). However, the
development has mostly focused on a perturbation approach. Consider the fluence
rate φ0(rs,rd) at the detector sites rd due to sources at rs. Provided that a change in
the optical properties µa and µs' is sufficiently small, expressed by δp, the problem
can be linearized so that the perturbed fluence rate is given by 

δφφφ += 01 (4.10)

∫= rpr d)( δδφ K , (4.11)

where K is a kernel defined by the forward problem147,148. This is the Born
approximation. An alternative way of linearization is the Rytov approximation, 

)exp(01 δφφφ = . (4.12)

Thus, in the Rytov approximation, log(φ) is linear. In terms of minimizing the ill-
conditioned inverse, the Rytov approximation seems to be preferred by most
authors147-149. The linear method can be used directly to determine changes of the
optical properties in a medium, or used when there is a reference medium available
with constant optical properties. This approach can also be thought of as taking
only the first step in the iterative approach depicted in Fig. 4.2. It has been shown
that it is not possible to obtain absolute quantitative information using non-iterative
linearized methods147. The integral equation can be written on matrix form as 

pJδδφ = (4.13)

where J is the Jacobian. The Jacobian can be calculated using the photon
measurement density functions discussed in Sect. 3.2.1465,89.

Equation (4.13) provides the way to calculate the update vector needed in the
iterative algorithm in Fig. 4.2, to solve the non-linear problem. Methods where the
Jacobian matrix is explicitly created and inverted are called Newton methods, of



69

which a typical example is the Levenberg-Marquardt method44. Rather than
explicitly computing and inverting the Jacobian, which is computationally very
costly, in some instances it is possible to calculate the gradient of the objective
function directly for use in the minimization algorithm50,61,148,150,151. Arridge et al.
have shown that using this gradient method and a FEM representation of the
forward problem, the computations can be cut down significantly50,151. The
limitation of this approach is that the type of measurement is restricted, since the
fluence rate φ is never explicitly computed. In the FEM representation, the
measurements are restricted to moments of the TPSF, i.e.:

∫
∞

∞−

= ttt nn d)()( φφ , (4.14)

where φ(n) represents the nth moment. This method has been demonstrated several
times, both for simulated and experimental data50,150-155, and software is available
for download156.

So far in this treatment, the diffusion approximation has been taken for granted in
terms of forward model for the reconstruction problem. Other methods have been
explored, e.g., a cw discrete ordinates model have been implemented and
demonstrated by Klose and Hielscher48,49,157. Considering the computational cost
even of using diffusion models, however, it will likely take some time before more
advanced forward methods become widely used. Inclusions of regions where the
absorption is high or scattering is low present a problem for diffusion models. This
has been addressed by some investigators, and hybrid models have been developed
which deal with regions of low scattering using radiosity theory158-160.

The ill-posed inverse implies that the solution is unstable with respect to small
errors and noise in the measurement data. Also, the problem is usually under-
determined. These issues are handled by the use of regularization methods. This is
accomplished by adding a penalty term to the objective function to be minimized,
which represents some a priori information50. Expressed in words, prior knowledge
is for example information of the behavior of the solution. The nature of diffusive
propagation causes all sharp features to be smoothed, so the regularization function
forces the solution of µs' and µa to be smooth functions in space. This effectively
introduces dependencies between the unknowns in the problem, and stabilizes the
inverse.
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5. Practical aspects and applications

5.1 Tissue optical properties
The work this thesis is based upon has mainly focused on tissue optics, and the
following sections cover this topic in some detail, with the focus on the scattering
structures in tissue on the cellular level, as well as the most important absorbing
substances. The cells are the building stones of most biological tissues. From an
optics perspective, the important features of the cells are their size, shape,
refractive index in the various compartments, possible internal structures, and the
abundance and distribution of absorbing substances. Different cell types may have
very different properties, as we will see. The discussion will start with a review of
the microscopic features of cells that affect scattering properties, and then continue
with the absorption properties.

5.1.1 Scattering properties of tissues
The refractive index of tissues varies in a complicated manner on a microscopic
level. Within the context of transport theory, a macroscopic, or bulk, refractive
index is defined. For tissues, this can be measured by analyzing the Fresnel
reflection off a tissue surface. The refractive index of most tissue types measured
this way are in the range 1.38 – 1.41 at 633 nm161. A slight dispersion of 2 – 4% is
present in the visible region.

As stated earlier, a detailed description of the complex refractive index at a
microscopic level in tissues is unfeasible. Nevertheless, some important
conclusions regarding the scattering characteristics can be drawn by a microscopic
consideration. The cells and the intracellular matrix consist mostly of an aqueous
solution of electrolytes and proteins. Other solutes such as sugars and alcohols are
also present at lower concentrations. The main scattering features in tissues are the
mitochondria162, and in cells where they are present, lipid vesicles (fat droplets).
The whole cell structure also contributes, but to a less extent163. Blood cells are an
important special case, which will be discussed in more detail in Sect. 5.1.9. The
cell nuclei add a surprisingly low contribution to the scattering, a fact that may be
attributed to the low volume concentration of nucleic membranes and DNA162,164.
However, Mourant et al. have shown that the DNA is a dominating contributor to
scattering in large angles from the incident light beam165. A detailed review of the
microscopic scattering features of tissue can be found in Ref. 120. The scattering
properties of tissues are generally regarded to be fairly constant and invariant to
physiological changes, as well as handling of tissue samples in vitro. One
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important exception is fatty tissue, which can change its scattering radically if the
fatty acids are allowed to crystallize if the temperature drops.

Many tissue types exhibit anisotropic structures, for example as a consequence of
elongated cells that are oriented in a preferred direction. Examples include muscle
fibers, bone, teeth166, epithelial surfaces167 and flowing blood. Anisotropic
structures can induce polarization-altering effects such as birefringence and
dichroism. Polarimetry of tissues has emerged as an intense area of research during
the last few years, since it is hoped that more information on the tissue can be
gathered. The Stokes parameters of several tissue types have been measured168.
Polarization measurements of flowing blood were performed in Paper VI. Even
when the tissue is isotropic, polarimetry can give useful information169,170.

The spectral shape of the scattering coefficient and the g-factor are influenced by
the microscopic features of the scattering. This means that by analyzing such
spectra, it is possible to deduce information on the scattering structures. From
considerations of single scatterers, we know that the scattering cross section
increases as the size of the scatterer increases. Larger scatterers also lead to a more
forward-favored scattering, i.e., higher g-factor. By comparing the shape of the µs
spectrum with Mie calculations, a Mie equivalent scatterer size can be calculated.
This was performed in Paper IV. The Mie equivalent size should not be interpreted
as an in any way exact measure of the scatterer size, but it may serve as a rough
estimate of the sizes of the scattering structures. Another way to extract
information on the scattering structures from tissue surfaces has been explored by
Perelman et al.171. The method relies on spectral measurements of the reflectance
off the surface, and analyzing actual spectral oscillations of the Mie scattering from
the topmost cell layers.

The recent developments in optical coherence tomography has provided a tool to
obtain almost the resolution needed to perform in-vivo imaging at the cellular level,
down to depths of a few hundred µm172-175. Optical coherence tomography is an
interferometric technique where the imaging information is provided by comparing
the path lengths of light reflected at different depths in the tissue, with that of the
reference arm of the interferometer. The depth resolution is then defined by the
coherence length of the light.

Knowledge of the details of scattering in tissue is important for the fundamental
understanding. In most practical applications, the scattering coefficient is
determined on a macroscopic basis, and the microscopic features are usually of less
importance. There are, however, some situations where detailed understanding of
the microscopic scattering is essential. Optical coherence tomography is one such
method. Another typical example is blood, which can alter its scattering coefficient
by up to 10% depending on the flowing conditions. This phenomenon cannot be



fully explained nor controlled without insight into the scattering characteristics of
the blood cells at a microscopic level. This will be discussed more in Sect. 5.1.9,
and is also the topic of Papers V and VI.

5.1.2 Absorption properties of tissues - chromophores
In the visible and NIR region, the main absorbers in soft tissues are water,
hemoglobin, and lipids. Structural proteins such as collagen absorb mainly in the
UV. In muscle tissue, myoglobin is a strong absorber in the visible. Mitochondrial
chromophores, cytochromes, are abundant at lower concentrations, but because of
their high extinction coefficients they may have strong a contribution to the
absorption. In dark skin, melanin has a high absorption, although this is limited to a
rather thin layer. These compounds comprise the main chromophores in soft
tissues, and it is usually sufficient to include these in a spectroscopic consideration.

The absorption spectra of tissue chromophores presented in Sects. 5.1.3 – 5.1.7 are
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Fig. 5.1 Absorption coefficient of pure water. From Hale and Querry176.
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shown in units of the absorption coefficient, defined using the natural logarithm.
To obtain the extinction coefficient, which is defined using log10, one must divide
by ln(10) ≈ 2.3026.

5.1.3 Water
Water is present in all soft tissues to varying degree. Muscular tissue can consist of
up to 3/4 water, while in adipose tissues the water content may only be 1/5. The
absorption properties of water are slightly affected by the presence of various
solutes, but this effect is typically so small that it can be neglected in tissue optics.
An absorption spectrum of pure water is presented in Fig. 5.1. In the visible region,
the absorption can be regarded as insignificant, but it becomes a dominant
chromophore of most tissues above 900 nm with a peak at around 970 nm.

5.1.4 Hemoglobin and myoglobin
The physiological role of the heme proteins – hemoglobin (Hb) and myoglobin
(Mb) – is to transport oxygen to the cells. Hemoglobin is a globular protein to
which four heme groups are attached. In the center of each heme group sits an iron
atom, which provides the oxygen binding properties. Myoglobin is abundant in
muscle cells and act both as an oxygen transporter and as a storage compartment of
oxygen for the working muscle cells. The myoglobin molecule is roughly the size
one fourth of the hemoglobin molecule and carries only one heme group. The
absorption spectra of the heme proteins are very similar, with strong bands in the
UV, around 420 nm (the Soret band), and around 550 nm. The absorption bands
are slightly shifted between myoglobin and hemoglobin, which allows
differentiation of the two chromophores. Furthermore, the absorption differs
markedly between the oxygenated and deoxygenated varieties (see Figs. 5.2 and
5.3), allowing measurement of the oxygenation state by means of spectroscopic
methods. In the literature one often sees the use of the term “equivalent” with
regard to the molar absorption coefficient of hemoglobin. One equivalent is ¼ of
the molar absorption, since it refers to the absorption per heme group. In the
spectra in Fig. 5.2 the true molar absorption coefficient is presented.

The molecular structure of the heme proteins, and thus both the functionality and
absorption properties, are slightly different between species. For example, the Soret
band is shifted from 556 nm for sperm whale myoglobin (Fig. 5.3) to 560 nm for
the horse derivative178. The kinetics of the oxygen binding is also different. Human
hemoglobin has a high oxygen affinity, and saturates with oxygen within seconds
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Fig. 5.2 Absorption coefficients of human Hb and HbO2. Note that the
spectra are presented in molar absorption rather than equivalents (see
text). Data compiled by Prahl177 from various sources.
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xposed to air. In comparison, bovine hemoglobin saturates very slowly and
ept for minutes in air without noticeable effects179.

ion to the normal oxy and deoxy states described above, heme proteins may
 oxidized to form methemoglobin and metmyoglobin. In this process, the
ferrous (Fe2+) state oxidizes to the ferric (Fe3+) state, and the oxygen

 properties are lost. Under normal physiological conditions the amount of
d heme proteins is low, around 1-2% for both hemoglobin and myoglobin.
gical conditions can increase the oxidization, and it was shown in Paper IV
ermal coagulation of muscle tissue will induce the formation of
globin. The ferric derivatives have different absorption spectra than the
 as shown in Fig. 5.3 for metmyoglobin. 

ed and NIR region, the spectra of hemoglobin and myoglobin are virtually
l. The implication of this is that it is impossible to distinguish between the
ing transillumination methods. In such cases, a priori knowledge is
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necessary to quantify the abundance of hemoglobin and myoglobin in the tissue.
Typically, myoglobin is dominant in muscle tissue with a ratio around 10:1
compared with hemoglobin, while hemoglobin is the only heme protein in most
other tissue types178. In muscle tissue, the concentration of myoglobin is around 5
mg/g180. The hemoglobin content depends on the blood perfusion in the tissue.
Whole blood normally has a hemoglobin concentration of 7.5 – 10 mM.
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Fig. 5.3 Molar absorption coefficients of Mb, MbO2 and MetMb from
sperm whale. Adapted from Antonini and Brunori178.
Lipids
s are present in adipose tissue, while the content in other tissues is low or non-
nt. In adipose tissue the concentration amounts to around 70%. A typical lipid
um is shown in Fig. 5.4. Different types of fat have similar spectra. Like
, the lipid absorption can be neglected in the visible, but becomes significant
 NIR with a low peak at 760 nm and a strong peak at around 930 nm. In
ns, adipose tissue appears yellowish to the eye due to β-carotene dissolved in
ids. The absorption spectrum of β-carotene is also shown in Fig. 5.4.
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Melanin
 is the dark pigment present in skin, hair, and the iris. It is synthesized by

les called melanosomes. Melanin cannot be refined in its pure form, since it
uble, and the chemical structure becomes altered by extraction. Jacques and
ffe have investigated the absorption coefficient of the melanosomes182, and
esented an approximate empirical formula183:

-148.312 cm  1070.1 −λ⋅=µ a (5.1)

 is in nm. This spectrum is shown in Fig. 5.5. The spectrum presents no
atures, and since the melanin is present only in a thin layer, it acts as a gray
hen measurements through the skin are performed. This can be a problem
erforming measurements on persons with very dark skin. Melanin is also a
 for optical detection of malignant melanoma, often containing melanin in

ncentration, since most of the light is then absorbed in the lesion.
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itochondrial chromophores – cytochromes
se tissue, hemoglobin, lipids and water constitute the relevant

hores in the NIR region. The same is usually true for tumor tissue. Tissues
 high mitochondrial content may have a significant contribution by other
hores to the absorption. The respiratory chain in the mitochondria consists
mber of organometallic proteins that have high absorption, called

es. The most important from a spectroscopic point of view are
es c, b and c-oxidase (the latter sometimes denoted aa3)184. The spectral

s of the cytochromes are strongly affected by whether the molecule is in
zed or reduced state. Absorption spectra of these cytochromes are shown
.6. In-vivo measurements of the absorption of cytochrome c have been
 in the NIR region as a means to monitor the oxygenation state of
brain tissue184. Mitochondria are present in most cells, but in some tissue
 abundance is higher. For example, in non-blood perfused liver tissue,
e absorption in the NIR is attributed to cytochromes185.
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Discussion – absorption properties of tissue
ion approximately 650 – 1000 nm is sometimes called the optical window
e, due to the low overall absorption in this region. The scattering is also
in this region compared with the UV and visible. Hemoglobin and
bin are, in practice, indistinguishable in the region. The oxygen saturation
wever, be determined by using in principle only two wavelengths. This is

 in pulse oximetry186,187, and it is a major goal for most proposed modalities
sillumination. The oxygen saturation gives important information of the
ogy of the tissue, especially if it can be combined with imaging and/or
 of dynamic changes in oxygen saturation. For example, it is generally

d that the oxygen saturation differs markedly inside tumors as compared
e surrounding tissue. Various methods to determine the oxygen saturation
ectral measurements have been presented in the literature105,106,131,188-198.
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By adding more wavelengths to the analysis, it is possible to characterize more
substances in the tissue. The aim of optical tomography of soft tissues is to
quantify the concentrations of the four spectrally relevant chromophores in the
optical window: oxy- and deoxyhemoglobin, water, and lipids. To achieve this, in
principle four wavelengths are needed, e.g., around 660 nm, 800 nm, 920 nm and
970 nm. It is hoped that the information given by the state of oxygen saturation,
together with the concentrations of water and lipids, the tissue morphology, and
possible dynamic changes, will provide enough information to diagnose diseases
such as malignant lesions.

The distribution of chromophores on a small-scale level can be an important factor
for the overall absorption properties. The chromophores are, as we have seen, often
confined to discrete compartments on a cellular level. Also, the capillary network
of blood vessels is a highly inhomogeneous structure on a microscopic level. When
chromophores are accumulated in certain regions, shielding effects occur, resulting
in a reduced overall absorption. Since transport theory assumes homogeneous
distribution of absorbers on a microscopic level, the deduced absorption coefficient
tends to be underestimated. Thus, the same volume concentration of, e.g.,
hemoglobin in tissue results in different absorption depending on how the
substance is distributed. This phenomenon has been studied by several authors, and
corrected transport models have also been developed106,199-202. As a somewhat
simplified explanation, this effect can also describe the increased absorption
coefficient of flowing blood, as compared with non-flowing blood, reported in
Paper V. In non-flowing blood, the red blood cells tend to form  aggregates, and
shielding effect thus occur. However, in whole blood, the scattering effects are too
complicated for this description to be complete, as is discussed in more detail in
Paper V.

5.1.9 Optical properties of blood
At first glance, blood appears to have deceivingly simple optical properties. The
scattering and absorption are largely governed by the red blood cells (RBCs): their
refractive index in relation to that of the surrounding plasma, and their absorption
due to hemoglobin. The RBCs are virtually identical, biconcave discs with the
dimensions approximately 2×8 µm. Unlike most other cells, they have no nucleus,
so the scattering occurs only at the interface defined by the outer cell membrane. It
has been shown that the scattering of the membrane itself is negligible203,204,
meaning that only the size, shape and index mismatch are the relevant parameters.
The refractive index of blood plasma has been measured to 1.345205, and the
relative refractive index of the RBC to 1.04 – 1.05 at 633 nm206.
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The complexity of blood optics comes from the fact that it is a moving liquid with
a very dense concentration of RBCs. Many studies have concluded that the light
transmission through flowing blood can change as much as 30% depending on the
flow rate. When attempting quantitative optical measurements of blood, such a
large variation is not acceptable unless its mechanisms are understood and can be
controlled. The optical properties of blood in motion was investigated in Papers V
and VI. The key issue is understanding the microscopic geometry of the RBCs in a
flow field, both in terms of deformation and their orientation, and how this relates
to the light scattering and absorption. Detailed studies of the behavior of RBCs in
flowing blood were performed in the 1960s and 70s, and have revealed several
important observations about the morphology of the RBCs. Many experiments
were conducted on diluted blood, because of the easier experimental requirements.
However, both the rheological and optical properties are very different for whole
blood, which has a volume density of about 40% RBCs. 

To get reliable data for whole blood, different experimental techniques have been
used, e.g., snap freezing blood vessels with liquid nitrogen207, or microscopic
photography of thin layers of blood subjected to shear flow in viscometers208-212.
The basic assumption made in the latter method is that it is the shearing in the flow
field that gives rise to changes in RBC morphology. For a liquid flowing through a
duct, the shear rate is the velocity gradient perpendicular to the duct wall. In a
circular duct, the velocity profile is parabolic for laminar flow of a Newtonian
liquid (Poiseuille flow), and the shear rate varies linearly with the maximum values
at the wall. Blood is generally considered a non-Newtonian liquid, however, and
propagates with a blunted parabolic profile, which becomes a flat “plug” if the
diameter of the duct is small enough209,213,214. For ducts with a diameter larger than
100 µm, the velocity profile is fairly well approximated with the parabolic. The
shear rate for a duct of circular cross section, with radius R, is given by 

rR
QG 2

4
π

= (5.2)

where Q is the volumetric flow and r is the radial distance from the central axis.
With this assumption of shear rate as the background, by studying the behavior of
RBCs in a viscometer one can emulate the shear rate in a duct at different radial
distances from the central axis.

Another method to study high concentrations of cells is by preparing ghost cells,
which are index matched with the surrounding liquid. These become invisible in
the microscope, but retain their mechanical properties. By adding a small amount
of tracer cells with the original optical properties, one can study the morphology
under a microscope209. These methods have revealed that the RBCs behave much
like liquid droplets dispersed in the blood plasma, rather than as rigid particles. At



high shear rate, the RBCs tend to elongate and align in the direction of the shear.
At low or zero shear rate the situation is also complicated. The RBCs tend to form
aggregates in various forms, e.g. the famous rouleaux, in ways that are governed by
the biochemistry of the cell membrane surfaces and the composition of the plasma.
In Fig. 5.7, sketches of aggregated blood cells are depicted at various shear rates. In
normal human blood, almost all aggregates become dispersed at shear rates above
46 s-1 208,210. However, even at higher shear rates, small roleaux of 4 – 10 cells may
resist and tumble along with the single cells. The aggregation properties of blood
are the reason for the nonlinear viscosity as the shear rate increases, and thus the
fact that blood may be described as thixotropic, i.e., the viscosity is higher at low
shear rate. Aggregation also affects the scattering properties strongly, as was seen
in Paper V.

The morphology of RBCs can also be studied using indirect methods such as
measurements of the angular distribution of scattered light from thin layers –
ektacytometry205. Several attempts to describe the scattering from individual RBCs
have been made. By using T-matrix computations, it is possible to model the
effects of both deformation and orientation of single RBCs9. However, because the
RBCs are so densely packed, single cell models fail to accurately predict the
Fig. 5.7 Sketches of RBCs. In (a), tracings of of deformation and orientation are shown at
75 ms intervals. The direction of flow and time axis is downward in the picture; four
different RBCs are shown. The shear rate was approximately 7 s-1. From Ref. 209. In (b),
aggregation of RBCs in rouleau networks at low, increasing, shear rate are shown. The
shear rates are: A, 2.3 s-1; B, 23 s-1; C, 46 s-1; D, E, >46 s-1. From Ref. 208.
82



83

scattering of whole blood. In Paper V, it was demonstrated that qualitative
predictions of the scattering from whole blood are possible using T-matrix theory,
and for the absorption one can almost draw quantitative conclusions.

A full understanding of the scattering properties of blood is of great importance.
Such knowledge is a necessary requirement for in-vivo spectroscopical
measurements of anything else than oxygen saturation. Blood analysis is a
cornerstone of modern health care, and more efficient measurement methods would
have both benefits for the economy as well as for the patients and medical staff. A
long-sought technique is non-invasive monitoring of blood glucose in diabetics,
where optical sensors in one proposed method. Although in-vivo transillumination
measurements of blood may still be unrealistic for some time, hemodialysis
machines are an area where the developments have lead to implementation of
optical sensors.

5.2 Tissue phantoms
Artificial samples are important for validation of light propagation models and
systems for measuring the optical properties, and in some cases also for calibration.
The ideal phantom material should mimic the optical properties of tissue in terms
of scattering coefficient, anisotropy factor, absorption coefficient and refractive
index, over the entire spectral range of interest. It should also be possible to check
the optical properties to high accuracy using independent methods, preferably
based on fundamental theory such as Mie calculations. Moreover, the material
should be easy to make and shape, and be robust and stable. 

In the field of tissue optics, most phantoms that have been used have been based on
either water or resins such as polyester. In the following two sections these
materials will be discussed in more detail, to see how close they come to the ideal
phantom material.

5.2.1 Water-based phantoms
Perhaps the simplest and most widely available phantom material is ordinary
milk215. The scattering in milk comes from fat droplets and proteins suspended in
the water. Absorption can be obtained by adding dyes or ink. In pure milk
absorption is dominated by the water, which has low absorption in the visible
spectrum but becomes increasingly large in the NIR. The relatively large
absorption at 970 nm is a problem for water-based phantoms, since the absorption
of pure water can actually be higher than that of tissue, especially if the tissue is
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low in water content such as fatty tissue or skin. Water phantoms are, for this
reason, not ideal for wavelengths above 900 nm.

Milk has obvious disadvantages as a phantom material, since its optical properties
are not well defined and are not possible to verify by theory. Similar to milk in
terms of composition is Intralipid, which is perhaps the mostly used phantom
material in the literature107,113,121,216-219. Intralipid is a nutrition liquid which is
intended for intravenous use. The quality control is therefore much higher than for
milk, and since it is sterile it can be kept longer. Addition of penicillin prevents
bacterial growth. It should be noted, though, that it is not intended as an optical
product and the optical properties are still not particularly well defined. Van
Staveren et al. gave approximate formulae for the scattering properties of
Intralipid-10%216:

lmlmm016.0 -1-14.2−λ=µ s (5.3)

λ−= 58.01.1g (5.4)

where the wavelength λ is in micrometers. Experience shows that the variation can
be in the order of 20% from the values predicted with this formula, possibly more.
Liquid phantoms may be easy to work with, but make it difficult to introduce
inhomogeneities. Solid Intralipid phantoms can be made by adding agar gel219.
When adding an absorber, one has to be careful not to use one that changes the
scattering properties. Generally, acidic dyes can cause the fat emulsion of the
Intralipid to split. Food dyes are convenient to work with in the visible region, but
the region above 800 nm is more difficult. Carbon-based inks absorb in the NIR,
but they also add some scattering, which makes absolute prediction of the
absorption difficult220.

The best water-based phantom is a suspension of monodisperse microspheres,
usually of polystyrene. Since the size of the scattering spheres is known, it is
possible to use Mie theory of calculate the scattering properties. By choosing the
right size, the g-factor can be controlled, something that is impossible with
Intralipid. Unfortunately, monodisperse microspheres are expensive, and large
volume phantoms are not realistic. Microsphere suspensions keep longer than
Intralipid, but have a limited shelf life due to settling and aggregation of the
spheres (in the order of months).

5.2.2 Resin phantoms
For realistic phantoms in the region above 900 nm, other materials than water are
required. In addition to solving the absorption problem, plastics are attractive for
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other reasons as well. Plastics are stable and robust, and solid phantoms make for
the possibility of complicated shapes and embedded inhomogeneities. The
disadvantages are mainly the increased complexity in making them, and that it is
not possible to alter the properties of a phantom once it has set. Thermoplastics
such as PMMA, although optically good, are not suitable because of the
complicated production process. Curing plastics such as polyester and epoxy resins
have been used as phantom material, and are easy to work with in the laboratory
since the scattering and absorption agents can be mixed with the liquid resin.
Polyester and epoxy have similar optical and mechanical properties221,222, but for
large volumes (about 0.5 liter) epoxy is preferred since the heat from the
exothermic process in the curing of the polyester can cause cracking.

As scatterers, the most common material is TiO2. This is an inexpensive and
readily available material, suitable where a tissue-like g-factor is not necessary or
the reduced scattering is the only important parameter. To control the g-factor,
silica microspheres can be used as scatterers222, although at a considerably higher
cost. Many absorbing dyes are available in the visible region, but in the NIR the
situation is different. One dye, Pro Jet 900 NP, has proved compatible with both
polyester and epoxy, and is effective up to around 900 nm222. Above 900 nm, there
is a small selection of commercially available laser and printing dyes223,224, but the
experience is that all of these tend to react with the resin and change their
absorption properties, usually by almost complete bleaching. The simplest solution
to this problem is to use a broadband absorbing pigment such as carbon black,
which is available everywhere in the form of toner for copying machines.

5.2.3 Refractive index

In phantoms with values of µs typical to tissues, the bulk material (water or resin)
amounts to 99% or more. The refractive index is therefore close to 1.33 in water
phantoms and 1.55 in resin phantoms. For validation purposes, the difference in
refractive index compared with real tissue may not be of concern, since a model
that is accurate for n = 1.33 or 1.55 is likely to be so for n = 1.4 (typical of tissues)
as well. For calibration purposes this can be a matter that has to be taken into
consideration, however, especially if time-resolved measurements are performed.

5.3 Instrumentation
The instrumentation needed to measure the optical properties of turbid media
depends on the type of measurement. In this section, some of the most common
techniques are reviewed. The discussion follows the same structure as in Chapter 4,
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The inverse problem. In general, the complexity of the instrumentation increases
going from cw measurement, over frequency-resolved measurements, to time-
resolved measurements.

5.3.1 Cw measurement instruments
Spatially resolved diffuse reflectance measurements (cf. Sect. 4.1.1) can be
performed in either contact mode or as image reflectometry. As light sources,
either halogen lamps or Xe lamps are often employed, or light from LEDs or diode
lasers. Broadband lamps require the use of some spectroscopic filtering at the
detection side, while diode lasers are intrinsically narrowband, but instead require
the use of several units to cover many wavelengths. A diode-laser based, contact
mode system was used in Paper II. The probe head in this case consists of a single
source fiber in the center, and the detection is performed at different radial
distances by means of concentrically arranged rings of optical fiber bundles. A
technical description of this system can be found in Ref. 102. 

Examples of other fiber probe contact mode systems are those designed by Wilson
et al.225 and by Sterenborg and co-workers105, also intended for in-vivo
measurements on the skin. These systems utilize a white light source, and a
spectrometer/CCD camera for detection.

In image reflectometry, the surface is illuminated at one point, and a camera
records the diffuse reflectance pattern around the light spot. Such a system is
described in Ref. 107, where an imaging Fourier-transform interferometer was used
to provide both imaging and spectral resolution. One possible advantage of image
reflectometry over contact mode systems is that the surface is left undisturbed,
which can be a problem for skin measurements because the blood flow is restricted
by the pressure applied by the probe head. The drawback of image reflectometry is
that it may be more difficult to keep the object still in relation to the instrument
during the acquisition. To make image reflectometry more robust with respect to
small inhomogeneities, it is also possible to illuminate the surface with a structured
pattern instead of at a single point. The data evaluation then requires some
additional processing which typically involves Fourier transformation of the image
of the reflected pattern226.

The general advantage of cw measurements is the simplicity and robustness of the
instrumentation. The technique has some drawbacks as compared with frequency-
or time-resolved measurements, as was discussed in Sect. 4.1.2. A thorough
treatment on cw measurements can be found in Ref. 129.



87

5.3.2 Frequency-resolved instruments
Frequency-modulated diode lasers are the usual choice of light source for
frequency-resolved instruments. The modulation is performed at radio frequencies
up to around 1 GHz. Avalanche photodiodes are typically used as detectors. The
light is most often delivered to the medium by means of a multimode optical fiber,
and the detected light is guided to the detector by a similar fiber or a fiber bundle.
Thanks to the inherent homodyne detection implemented by this scheme,
frequency-resolved measurements can yield very low-noise signals. The low-noise
data is advantage compared with time-resolved measurements, but on the other
hand, the information content is lower unless the measurements are performed at
many modulation frequencies. The maximum bandwidth is also usually lower for a
frequency-resolved system than a time-resolved, which is important especially if
the source and detector fibers are close. Close fiber spacing usually means <1 cm
in biological tissues. A comparison between time-resolved and frequency-resolved
systems can be found in Ref. 227. Frequency-resolved instruments for tissue optics
measurements have been built by several groups229-234.

5.3.3 Time-resolved instruments
Time-resolved measurements of turbid media were pioneered in the middle 1980s,
and first utilized mode-locked Ar-ion lasers and dye lasers that produced
picosecond pulses as light sources235,236. Since then, a multitude of pulsed lasers
have been used, e.g., mode-locked Ti:sapphire lasers237, fiber lasers238, and diode
lasers136,141,142. The requirement on the pulse length depends on the application, but
for tissue, at short source-detector distances, better than 100 ps (corresponding to
10 GHz bandwidth) is usually necessary. At longer distances, approximately >2
cm, pulse lengths of up to 0.5 – 1 ns can be tolerated. The requirement is that the
width of the temporal point-spread function (TPSF) is larger than the width of the
injected pulses. (Here, the TPSF denotes the impulse response function of the
medium. Often, the term TPSF is used for the actual measured curve, which here
represents the TPSF convolved with the instrument response function).

The instrument response function is determined by the laser pulse length, and the
broadening in the instrument: mode dispersion in optical fibers, broadening in the
detector, time resolution and jitter in the electronics, etc. If long fibers are used,
approximately > 1 m, they should be of gradient index type to eliminate pulse
broadening by mode dispersion. Time-resolved detection can be achieved in a
number of ways. The most common detector is probably a high-bandwidth
photomultiplier tube (PMT). These can have impulse response times down to about
0.5 ns. With direct sampling electronics or boxcar integrators, time-resolution of
this order can be achieved. Kerr shutters have also been employed, but suffer from



poor dynamic range239. The most common technique, however, is time-correlated
single-photon counting (TCSPC). This method, illustrated in Fig. 5.8, is based on
single photon statistics. The TCSPC method works at very low intensity levels,
where individual photons are detected. It has advantages in terms of increased time
resolution, dynamic range, and sensitivity. 

When a pulse from the detector arrives, corresponding to one detected photon, this
serves as a trigger pulse for the time-to-amplitude converter. When the pulse
triggers the converter, an internal clock is started. The clock stops when the
photodiode gives an electric pulse directly from the input light pulses, or a
corresponding synchronizing signal from the laser driver. The time difference is
converted to an electric pulse with an amplitude that is directly proportional to the
time difference. This pulse is fed to a multichannel analyzer which converts the
pulse amplitude to a channel number, which is then stored in a computer memory.
The process is repeated, and each time a photon is detected it will add one count to
one of the channels. Eventually, a histogram representing the shape in time of the
signal forms. The probability of two or more photons reaching the detector at the
same time must be low, since a second photon from the same laser pulse will not
be counted. This would skew the distribution towards early times, the so-called
pile-up effect. If the probability of detecting one photon per laser shot is kept
below 1:30, the pile-up effect becomes negligible240. 
Sample

PMT

Photodiode

Start signal
from detected
photon

Stop signal
from laser pulse

Clock∆t

∆t
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Standard pulse
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Fig. 5.8 The principle of time-correlated single-photon counting. Abbreviations used in
the figure: PMT- photomultiplier tube, CFD – constant fraction discriminator, TAC –
time-to-amplitude converter, MCA – multichannel analyzer. See the text for an
explanation.
88
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A typical mode-locked Ti:sapphire laser or pulsed diode laser may have a
repetition rate of 80 MHz, so the count rate can easily exceed 1 MHz and the
system is still in the single-photon counting mode. Since the measurement is
reduced to binary mode (photon or no photon), the dynamic range of the detector is
not an issue. In the same way, it is only necessary to know when in time the pulses
arrive, which renders the shape of the pulses largely irrelevant. A constant fraction
discriminator is used to accurately determine the arrival times of the pulses,
independently of their amplitude, and the temporal resolution of the measurement
can be 1/10 that of the rise time of the detector, or a few tens of picoseconds.

To be able to keep count rates as high as 1 MHz or above, the dead time of the
detection system is an important parameter. The dead time for a PMT is largely
determined by the transit time of the electrons. To minimize the transit time,
special PMTs are often used which are equipped with a microchannel plate to
shorten the distances the electrons have to travel inside the detector. 

The sensitivity of the TCSPC method is limited mainly by the dark count rate of
the detector. If the limit is defined as an signal-to-noise (SN) ratio of 1, the
sensitivity can be written as

T
NR

Q
S cd1

= (5.5)

where Rd is the dark count rate, Nc is the number of time channels, T is the overall
measurement time, and Q is the quantum efficiency of the detector241. The detector
is often cooled to reduce the dark count rate and thus obtain a better sensitivity.
The accuracy of the measurement is directly determined by the counting statistics,
where the noise per time channel is given by the usual expression N1/2 for N counts.
Since it is usually important to keep the acquisition time to a minimum, the SN
ratio is often worse than for frequency-resolved measurements. Instruments based
on the TCSPC technique have been developed by several groups136,141,238, and was
also used in Papers II and III.

Detection in the NIR region is a problem for TCSPC measurements, at least above
900 nm. Standard multialkali photocathodes have good sensitivity up to ~800 nm,
but it drops off rapidly at longer wavelengths242. Ag-O-Cs (S-1) cathodes are
available, which are sensitive up to 1200 nm, but their sensitivity is, at best, an
order of magnitude lower at shorter wavelengths. The latest InP/InGaAs cathodes
expand the sensitivity out to 1700 nm, but the detector requires liquid nitrogen
cooling, have a short life span, and is also considerably more expensive242. The
region 900 – 1000 nm is interesting in tissue optics because of the potential of
measuring lipid and water content in the tissue (cf. Sect. 5.1.8). At present, GaAs
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cathode detectors sensitive in this region are available, but the instrument response
function of a TCSPC system with such a detector is not better than in the order of
0.5 ns141. 

Avalanche photodiodes are another option, but they too have a poor time
resolution. The region above 1000 nm is virtually unexplored with time-resolved
measurements, and is an interesting object for future research. An interesting
potential detector type for TCSPC systems are the emerging superconducting
detectors243,244. This detector type is based on a superconducting material, which
heats up slightly upon absorbing photons, and momentarily induces a detectable
electrical resistance. These detectors function at NIR wavelengths, have a high
bandwidth, and negligible dark counts, i.e., TCSPC measurements with virtually
unlimited sensitivity would be possible. The superconducting detectors are,
however, at present too small (10×10 µm) to be practical for TCSPC instruments.

Another option to reach very good time-resolution is the streak camera240,245,246.
Time-resolution better than 1 ps can be achieved, but the dynamic range of the
streak camera is not as good as for TCSPC systems. Streak cameras are often
combined with spectrometers, and by using white-light pulses spectroscopic
information can be obtained246.

Gated CCD cameras have also been used to obtain a time-resolved detection
system, and have the advantage of yielding parallel measurements. The time-
resolution is not great, however, in the order of 0.5 ns247.

5.3.4 Optical tomography instruments
Instruments for optical tomography are essentially parallel, or scanning, versions of
one of the instrument types described in the previous sections. The practical
difficulties of constructing such a system can be great, and the number of free
parameters is large. The design must be a compromise between engineering
considerations, patient comfort, and the optimal measurement in terms of
reconstruction. An early optical tomograph, based on cw measurements and
intended for optical mammography (breast cancer detection, cf. Sect. 5.4), was
built at Philips248. Other cw systems have been built more recently249,250, and have
the advantage of being relatively simple, and that large quantities of data can be
acquired in short time. The drawback of cw systems is that image reconstruction is
hampered by the limited information in the intensity measurement (cf. Sect. 4.5).

Frequency-resolved optical tomography was initiated by Gratton et al.251. An early
commercial attempt of a scanning, frequency-resolved optical mammography
system was built at Carl Zeiss252,253. A contemporary instrument was designed at
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Siemens, but details and results have not been widely published. Both companies
have now abandoned development in the area. Other systems have later been built
by several groups230-234, and designs for new generation systems are presently being
pursued by many groups, primarily in the United States. Some of these systems are
combined cw/frequency-resolved instruments. Bevilaqua et al. used a white cw
light source to provide additional spectral information230. Another advantage of the
combined instrument is that dynamic changes can be monitored thanks to the short
acquisition time and simple reconstruction of cw data, while the frequency-
resolved data yields information of the absolute optical properties231. 

Time-resolved scanning mammographs, intended for transillumination of breasts,
have been built for clinical use136,141,254. Currently, these systems are not used for
true reconstruction of the optical properties, but the measurement protocol could in
principle be modified to accommodate a wider range of projections which would
allow tomographic reconstruction. A time-resolved 32-channel optical tomography
system has been constructed by the group of Delpy238, and has been used for
monitoring of oxygen saturation in neonatal brain255, the forearm154, optical
mammography for detection of breast cancer256, and extensive phantom
studies151,152,155,257. Another fully tomographic system, allowing parallel detection in
eight channels, has been built by Chance and collaborators258,259.

5.4 Optical mammography – a diagnostic application
Early on, breast cancer detection was identified as one of the most promising goals
of optical tomography in medicine142. The female breast is easily accessed for a
tomography system, and although the tissue structure is by no means
homogeneous, it is still more homogeneous than many other organs. A major
motivation for optical mammography is that current diagnostic modalities are less
than perfect in many respects. Conventional x-ray mammography suffers from
poor contrast, and physicians are forced to look for subtle morphological variation
or secondary effects such as microcalcification. The efficacy of screening programs
has been debated, and there is also a real statistical risk of inducing cancer in a
small number of cases due to the ionizing nature of x-rays. Sonographic
examinations have been proposed, but have so far emerged rather as a complement
to x-rays than as an alternative. Magnetic resonance imaging is a perfect method
for structural imaging, but without injected contrast agents to provide functional
information it has proved difficult to distinguish malignant and benign lesions. It is
also a costly technique.

Simple schemes for transillumination of the breast using lamps and photographic
film or video cameras have been tried since the 1920s, but all these attempts
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proved to be inferior to conventional x-ray mammography260. In terms of
resolution, optical mammography can never hope to compete with x-rays. It
expected that the best obtainable resolution for deep tissue structures is in the order
of 0.5 – 1 cm. The advantage is instead hoped to be better contrast, and the ability
to provide functional imaging, e.g., a different oxygen saturation in malignant
lesions can serve as a distinct marker.

Many of the optical tomography systems described in the previous section were
designed with optical mammography as a primary objective136,141,231,233,248,251,253,254.
In addition to technical developments, an important area of research is
understanding the scattering and absorption properties of various tissue types, and
how these are linked to physiological parameters influenced by for example age
and hormonal cycle. Clinical trials are ongoing in both Europe and the United
States141,231,256,261-267. One company specializing in development of optical
mammography is active in Fort Lauderdale, Florida268, but their results have not
been widely published in the scientific literature.

5.5 Atmospheric optics – remote sensing of trace gases
The primary application of spectroscopic techniques in atmospheric optics is
remote sensing of trace gases in the atmosphere. Remote sensing techniques can be
either passive, utilizing the natural light directly or indirectly from the sun, or
active, utilizing for example lasers as light sources. Passive techniques are
attractive because of the simplicity of the instrumentation, but having control of the
natural light source can be problematic. Among the important trace gases from a
remote sensing perspective we find SO2, NO2, O3, and numerous hydrocarbons.
Hydrocarbons have strong characteristic absorption bands in the infrared, where
the scattering in the atmosphere usually is negligible. Spectroscopy of the other
gases, however, is performed at shorter wavelengths, in the visible region for NO2,
and UV for SO2 and O3. In this region, both the Rayleigh scattering from the air
and scattering from dispersed aerosols can be significant.

In Paper VII, both passive and active techniques were applied to measure the
emission of SO2 from the volcano Mt. Etna in Italy. The passive instruments were
a differential absorption spectroscopy (DOAS) system240,269, and a correlation
spectroscopy (COSPEC) instrument240,270. A lidar system (light detection and
ranging) was used to provide active measurements, using a pulsed dye laser as the
light source. A differential absorption lidar (DIAL) measurement scheme was
applied, in which the absorption on and off one absorption peak of the gas is
measured240,271. Passive systems can operate in either up-looking or sun-tracking
mode. In the former mode, the light is provided by the blue sky above the
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instrument, and the trace gas is assumed to linger between the detector and the
scattering volume in the atmosphere. In the latter mode, the sun disc directly
provides the light. Passive instruments usually have to be calibrated for each
measurement, due to the variation in solar elevation, background absorption, cloud
formation etc.

The passive instruments operate at around 300 nm, where the atmospheric
scattering is strong enough to disqualify the assumption of a clear medium between
the light source and the detector, especially in the up-looking mode. This mode is
preferred because of the simplicity. The path-length of the detected light through
the gas is then no longer trivial to predict. If a line-of-sight path-length is assumed
(the Beer-Lambert law), the measured gas concentration will be systematically
offset; usually it is overestimated due to a longer actual path-length in the
scattering medium.

The scattering in the atmosphere can be divided in two parts, Rayleigh-type
scattering from the air molecules and Mie-type scattering from aerosols. The
Rayleigh contribution is determined by the well-known expression for the scattered
energy I:
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where α is the polarizability of the molecule and E0 is the amplitude of the electric
field. The real atmosphere deviates slightly from this theoretical formula. An
empirical formula for the Rayleigh cross section in the region 200 – 550 nm was
given by Nicolet272:

2432 m  1002.4 x
R

+− λ⋅=σ

3228.00.09426389.0 −
λ

+λ=x , (5.7)

where λ is expressed in µm. To obtain the scattering coefficient, the number
density of air molecules is needed. This depends on the air density which is a
function of air pressure and the altitude. One can assume that it follows the
standard atmosphere model273. This calculation was performed to obtain the
scattering coefficients in Paper VII.

The contribution of aerosols to the scattering is high in the lowest layers of the
troposphere. The exact composition of the aerosol layer varies strongly depending
on climate zone, weather conditions, the ground conditions, and is also
significantly influenced by anthropogenic factors in densely populated areas. The
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measurements in Paper VII were carried out at sea, where the aerosol layer mostly
consists of water droplets relatively close to the sea surface, usually with a radius
< 1 µm. If the composition of particles is known, it is possible to calculate the
scattering coefficient by means of Mie theory. However, because the aerosols were
not sampled and characterized during the measurements, the scattering was instead
estimated with the formula
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where V is the observed visibility [km], µs
R(550) is the Rayleigh scattering

coefficient at 550 nm [km-1], and the wavelength λ is expressed in µm274. The
observed visibility is hardly an exact quantity, so the scattering coefficient
calculated by Eq. (5.8) is a very approximate estimate. However, the model
developed in Paper VII turned out to be fairly insensitive to variations in the
scattering coefficient at lower altitudes, so the approximations seem warranted.

The Monte Carlo model applied in Paper VII was based on reciprocal computation
of the detected light (cf. Sect. 3.2.4; Reciprocity). Since the passive instruments
were essentially point detectors with a narrow angle of collection, the
computational photon economy was improved enormously by launching the
photons at the detector and tracing them backwards. By recording the path-length
through the volcanic plume, it was possible to derive correction factors for the
systematic effects of the passive instruments. Considering the approximations
made in the model, the corrections agreed well with measurements of the SO2
concentration performed with the active lidar system.

Systematic effects due to scattering in passive instrument readings have been
modeled previously by Millán for low-altitude gas plumes275. The Monte Carlo
model presented in Paper VII extends those results to more general conditions.
Emission of SO2 has important environmental implications, and is a major source
of acidic rain. It is also believed that SO2 can be converted to sulfate aerosols,
which can have an impact on cloud formation, and thus in the long run, on the
climatic systems276. Volcanic and anthropogenic emissions are two major sources
of SO2. Routine monitoring of SO2 emissions must be performed using the
relatively simple, inexpensive and robust passive instruments, and it is thus
important to be able to quantify the systematic effects due to scattering in the
readings.
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Summary of papers

Paper I New computational methods for prediction of fluorescence signals in
layered turbid structures, based on Monte Carlo simulations, were
developed and tested. The problem was divided in two parts: one
computation for the excitation light, and one for the emitted
fluorescence light. These two computations could then be convolved
to provide the solution. The computation time could be reduced by up
to two orders of magnitude by reversing the photon trajectories when
computing the emitted light. The theoretical foundation for this
procedure, based on the reciprocity theorem in transport theory, was
also treated.

Paper II-III In these papers, various systems for diffuse-reflectance measurements
of turbid media were used to determine the optical properties. In paper
II, systems based on spatially resolved cw measurements, time-
resolved measurements, and an integrating sphere, were compared
with the help of phantom measurements. In paper III, two time-
resolved systems were first characterized using phantom
measurements, and then used to measure the optical properties of
breast tissue.

Paper IV The integrating sphere technique was used to measure the optical
properties of myocardium that had been subjected to radio-frequency
ablation therapy. The results could aid the development of an optical
probe to guide such therapy in real-time.

Paper V-VI The integrating sphere technique was used to measure the optical
properties of whole blood flowing through an optical cuvette. The
results were compared with T-matrix computations of the scattering
from single red blood cells, and then discussed in terms of the effects
of changes in the cell shapes, orientation, and aggregation. In paper
VI, polarized light was used to yield additional information. The limits
of singe-scattering theory for the case of whole blood were also
explored.

Paper VII A Monte Carlo model was developed to simulate light propagation in
the atmosphere and through a volcanic plume. The model could
successfully explain systematic errors in the readings of passive
remote sensing instruments used to measure sulfur dioxide emissions,
which arise due to light scattering. Reversed photon trajectories based
on the reciprocity principle were employed to accelerate the
computations.
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Contribution by the author to the papers

Paper I Substantial part of theoretical development, model coding, performing
and evaluating simulations, and manuscript preparation.

Paper II Major part of integrating sphere measurements and evaluation,
phantom preparation, and manuscript preparation. Substantial part of
spatially resolved and time-resolved measurements. Contribution to
evaluation of spatially resolved and time-resolved data.

Paper III Substantial part of construction of the diode-laser based system and
measurements using this system, and manuscript preparation.
Contribution to evaluation.

Paper IV Contribution to in-vivo experiments. Major part of integrating sphere
measurement and evaluation. Substantial part of manuscript
preparation.

Paper V Substantial part of experiments, evaluation and manuscript prepa-
ration.

Paper VI Substantial part of experiments, evaluation and manuscript prepa-
ration.

Paper VII Major part of Monte Carlo model and simulations. Substantial part of
manuscript preparation. Contribution to evaluation.
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