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Abstract

The work presented in this thesis aims at improving spectroscopic techniques for
analysis of pharmaceutical solids. This improvement is achieved by the combining
and development of instrumentations and data evaluation tools from two research
fields: the fields of near infrared spectroscopy and biomedical optics.

The thesis includes the construction and evaluation of different variable
selection techniques. Variable selection is an important tool used to improve the
evaluation of spectroscopic data. Variable selection was applied to near infrared
data from pharmaceutical tablets and mid infrared data from atmospheric gases.

A novel instrumentation, using a photonic crystal fibre for light generation
and a streak camera for detection, was developed, tested and used for time-
resolved measurements. The system covers a wavelength range from 500 to 1200
nm and the time-resolution was measured to be 30 ps. The system proved to
be very versatile and was used both for reflectance and transmission measurements.

New evaluation schemes for time-resolved data were developed. A new
algorithm, based on diffusion theory was evaluated using time-resolved data
required on apples. The same data was used to study the performance of a data
evaluation scheme based on diffusion theory combined with least square support
vector machines. Both evaluation schemes tested showed results comparable with
results computed by the conventional evaluation scheme based on diffusion theory.

Time-resolved measurements were conducted on pharmaceutical solids. Quan-
titative analysis of intact tablets using time-resolved data was superior to analysis
made using conventional near infrared data. This was especially true when there
was a big difference in physical properties between the measured samples. An
analysis method combining time-resolved spectroscopy and conventional near
infrared spectroscopy was also developed. The scheme allows evaluation over a
larger wavelength range than the one covered by the time-resolved system. The
maximum range is only limited to the range covered by the near infrared spectro-
scopic instrument. The work also takes the first step toward the construction of a
bench-top system, showing that the data from a simplified time-resolved system
would still give valuable results.
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Sammanfattning

Arbetet som denna avhandling baseras p̊a syftar till att utveckla spektroskopiska
tekniker för analys av farmaceutiska prover. Detta görs genom att kombinera och
utveckla instrument och datautvärderingstekniker fr̊an tv̊a olika forskningsfält:
spektroskopi i det nära infraröda (NIR) v̊aglängdsomr̊adet och biomedicinsk optik.

Avhandlingen behandlar utveckling och utvärdering av olika variabelselektions
metoder. Metoderna är viktiga, b̊ade för att förbättra kvalitén p̊a redan uppmätta
spektroskopiska data och vid utveckling av nya instrument. I detta arbete
användes variabelselektion b̊ade vid utvärdering av NIR spektra uppmätta p̊a
tabletter samt vid utvärdering av infraröda spektra uppmätta p̊a gasblandningar.

En ny försöksuppställning för tidsupplöst spektroskopi utvecklades och
utvärderades. Systemet använder sig av en speciell typ av optisk fiber (photonic
crystal fibre) för generering av ljuspulser med en bred v̊aglängdsfördelning och
en streak-kamera för detektion av ljuspulserna efter att de passerat provet.
Systemet kan göra tidsupplösta mätningar med en tidsupplösning p̊a 30 ps inom
ett v̊aglängdsomr̊ade som sträcker sig fr̊an 500 till 1200 nm.

Tv̊a nya utvärderingsmetoder för att analysera tidsupplösta data utvecklades.
B̊ada metoderna baseras p̊a diffusionsteori. Den ena använder en anpassningsal-
goritm för att beräkna de optiska storheterna hos proverna, medan den andra
bestämmer de optiska storheterna hos proverna fr̊an en icke-linjär kalibreringsmod-
ell (least squares support vector machines) baserad p̊a teoretiska data. B̊ada
metoderna visade jämförbara resultat med den vanligast förekommande metoden
för att utvärdera tidsupplösta data.

Vid kvantitativ analys av tabletter visade sig tidsupplöst spektroskopi ge bättre
resultat än konventionell NIR spektroskopi. Skillnaderna var som störst när
de fysiska egenskaperna hos de studerade tabletterna varierade mycket. Även
en analysmetod som kombinerar data fr̊an tidsupplösta mätningar med data
fr̊an konventionell NIR spektroskopi utvecklades. Metoden har den fördelen att
utvärderingar kan göras i ett stort v̊aglängdsintervall, som bara begränsas av det
konventionella NIR instrumentet. Metoden är ocks̊a det första steget i utvecklin-
gen av ett förenklat system, som skulle vara mer lämpat för praktisk användning
p̊a ett laboratorium.
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Chapter 1

Introduction

The work presented in this thesis aims at improving spectroscopic
techniques for analysis of pharmaceutical solids. This improve-
ment is achieved by combining and developing instrumentations
and data evaluation tools from two research fields: the fields of
near infrared spectroscopy and biomedical optics.

NIR spectroscopy is an important tool for analysis of phar-
maceutical samples. There are several reasons for this, where
the most prominent are the robustness of the instruments, the
fast measurement procedure and the possibility to perform
on-line measurements through the use of fibre optics. Spectral
measurements in the NIR region is though somewhat difficult
to evaluate using standard univariate evaluation schemes. The
absorption features are heavily overlapped and light scattering
effects are substantial in turbid pharmaceutical solids. The use of
multivariate data analysis techniques is therefore a necessity to
extract the information from recorded spectral data. Multivariate
data analysis and NIR spectroscopy has proven to be a successful
combination, used in numerous studies for spectroscopic analysis
in different disciplines.

The main limitation when using NIR spectroscopy is the fact
that the measured spectra contain a mixture of scattering and
absorption information. The analysis of NIR data can never
be used to completely separate the absorption effects from the
scattering effects in the recorded spectroscopic data. A multi-
variate calibration model can only handle a modest difference in
scattering properties amongst the measured samples. As soon as
the changes in optical properties are big enough, absorption and
scattering effects get mixed up, leading to erroneous evaluations.
Changes in scattering can be introduced by changes in the quality
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of raw materials or other changes in the physical properties of the
samples, for example sample density or particle size distribution.
Within the NIR community many mathematical techniques have
been developed in order to correct for the scattering effects, but
no universal solution to the scattering problem has yet been found.

Similar problems are present within the field of biomedical
optics, where spectroscopic techniques are used for analysis of
tissue. To characterise tissue the absorption of different tissue
constituents must be quantified. As light scattering by tissue is not
constant, measurement techniques and theoretical models have
been developed in order to separate the absorption effects from
the scattering effects of the recorded data. These developments
include time-resolved, spatially resolved and frequency-resolved
instrumentations as well as models for light transport in turbid
media. These different techniques allow the measurement of the
absorption without any interference of scattering changes in the
sample.

The main idea presented in this thesis is to develop tools
for pharmaceutical analysis inspired by solutions from the field
of biomedical optics. Consequently a time-resolved set-up was
developed that are well adapted for measurements of the op-
tical properties of pharmaceutical solids. The data from the
time-resolved measurements was used directly for quantitative
analysis of the measured samples, or combined with data required
with a conventional NIR instrument to further enhance the results.

This thesis is divided into two parts. The first part contains
some background information that serves as an introduction to
the scientific work presented in the eight original papers form-
ing the second part. Papers 1 and 2 contain work based on vari-
able selection techniques, techniques important when working with
multivariate data analysis and instrument development. Variable
selection was applied to near infrared spectra measured on phar-
maceutical tablets and to mid infrared spectra measured on at-
mospheric gases. Paper 3 describes the set-up and capabilities of
the novel time-resolved system developed in this work. The sys-
tem includes a photonic crystal fibre for light generation and a
streak camera for detection. The system was used in Papers 4 to
8. Papers 4 and 5 describe new techniques for the evaluation of
time-resolved data. Both tested evaluation schemes showed results
comparable with results computed by the conventional evaluation
scheme based on diffusion theory. Papers 6 to 8 describes time-
resolved measurements on intact pharmaceutical tablets. Paper 6
demonstrates some basic capabilities of time-resolved spectroscopy
while Paper 7 compares quantitative assessments made by time-
resolved spectroscopy and conventional near infrared spectroscopy.
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The comparison reveal that the analysis using time-resolved spec-
troscopy is superior to the analysis using conventional near infrared
spectroscopy, especially when the difference in physical properties
between the measured samples were large. Paper 8 shows the full
potential of the technique when time-resolved measurements are
complemented with conventional near infrared measurements.





Chapter 2

Interaction of light with turbid media

This chapter will introduce some basic properties of light and tur-
bid media, and discuss the basic principles of interactions between
light and matter. These properties and principles are important
for the understanding of this thesis.

2.1 Basic properties of light

Electromagnetic radiation can be described in two complemen-
tary ways. It can be seen as an electromagnetic wave or as a
stream of particles, photons. Both descriptions are valid, but
are used in different applications. The particle model is well
suited for light-matter interactions on a microscopic level, such as
energy transitions in a molecule, while the wave model is more
appropriate when describing interference phenomena. For some
applications it might be difficult to judge which model to use, and
often it is suitable to use a combination of the two.

Since the two models describe the same physical phenomenon,
they have some measures in common. For example, light described
as a photon will have the same velocity as the corresponding wave
and the energy of a photon is proportional to the wavelength of
the electromagnetic wave. The correlation is given by:

E =
hc

λ
(2.1)

where E denotes the energy, h Planck’s constant, c the speed
of light and λ the wavelength. The electromagnetic spectrum

1 nm

1 µm

1 mm

1 m

X-ray

UV

IR

Micro wave

Radio wave

Visible

Figure 2.1. The different regions
of the electromagnetic spectrum
as a function of wavelength.

can be divided into different regions. Fig. 2.1 shows the regions
ranging from X-rays to radio waves. The term light is generally
associated only with the visible region of the electromagnetic
spectrum (400-770 nm), but will in this thesis be used for all
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6 2.2. Basic properties of atoms and molecules

electromagnetic radiation, irrespective of its wavelength.

The wavelength region of most interest in this thesis is the near
infrared (NIR) region, which is a part of the infrared (IR) region.
The large IR range is usually divided into three sub-ranges: near
IR (770-2500 nm), mid IR (2.5-25 µm) and far IR (25µm-1 mm)1.

2.2 Basic properties of atoms and molecules

2.2.1 Energy levels

Every atom or molecule contains at least one electron. The
electrons can be seen as negative particles contained in the field
caused by the positive nucleus. The energy levels in the field that
the electrons can occupy are quantified. For simple systems, like
the hydrogen atom, these electronic energy levels (Ee) can be
accurately calculated by means of quantum mechanics. For more
complicated atoms and molecules, it is almost impossible to cal-
culate the energy levels. However, by introducing simplifications
and approximations it is still possible to the get approximate
values of the electronic energy levels.

Molecules contain several atoms, allowing them to vibrate
and rotate. The vibrations and rotations give rise to quantified
vibrational and rotational energy levels.

The most basic molecule is a diatomic molecule, like NO or
CO. One way to describe the vibrational energy levels (Ev) in a
diatomic molecule, is to use the harmonic oscillator approximation,
given by:

Ev = hν

(

v +
1

2

)

(2.2)

where v is the vibrational quantum number and ν is the classical
vibrational frequency that is related to the reduced mass (µ) and
the force constant (k) by:

ν =
1

2π

(
k

µ

)1/2

(2.3)

In the harmonic oscillator approximation the energy levels are
evenly spaced, but due to electronic repulsion and Van der Waals
forces in the molecule, Eq. 2.2 has to be modified to:

Ev = hν

(

v +
1

2

)

− xehν

(

v +
1

2

)2

(2.4)

where xe is an anharmonicity constant. By introducing anhar-
monicity, closer lying energy levels are obtained, developing into
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a continuum when Ev approaches the dissociation energy (Ed)
of the molecular bond, see Fig. 2.2. Calculating vibrational en-
ergy levels for larger molecules is not as straightforward because
the vibrational modes become more complicated than the simple
stretching in the diatomic molecules. A non-symmetric molecule
with n atoms will have 3n− 6 vibrational modes. Some examples
of vibrational modes found in larger molecules are rocking, twist-
ing and wagging1.

Ev

r
re

Ed

Figure 2.2. Potential energy curve
and energy levels for a diatomic
molecule behaving as an
anharmonic oscillator compared
with those for a harmonic
oscillator (dashed line). r is the
radius of the molecule, with re
being the equilibrium bond
length.

The rotational energy (Er) for a diatomic molecule can be cal-
culated by approximating the molecule with a rigid rotor:

Er =
h2

8π2I
J (J + 1) (2.5)

where J is the rotational quantum number and I is the moment
of inertia defined as:

I = µr2 (2.6)

where µ is the reduced mass and r is the distance between the
atoms. Eq. 2.5 implies that the energy distance between rotational
energy levels become larger at higher lying levels, see Fig. 2.3. This
is the opposite behavior compared to the energy distance between
vibrational energy levels. It is almost impossible to calculate the
rotational energy levels for larger, non linear molecules. The ro-
tational quantum number, J , will though remain a good quantum
number that can be used in approximative calculations.

2.2.2 Transitions

Transitions between energy levels are determined by selection
rules that describe which transitions are allowed and which are
not2.

Transitions between electronic levels in atoms and molecules
depend on several selection rules that will not be described in this
thesis. The typical energy for a transition between two electronic
energy levels corresponds to light in the UV or visible wavelength
regions.

J = 0
J = 1

J = 2

J = 3

J = 4

J = 5

Er

Figure 2.3. Rotational energy
levels in a diatomic molecule.

If the vibrations of a molecule could be described as a har-
monic oscillator the selection rule would be ∆v = ±1, but due to
the anharmonicities described in section 2.2.1, the selection rule is
modified to become:

∆v = ±1,±2,±3 . . . (2.7)

where transitions with ∆v = ±2,±3 . . . are called overtone
transitions and are usually weak compared to the fundamental
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transitions with ∆v = ±1. The most anharmonic, and therefore
the most probable overtone transitions, are those in vibrational
modes including light atoms, such as hydrogen3. The energy of
most of the fundamental vibrational transitions corresponds to
light in the mid IR wavelength region, while the energy of many
of the overtone transitions corresponds to light in the NIR region.

Polyatomic molecules that possess several fundamental vibra-
tional modes, may exhibit a simultaneous energy change in two
or more of those modes. This results in weak transitions called
combination and subtraction transitions, due to the fact that the
energy of the transitions corresponds to frequencies that are the
sum of (f1 + f2, 2f1 + f2, etc.) or the difference (f1 − f2, 2f1 − f2,
etc.) between the individual vibrational frequencies.

Rotational transitions obey the selection rule ∆J = ±1 and
corresponds to light energies in the far IR and micro wave regions.

The transitions between energy levels are not restricted to one
of the modes. Instead the molecule can change electronic, vibra-
tional and rotational levels simultaneously.

2.3 Optical properties of turbid media

Turbid media is usually used as a term for media that are highly
scattering, but exhibit a low absorption. Some examples of turbid
media are pharmaceutical tablets and powders, tissue and milk.

2.3.1 Index of refraction

The index of refraction (n) is a fundamental property of any
medium. In the linear regime the index of refraction is given by
a linear complex function, but the imaginary part, treating the
attenuation of the wave, is omitted in many applications. The real
part is defined in terms of the velocity of light in the medium (cm):

cm (λ) =
c

n (λ)
(2.8)

where c is the speed of light in vacuum. The index of refraction is

1.7

1.6

1.5
100 300 500 700

Wavelength(nm)

R
e
fr

a
c
ti

v
e

in
d
e
x

Figure 2.4. Refractive index for
α-quartz as a function of
wavelength 4.

wavelength dependent, as can be seen in Fig. 2.4.

2.3.2 Absorption

Light with a wavelength matching the energy difference between
two energy levels in an atom or molecule, can be absorbed by a
sample containing that particular atom/molecule. The absorbed
energy will transfer the atom/molecule to an excited state. The
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probability of a photon to be absorbed is given by the absorp-
tion coefficient, µa [cm−1]. The absorption is strongly wavelength
dependent, since different atoms and molecules absorb light at
different wavelengths as described in section 2.2. The measured
wavelength dependent absorption can be used as an identifier, or
fingerprint of a substance.

2.3.3 Scattering

When light hits a particle it will be scattered. The scattering
property of a medium is described by the scattering coefficient,
µs [cm−1], that is the measure of the mean distance between
scattering events.

There are two main scattering regimes, the Rayleigh and Mie
regimes. If the particle is much smaller than the wavelength of
the light, the scattering will be dominated by Rayleigh scattering.
Rayleigh scattering is thus mainly due to molecules. The most
important implication of the small size-to-wavelength ratio is that
the scatterer sees a spatially uniform electric field that varies with
time. This field induces an oscillating dipole moment in the parti-
cle, with the same frequency as the incoming light. The oscillating
dipole will act as a transmitter re-emitting radiation with the same
frequency as the incoming light. The distribution of the re-emitted
light can be seen as isotropic, i.e. the light is equally distributed
in all directions. The Rayleigh scattering is wavelength depen-
dent. The wavelength dependence can be modeled by µs ∝ λ−4.
A closely related, but inelastic process is Raman scattering, in
which the oscillating dipole interacts with a vibrational mode in
the molecule. The radiation emitted from the molecule will then
be of a different wavelength than the incoming radiation.

µ′

s = 8.8 · 10
5
· λ−0.38

550

600

650

700

800 900 1000 1100
Wavelength (nm)

µ
′ s
(c
m

−
1
)

Figure 2.5. Measured scattering
coefficients (dots) and fit
according to Mie theory (line).
The measured values are
contained from a time-resolved
measurement on a pharmaceutical
tablet.

The other main scattering regime is the Mie regime. Mie
theory describes scattering by spherical particles5, and can in
principle be applied to any size-to-wavelength ratio. Mie theory
is primarily used in cases where the scattering particles are larger
or of the same size as the wavelength, but small enough for
geometrical optics not to be valid. The wavelength dependence
as well as the angular dependence of Mie scattering are affected
by the size of the scattering particles and the refractive indices
of the particles and the medium surrounding the particles. The
wavelength dependence can normally be assumed to be a function
of the form µs ∝ aλ−b, where a and b are constants and where b
is smaller than 4. A typical fit to measured scattering coefficients
can be seen in Fig. 2.5.

The direction of the light after a scattering event is defined by
two angles, the deflection angle, θ, and the azimuthal angle, ψ.



10 2.3.3. Scattering

The scattering in the azimuthal direction is often seen as isotropic
and will therefore not vary with the size and shape of the scat-
terers. The definitions of the angles are seen in Fig. 2.6. The

θ
ψ

s

s’

Figure 2.6. Picture of the
scattering angles θ and ψ.

phase function, or directional distribution of the scattered light
with regards to the deflection angle (θ), can be calculated by Mie
theory, see Fig. 2.7 for an example, but simplified expressions like
the Henyey-Greenstein phase function6:

p (cos (θ)) =
1 − g2

2 (1 + g2 − 2gcos (θ))
3/2

(2.9)

is often applicable. By using the Henyey-Greenstein equation the
directional distribution of the light after scattering is calculated
by means of the anisotropy factor, g, which is the only variable
in Eq. 2.9. The anisotropy factor is calculated as the expectation
value for the cosine of the scattering angle, cos (θ), and can there-
fore only be a number between -1 and 1. A value near 1 means an
almost totally forward scattering of the light, a value near -1 in-
dicates backward scattering, while a value of 0 indicates isotropic
scattering. Values of the anisotropy for pharmaceutical powders
have, to my knowledge, not been measured but is thought to be
approximately 0.8, a value comparable with the measured value of
powdered TiO7.0

1

0.5

0 60 120 180
Scattering angle

In
te

n
si

ty

Figure 2.7. Calculated Mie phase
function for light with λ =1000
nm scattered by a 2 µm sized
particle.

In some applications, such as when conducting diffusion cal-
culations, the anisotropy factor is not regarded but the reduced
scattering coefficient, µ′

s [cm−1], is used and defined as:

µ′

s = (1 − g)µs (2.10)

The inverse of µ′

s is a measure of the mean distance between
artificial isotropic scattering events. The use of the reduced
scattering coefficient is thus only valid after many scattering
events, i.e. in the diffuse regime.

Another measure, that is often used, is the coefficient of trans-
port, µtr [cm−1], defined as:

µtr = µa + µ′

s (2.11)



Chapter 3

Near infrared spectroscopy

Although the near infrared (NIR) region was discovered already in
18008, it was not used for spectroscopy to any larger extent until
the 1950ies. In the last 50 years the number of applications of
NIR spectroscopy has increased tremendously. This chapter will
focus on instrumentation and applications for measurements on
solid samples in general and pharmaceutical samples in particular.

3.1 Instrumentation

All spectroscopic systems have the same basic components, see
Fig. 3.1. The distinguishable parts are the light source, the wave-
length selection device, the sample interface optics and the detec-
tor. The wavelength selection device may be placed in front or
behind the sample.

3.1.1 Light sources

In most commercial systems a tungsten halogen lamp is used as
light source. The lamp has a continuous spectrum covering the
entire NIR region and has the benefit of being cheap and robust.
One of the drawbacks with tungsten halogen lamps is that their
emission is temperature dependent. The drift is typically 0.1 %
per degree Kelvin in the NIR range9. The temperature effects
can be minimized by using temperature stabilisation.

Light
source

Interface optics

Sample

Detector

Wavelength selection

Wavelength selection

Figure 3.1. Basic components of a
spectroscopic system.

An alternative to tungsten halogen lamps is the use of one
or more light emitting diodes (LED). LEDs have a limited
spectral bandwidth of approximately 30-50 nm, and LEDs are
mainly found in spectroscopic applications where their small size
and cool operation is beneficial. Examples of applications are
measurements of blood oxygenation and blood volume10–13 and

11



12 3.1.2. Wavelength selection

humidity14.

Tunable lasers, used in many applications in other wavelength
regions, have not been used to any large extent in the NIR region,
except for applications where the samples are gaseous and therefore
have narrow absorption bands, e.g. for gas absorption in scattering
media15;16.

3.1.2 Wavelength selection

Filter based systems

The use of band pass filters as wavelength selection devices have
the limitation that only one wavelength can be measured at a
time. The filters usually have a bandwidth of 10 nm, and several
filters can be combined by using a mechanically switched filter
wheel, that mechanically change filters between measurements.
Therefore band pass filters are mainly used in dedicated applica-
tions, where a few wavelengths are enough to obtain the requested
information17–20.Wavelength
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Figure 3.2. Top figure shows the
transmission through each of the
three first layers of a Lyot filter.
The bottom figure shows the total
transmission through a five layer
Lyot filter.

An alternative to multiple bandpass filters is the liquid crystal
tunable filter (LCTF). An LCTF works basically as a multiple
Lyot filter made of several stages, where each stage consists
of a birefringent layer placed between two linear polarizers.
Each succeeding stage has twice the retardation as the previous
stage, effectively halving the width of the previous transmission
peak, see Fig. 3.2. The resulting transmission through all layers
becomes narrow, in the range of 10 nm. By inserting a layer
of liquid crystal inside each stage, the retardation and therefore
the maximum transmission wavelength can be changed21, see
Fig. 3.3. LCTFs have been used in different applications, for
example hyperspectral imaging of pharmaceuticals22 and within
the field of biomedical optics23–25.

Another type of tunable filter is the acousto-optic tunable
filter (AOTF)26. Like the liquid crystal tunable filters the
AOTF does not include any moving parts. The AOTF consists
of a birefringent crystal (often TiO2 in the NIR region) and a
piezoelectric transducer. The piezoelectric transducer, driven
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Figure 3.3. Measured transmission
through a liquid crystal tunable
filter for four different central
wavelengths.

by a radio frequency source, introduces a periodic variation of
the refractive index within the crystal. This variation acts as a
grating to the incoming polychromatic light, and the incoming
beam will be divided into two beams with monochromatic light
and one beam with the remainder of the polychromatic light.
By changing the radio frequency, which drives the piezoelectric
transducer, the wavelength of the monochromatic beams can be
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controlled.

The different filter systems are suitable for different applica-
tions. Interference filters are best suited for systems where just a
few wavelengths are needed, but where robustness and ruggedness
is important. Both AOTFs and LCTFs are good when many wave-
lengths are to be measured. The AOTF gives the best wavelength
resolution, while the LCTF can change wavelength faster and is
better suited for imaging application due to less image distortions.

Dispersive systems

Dispersive systems are probably the most commonly used type
of instruments for NIR spectroscopy. In most dispersive systems
the polychromatic light from the light source is divided into
different wavelengths by a grating27, see Fig. 3.4. The wavelength
dispersion achieved from a grating is based on the number of
grooves that are illuminated. In order to obtain a high resolution
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Figure 3.4. Schematic picture of a
grating based system for
transmission measurements.

a highly dispersive grating, i.e. a grating with many grooves per
unit length, in combination with a narrow entrance slit should
be used. A narrow entrance slit leads to large diffraction of the
light which means that a large portion of the grating will be
illuminated. A long distance between the slit and the grating will
also lead to the illumination of a large area of the grating, and by
that a large number of illuminated grooves. These factors give rise
to a trade off between signal intensity and resolution. In the NIR
region, where the absorption features are wide, a low resolution
grating, with a resolution in the range of 1-5 nm usually gives the
best results.

Most commercial systems are based on concave holographic
gratings, either mounted in a Rowland circle set-up or used as
a moving grating in a scanning monochromator. The scanning
grating systems can cover a wavelength range from 400 to 2500
nm and are relatively cheap, but quite slow and the moving parts
of the systems deteriorate with time. The systems must therefore
rely on an internal wavelength reference in order to correct for
wavelength drift and response deterioration.

Interferometric systems

The Michelson interferometer is the basis of most of the com-
mercial Fourier transform (FT) systems. A schematic picture
of a Michelson interferometer is seen in Fig. 3.5. The beam
splitter divides the light from the source into two beams. One is
reflected by a fixed mirror and one by a scanning mirror. The
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Figure 3.5. Basic components of a
Michelson interferometer system.

reflected beams are then recombined by the beam splitter and
sent to the sample and the detector. By moving the scanning
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mirror an intensity modulated response will be recorded by the
detector. Applying a FT algorithm to the intensity modulated
signal will recover the spectral information, and hence allow the
reconstruction of the light intensity as a function of wavelength.

FT based systems have a couple of advantages compared to
dispersive systems1;2;28. The Flegetts multiplex advantage comes
from the fact that all wavelengths are measured simultaneously by
the interferometer, while a dispersive system measures one wave-
length at the time. Another important advantage is the Jacquinots
throughput advantage, arising because no slit is needed in the in-
strument to gain a high resolution. The resolution of an inter-
ferometer is mainly restricted by the movement of the scanning
mirror. In order to control the movement of the scanning mirror,
a reference laser beam is used. This internal reference gives the FT
instruments the advantage of an outstanding wavelength accuracy
compared to dispersive systems.

3.1.3 Sample interface

The most common measurement modes used in NIR spectroscopy
of solid samples are diffuse reflectance and diffuse transmission.
Normally these set-ups use some basic collimation optics, such as
a parabolic mirror at the light source, but none at the detector
side. Instead the detectors are often placed close to the sample
surface. This makes the set-up simple but it can introduce
problems with stray light and boundary effects, especially when
measuring on small samples26. Two alternatives to decrease the
effect of the detector placement and ensure the measurement
of only the diffusely scattered light are the introduction of an
integrating sphere at the sample surface or the inclusion of some
optics to put the detectors off axis from the sample29.

The transflectance geometry is a third measurement geome-
try, only used in special cases where the samples do not allow
transmission or reflectance measurements. When measuring in
transflectance mode, a set-up similar to the set-up used when
measuring in reflectance mode is used, but with the difference
that a reflector is used, see Fig. 3.6. The reflector is placed on
top of the sample, reflecting the part of the light that should
otherwise have been transmitted. The transflectance geometry
has been used in e.g. gel measurements30.
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Figure 3.6. Measurement set-up
for transflectance measurements.

One big advantage of using light in the NIR region compared to
using the mid- or far-IR regions is the possibility to use standard
optics, e.g. quarts and glass optics. The losses in standard optics
are very high for wavelengths above 2000 nm. This enables the
usage of optical fibres and different sampling probes. The num-
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ber of applications using fibre optical probes is increasing due to
the development of probes for different sample geometries and the
possibility to separate the sampling area from the spectrometer,
i.e. making on-line measurements possible. One of the drawbacks
when using fibre optics is the absorption from OH groups in the
glass material at 1450 nm31.

3.1.4 Detectors

The detectors used in the NIR region are different types of
semiconductor detectors. All detector materials generate holes
and electrons when exposed to light, but the detection schemes
may differ between detectors. Some detectors measure the resis-
tance changes in the material, while others measure the electrical
current introduced by the light.

Different semiconductor materials are suitable for different
wavelength regions. For systems measuring below 1600 nm In-
GaAs detectors are often used. At longer wavelengths, up to 2500
nm, PbS is the most common choice. Both these detectors work
at room temperature, which makes the instrumentation simple,
but cooling the detectors to 233 K with a Peltier element will
decrease the thermal noise and therefore extend the useful wave-
length range of the detectors. For longer wavelengths materials
like InAs or InSb can be used9.

3.2 Spectral information in the NIR region

The overtone and combination absorption bands in the NIR range
are wide and most often superimposed. Therefore a multivariate
approach for quantification and classification is often needed.
Multivariate data analysis will be described in chapter 4. In this
section other, and mainly univariate, approaches for the analysis
of NIR data will be treated.

The data evaluation tools for quantitative and qualitative
analysis of IR or visible spectra are difficult to apply to NIR
spectra. Since a measured NIR spectrum is a measurement of
the diffuse light being transmitted/reflected from the sample,
the intensity is severely affected by the scattering properties of
the sample. A typical spectrum from a NIR measurement on
a pharmaceutical tablet is shown in Fig. 3.7. When using, for
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Figure 3.7. Typical NIR
absorption spectrum measured in
transmission mode on a
pharmaceutical tablet

instance IR spectroscopy, a quantitative identification of the
sample can be made by band assignments. It is possible to assign
different bands in the NIR region as well, but a complete structure
elucidation is almost impossible to perform, due to the broad and
overlapping absorption features. However, NIR spectroscopy can,
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in some cases, be used for identification by using a multivariate
calibration procedure.

The fact that it is multiple scattered light that forms the mea-
sured spectrum makes it impossible to use the Beer-Lambertian
law to get any direct qualitative information from the spectrum,
because the length of the light path through the sample is un-
known. The Beer-Lambertian law is given by:

I = I0 × 10cǫl (3.1)

where c is the concentration of the absorber, ǫ is the absorptivity
and l is the optical path length. When using diffuse reflectance
measurements the Kubelka-Munk function is a better alternative
to extract quantitative information:

f (R) =
(1 −R)

2

2R
=
c

a
(3.2)

where a = s/2.303ǫ, s is the sample dispersion coefficient and R
is the diffuse reflectance. This equation gives a linear relationship
between f (R) and the concentration of the analyte. This relation
only holds as long as the sample matrix does not absorb, the
absorption band of the analyte is weak and the concentration
variations are small32.

3.3 Pharmaceutical applications

The pharmaceutical applications using NIR spectroscopy are many
and very diverse. This section is intended to give some examples of
the use of NIR spectroscopy in the pharmaceutical industry. For a
more comprehensive overview several review articles on this topic
are available3;33;34.

3.3.1 Qualitative applications

Many papers report the use of NIR spectroscopy for identification
of raw materials. Three examples of excipient classification are
Svensson et al.35 that classified 11 different sorts of cellulose,
Krämer et al.36 that report a reflectance method to separate 8
types of cellulose and Candolfi et al.37 that classify 10 different
excipients also using the reflectance mode. Identification of active
drugs has been demonstrated by Gärhausser et al.38, separating
17 different benzodiazepines. Another important application is
quality control of raw materials. Andre39 constructed a scheme
for quality control of an active pharmaceutical ingredient using
NIR spectroscopy. The method required only 2% of the workload
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needed for a similar evaluation using conventional analysis meth-
ods.

Qualitative analysis is not only performed on raw materials,
but also on intact tablets. One example is Dempster et al.40 that
developed a method for the identification of blister packed tablets
using reflectance NIR spectroscopy.

3.3.2 Quantitative applications

There are quantitative applications for almost any form of
pharmaceutical formulation, e.g. tablets41–44, low dose tablets45

and films46;47.

When conducting quantitative measurements on intact tablets
the choice of measurement geometry is more crucial than when
a qualitative analysis is sufficient. Several studies48–51 have
compared quantitative measurements made using transmission
and reflectance mode. All groups conclude that the transmission
measurements are better when conducting a quantitative analysis
of the active ingredient in intact tablets, mainly due to the larger
sampling volume compared to the sampling volume obtained by
a reflectance measurement. However, transmission measurements
can be difficult to conduct on thick tablets, where reflectance
measurements normally are recommended, but Ramirez et al.52

showed that optical dense tablets can be compressed in order to
increase the transmitted signal.

Clarce et al.53 measured the depth from where information
was collected in reflectance measurements, and found that the
depth varied, both with sample type and wavelength, but that
the information depth was at least 200 µm, but could reach 500
µm for shorter wavelengths (in cellulose samples). The sampling
size was also studied by Berntsson et al.54, that measured
the sampling size in diffuse reflectance measurements on phar-
maceutical powders to be in the range between 15 and 70 mg/cm2.

Blanco et al.55 points out one of the major drawbacks with NIR
spectroscopy for quantitative measurements, namely that tablets
from a different batch than the ones used in the calibration model
are almost impossible to quantify correctly, even though several
pretreatment techniques are used. This imply that a strong lim-
itation in all the presented spectroscopic applications is that the
optical path length in the measured samples may vary due to vari-
ations in their scattering properties or due to changes of the mea-
surement geometry.
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3.3.3 On-line applications

The development and use of fibre optical probes have made
on-line NIR monitoring of almost all different steps of the tablet
production feasible. One basic problem when measuring on
moving samples, which is often the case for on-line application, is
the spectral artifacts introduced by the movement. This problem
has been examined by Andersson et al.56(for a dispersive system)
and Berntsson et al.57(for a FT system). Both studies conclude
that measurements on moving samples are possible when a good
design of the spectrometer and appropriate treatment of data is
used to reduce the impact of the spectral artifacts.

Many pharmaceutical manufacturing schemes start with some
kind of powder mixing. Berntsson et al.58 monitored the mixing
process at rather moderate mixing speeds in both small and
production scale blenders with good results. Other groups like
El-Hagrasy et al.59 use a measurement scheme where the blender
is stopped during the measurement. Both sampling techniques
are promising, but have some drawbacks. Stopping the blender
results in problems with sub-sampling, while a moving sample
might introduce artifacts in the spectra.

It is important to measure the moisture content in all phar-
maceutical formulations, since that is an important factor for
the quality of the end product. Rantanen et al.25 measured the
moisture content on-line in a granulation vessel with errors less
than 0.2 % while Berntsson et al.60 measured the water content
in gelatine capsules, with an at-line system, claiming to have an
accuracy of 0.1 %.

Granulation is a complex process that has been studied
with on-line NIR systems to improve the control of the process.
Rantanen et. al.61 used a NIR probe to study three subphases
of the granulation procedure, and were able to determine the
endpoints of each subphase using a multivariate technique to
analyse the aquired NIR spectra.

One safety aspect is to incorporate an identity check of the
final product before packaging. Herkert et al.62 showed that a
NIR spectroscopic system could be used to identify two different
products, and a mixture of them, on-line at production speeds
with 100 % accuracy.
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3.3.4 Measurements of physical parameters

The impact of scattering on NIR spectra is not only a drawback,
but have also been used to extract information about the physical
state of the samples. Chen et al.63 used reflectance NIR data to
evaluate the hardness of the measured intact tablets, a measure
that is important e.g. for the dissociation of the tablets and drug
delivery. Otsuka64 used NIR spectroscopy to extract the mean
particle size of powders, in the range from 37 µm to 590 µm.
The mean error of the size determination was measured to be 25
%. Gupta et al.65 used the baseline slope of reflectance spectra,
both as a measure of the strength of compacted pharmaceutical
powders as well as a measure of the particle size distribution of
the powders after milling of the compacts.

NIR spectroscopy using microscopes allow imaging of pharma-
ceutical preparations. Clarke et al.66 used a combination of NIR
and Raman microscopy to image the surface of intact tablets, to
evaluate the specific formulation used.





Chapter 4

Multivariate data analysis

Spectroscopy has been used as a tool for chemical analysis
for many years. In the early days the wavelengths used in a
specific experiment was limited by the restrictions set by the
instrumentation. At that time, a large set of required data
might have included five wavelengths. In recent years the rapid
development of spectroscopic devices and computers has resulted
in much larger data sets. Today, the resulting data from a spec-
troscopic measurement often consists of thousands of measured
wavelengths. To cope with these enormous matrices of data,
the use of multivariate data analysis has become increasingly
important. The main tools within multivariate data analysis are
based on projection67 techniques, in which the original data set
with thousands of wavelengths, is projected onto a set of new,
and fewer variables.

The projection techniques have several important and unique
features:

• They are not restricted by any shape of the original data
matrix.

• They handle collinearities.
• They handle missing data.
• They are robust to noise.
• They do not require any a priori knowledge of the recorded

data.
• They provide informative diagnostic and graphical tools.

Projection tools are mainly available for the two major analyti-
cal problems, classification and calibration. Several methods have
been proposed68;69, but in this work only the basic, and most
commonly used methods, principal component analysis (PCA) and
partial least squares (PLS) will be described.

21
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4.1 Principal component analysis

Principal component analysis (PCA) extracts the information
residing in a multidimensional data matrix by projecting the
original measured variables onto a set of new, orthogonal vari-
ables70–72. These new variables are called principal components
(PC), and are constructed to include as much as possible of
the relevant information in the original data matrix, without
including the noise.

The basic principles of PCA can be described by constructing
a model from a simple data set containing only three measured
wavelengths. When the samples are plotted as a function of the
wavelengths, they form a cluster of points in a three-dimensional
coordinate system. The first PC (PC 1) is then a new coor-
dinate axis oriented in such a way that it covers as much of
the variations in the swarm of points as possible. A second PC
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Figure 4.1. Visualisation of the
two first PCs in a PCA model
based on a data set containing
three wavelengths.

(PC 2) can be added to the model if PC 1 did not describe the
variations in the original data set in a satisfactory way. PC 2
is a second new coordinate axis that covers as much as possible
of the remaining variations, and is orthogonal to PC 1, see Fig. 4.1.

In this example it is not needed to continue adding PCs. If
the original data set is more complex, more PCs can be calculated
using the same criteria as for the first two. New PCs should be
added until the remaining variations can be considered as noise.
The maximum number of PCs that can be calculated in a model
is the minimum of the number of observations and wavelengths in
the data set.

The calculation of PC 1 is carried out by the construction of two
vectors (t1 and p1) of which the product should match the original
matrix, X, in the best possible way, minimising the eigenvalue of
the residual matrix, R. The t vector is called the score vector
and contains the new coordinates of the samples after projection
onto the PC. The p vector is named the loading vector and can
be interpreted as the cosines of the angles between the original
variables and the new PC.
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Figure 4.2. Schematic description
of the calculation of the first n
number of PCs.

The residual matrix is used as input matrix when calculating
the next PC. This procedure is continued until the information in
the residual matrix is considered as only noise, see Fig. 4.2, giving
the final model as:

X = T × P ′ +R (4.1)

Generally, a spectroscopic data set containing thousands of mea-
sured wavelengths is adequately described using less than ten PCs.
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When evaluating a data set using PCA, both the score and
loading vectors are important. As the score vectors establish the
coordinates of the samples in the new coordinate system formed
by the PCs, plotting the scores from different PCs may reveal a lot
of information about the relationships between the samples. Such
a plot is known as a score plot, and is one of the most commonly
used tools in multivariate data analysis. By analysing the scores,
classification of the samples can be achieved and outliers found.
To know which wavelengths were influential for the PCA model,
and how they are correlated to each other, the loadings have to
be investigated by plotting the loading values as a function of
wavelength. The plot unravels the importance of the wavelength
to the calculation of the PC, where a high positive/negative
loading value means high importance and a value close to zero
means little or no importance for that PC. If two wavelengths have
a similar loading value they are to be thought as highly correlated.

An example of a score plot that extracts information from a
data set containing 300 measured wavelengths into just two PCs
is shown in Fig. 4.3. The data set used contains evaluated time- PC 1
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Figure 4.3. Score plot from a
PCA model based on spectral
data from 27 tablets with varying
thicknesses and concentration of
active substance.

resolved data from 27 tablets, where the tablets had different thick-
ness and different concentration of the active substance. From the
raw data it was impossible to separate the thickness information
from the variations in concentration of the active substance, but
using the scores from the PCA makes the information visible and
the samples easy to classify.

4.2 Partial Least Squares

4.2.1 Algorithm

PLS is a regression extension of PCA that handles two blocks of
variables, predictors (X) and responses (Y )71;73. The two data
sets can be decomposed separately by means of PCA. This gives
the outer relations:

X = T × P ′ +RX (4.2)

Y = U ×Q′ +RY (4.3)

These calculations minimise the residuals, RX and RY , without
making any effort to correlate the data sets. A correlation between
the two data sets can be found by forming a linear inner relation
between the scores for each PC:

ûh = bh × th (4.4)

where h is the number of the specific PC and b is the regression
coefficient. This model exhibits only a weak relation between the
data sets.
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To improve the model, information from the decomposition of
one of the two blocks must give information to the other and vice
versa, giving slightly rotated PCs, but with a stronger coupling
between the predictors and the responses. To accomplish this an
iterative procedure is introduced, which is depicted in Fig. 4.4.
The algorithm starts with a PCA modeling of the Y matrix. The
score vector, uh, from this model is used together with the X
matrix to calculate a new loading vector, ph. The loading vector
is used together with the X matrix to calculate a new score vector,
th, which is then used together with the Y matrix to calculate a
new loading vector, qh. The loop is closed when the loading vector

1

PCA(Y )

uh

X + uh → ph

X + ph → th

Y + th → qh

Y + qh → uh

Figure 4.4. Schematic illustration
of the PLS algorithm. The
procedure is repeated until a
convergence criterium is reached.

and the Y matrix give a new score vector, uh, corresponding to
the score vector from the original PCA model. This procedure
is repeated until the algorithm converges. When the convergence
criterium is accomplished, the vectors are orthogonalised and the
next partial least squares component, PLSC, can be calculated.

4.2.2 Validation of PLS models

The best way to evaluate the predictive power of a PLS model is
to use an external test set with known responses (y values). The
y values of the test samples are predicted by the PLS model and
compared with the known y values. This strategy needs a lot of
samples to get calibration and test sets that are big enough. If
not enough samples are available, an alternative approach is to
use a cross-validation (CV) procedure. The CV starts by splitting
the data set into several different groups. A PLS model is then
made using all but one of the groups, whose response values are
predicted and saved. This procedure is redone until every group
has been predicted once, and the total error can be calculated.
The big drawback of using CV is that it is easy to over fit the PLS
model and thereby drawing the wrong conclusions of the models
quality.

The standard measure to use when evaluating a PLS model is
the root mean square error (RMSE):

RMSE =

√
√
√
√

n∑

i=1

(yi − ŷi)
2

n
(4.5)

where n is the number of samples, yi is the known value and ŷi is
the value predicted by the PLS model. The RMSE value is often
divided by the average y value to be able to get a relative measure
of the introduced error.

It is important to notice that the RMSE gives the total errors,
including errors in the spectral measurements, in the reference
analysis and in the modeling procedure.
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4.3 Preprocessing techniques

The data is often pretreated in order to transform it into the most
suitable form for multivariate calibration. The use of preprocess-
ing can make the difference between the construction of a suc-
cessful and an unsuccessful calibration model. The preprocessing
techniques range from simple data transformations and variable
scaling to more advanced variable selection techniques and data
correction algorithms.

4.3.1 Variable selection

Variable selection techniques can be used for two major purposes.
One is to be a guide when designing systems, or when optimising
a measurement procedure. Variable selection can for instance be
used when a spectroscopic system has the capabilities to conduct
measurements in a large wavelength range, but the timing of the
measurement protocol only allows a few wavelengths to be mea-
sured. Another example is when a spectroscopic instrumentation
is to be designed, and the design only allows the use of a limited
number of wavelengths. The other main application is to remove
non-informative wavelengths from already recorded spectroscopic
data. The goal with this is to only include the parts of the spectra
where information about the samples are present, and remove the
other parts, that otherwise would have added noise to the data
analysis.

A variety of algorithms for variable selection have been
developed, from simple iterative procedures, based on a trial
and error approach74, to complex algorithms, nested into the
multivariate calibration algorithm75. One of the more versatile
variable selection techniques is the genetic algorithm76 (GA),
originally proposed by Holland77. In the remainder of this section
a GA for variable selection will be described as an example of a
variable selection algorithm78–81.

GAs are inspired by evolution theory, according to which the
individuals with the best fitness have both the greatest probabili-
ties of surviving and the highest probabilities of winning the battles
engaged for reproduction, thereby propagating their genome.
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Figure 4.5. Schematic illustration
a genetic algorithm.

GAs involve four basic steps, see Fig. 4.5, where step 2-4 are
repeated until a termination criterion is reached:

1. To allow an easy mathematical treatment of a chromosome,
a coding is necessary. This is solved by representing each
variable (gene) with a binary code in a vector (chromosome)
with one cell for each variable. A variable is selected if a
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1 is present and not selected if a 0 is present. The original
chromosome is then perturbed randomly to make a number
of chromosomes, the initial population.

2. For each chromosome the response associated with the corre-
sponding experimental conditions is evaluated. This is usu-
ally done by making a PLS model for each chromosome. The
models are then evaluated, by external or cross validation, in
order to get numeric values describing their quality. These
values are known as the fitness values and are the criterion
for guiding the GA to the global optimum.

3. The reproduction step creates a new population that can
be considered as the next generation. The new generation
of chromosomes is made up by recombination of the origi-
nal ones. The recombination can be carried out in several
ways, where the most common is single-point crossover, see
Fig. 4.6. Single-point crossover is based on two parent chro-
mosomes that are cut in two pieces at a randomly chosen
crossover point. They are then crossed and put together
again to form two children chromosomes, that will replace
the parent chromosomes in the next generation. The fitness

Parents

Crossover point

Offspring

Figure 4.6. Single-point crossover
in the recombination step of a
GA.

value is used to determine which chromosomes that will be
used in the reproduction step, all in order to improve the
overall fitness of the population.

4. Mutations are necessary to overcome some problems that
otherwise would occur. The most essential problem solved is
that if a variable is not selected in any of the original chromo-
somes it will never be selected in the coming generation. A
mutation is simply an inversion of a gene in a chromosome.

The algorithm is repeated until a termination condition is
fulfilled. The termination condition can be based on a fitness value
that has to be reached or on a convergence criterion, a criterion
where the algorithm is terminated when a certain percentage of
the chromosomes are identical.

4.3.2 Centering and scaling

The most commonly used preprocessing technique is mean-
centering. Mean-centering corresponds to subtracting the mean
value of each variable from each instance of that variable. Without
mean-centering, the first PC of the multivariate model would go
from the origin to the center of the data, i.e. the first PC would
describe the average of the data (mean spectrum when used with
spectroscopic data). Since the average data usually does not carry
any important information, mean-centering is almost always used.
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Scaling can be conducted in many different ways, but the
most commonly used is unit variance scaling. Unit variance
scaling is accomplished by dividing each instance of a variable
with the standard deviation of that variable. Since the modeling
procedures try to capture variances, variables with a large variance
will have greater impact on the model. The unit variance scaling
changes this fact and makes all variables have the same chance of
effecting the model.

Often both mean-centering and unit variance scaling is used
simultaneously and is then called auto scaling. A visualisation of
auto scaling is depicted in Fig. 4.7

0

Mean-centering

Unit variance scaling

Figure 4.7. Schematic illustration
of auto scaling. The data for each
of the six variables are represented
by a variance bar and its center.

4.3.3 Second order derivatives

A commonly used approach to spectral correction is second order
derivation82. Second order derivation removes not only simple ad-
ditive offsets, but also first order effects like drift in baseline. Since
derivatives are calculated by taking the difference between adja-
cent spectral points, noise in the data is usually magnified. For
this reason, algorithms that smooth the data prior to differentia-
tion are typically employed.

4.3.4 Standard normal variate

Standard normal variate83 (SNV) has a lot in common with auto
scaling, but the calculations are conducted for each sample instead
of each variable. In other words the mean value of the sample
spectrum is subtracted from the sample spectrum itself. After this
the sample spectrum is divided by the standard deviation of the
same sample spectrum. The technique aims at reducing the effects
of multiplicative effects caused by variations in scattering between
samples. Thus SNV pretreated data has been shown to produce
better calibration models than calibration models from raw data83.

4.3.5 Multiplicative scatter correction

Multiplicative scatter correction84 (MSC) is a relatively simple
spectral preprocessing technique that attempts to compensate
for the different optical path lengths present when measuring on
highly scattering media, such as a pharmaceutical tablet. The
technique regresses every spectrum against the average spectrum
of the complete data set (or another reference spectrum) and
corrects the original spectrum using the slope from the regression.
The technique works well for some data sets but has a big draw-
back, namely that it stipulates that changing scattering properties
introduces an error that is linearly dependent on the wavelength.
That is contradicted by the results from several research groups
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that actually have measured the impact of changing scattering on
the measured spectra.

Several variations of MSC have been developed, e.g. the ex-
tended inverted signal correction85;86 that offers a more flexible
scatter correction.

4.3.6 Orthogonal signal correction

In situations where the predictors, X, contain a lot of variations
that is uncorrelated to the responses, Y , the first couple of PLSCs
will be calculated under great influence of the variations in X
and only to smaller extent of the correlation between X and Y ,
resulting in a poor predicting power of the model. In these cases
the orthogonal signal correction87 (OSC) may be a powerful tool.

OSC is a kind of PLS modeling procedure taking place before
the calculation of the actual PLS calibration model. The OSC
extracts information from the data matrix that is orthogonal to Y
and removes that from X before the actual PLS calculation. This
makes the variations in X correlated to Y have a larger impact on
the first PLSCs.



Chapter 5

Modeling of light transport in turbid media

The most fundamental way to describe light transport is to use
Maxwell’s equations. These equations describe the interaction
of an electromagnetic wave with the dielectric properties of the
medium it is traveling through. There are just a few analytical
solutions to Maxwell’s equations. That means that for most prac-
tical applications simplifications and approximations are necessary,
leading to the use of different models for light transport in turbid
media. The most commonly used models will be described in this
chapter.

5.1 Radiative transport theory

When using radiative transport theory88 the light propagation is
treated as a stream of neutral particles (photons), that do not
interact with each other, i.e. the phase and the polarisation of the
light is not taken into account. The model is therefore simply to
be seen as a model of energy transport within the medium. The
transport theory is not restricted to light, but has been used in
other areas, such as neutron transport and thermodynamics.

The five different contributions to the radiation transport equa-
tion are described schematically by looking at the small volume
element in Fig. 5.1. When used for calculations regarding light
flow the equation is usually expressed as a continuity function of
the radiance, L (r, s, t)

[
W/m2sr

]
, i.e. the light intensity per unit

area and solid angle. The five different parts of the equation are:

3
1
2

4

5

s

Figure 5.1. Schematic description
of the different parts of the
transport equation.
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1. Transmitted light
2. Absorbed light
3. Light scattered from the direction s
4. Light scattered into the direction s
5. Sources within the volume
Together the five parts lead to the equation:

1

v

∂L (r, s, t)

∂t
= −s · ∇L (r, s, t)

︸ ︷︷ ︸

1

− (µa + µs) · L (r, s, t)
︸ ︷︷ ︸

2,3

+

+ µs

∫

4π

L (r, s’, t) p (s, s’) dω′

︸ ︷︷ ︸

4

+Q (r, s, t)
︸ ︷︷ ︸

5

(5.1)

where µa is the absorption coefficient, µs is the scattering coeffi-
cient, s is the studied direction and p (s, s’) is the scattering phase
function. Although the equation seems relatvely straightforward,
complications with coupling between all different directions, s’,
boundary conditions and other geometrical aspects make the ana-
lytical solutions available for only a few idealised cases89.

5.2 Diffusion models

When deriving a diffusion model from the radiative transfer equa-
tion90;91, one usually start by expanding the radiance into spheri-
cal harmonics and truncate the expansion, the so called P1 expan-
sion:

L (r, s, t) =
∞∑

l=0

l∑

m=−l

√

2l + 1

4π
Llm (r, t)Ylm (s) ≈

≈
1

4π
(φ (r, t) + 3F (r, t) · s) (5.2)

where

φ (r, t) =

∫

4π

L (r, s, t) dω (5.3)

and

F (r, t) =

∫

4π

L (r, s, t) sdω (5.4)

The radiance is thereby divided into two parts, the fluence rate,
φ (r, t), which is the light intensity per unit area at position r at a
given time t, and F (r, t), which is the photon flux describing the
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non-isotropic dependence of the radiance.

The same expansion is made for the source term,

Q (r, s, t) ≈
1

4π
(q0 (r, t) + 3q1 (r, t) · s) (5.5)

giving one isotropic part, q0, and one non-isotropic part, q1. In
the diffusion approximation only isotropic sources are treated
leading to the assumption that q1 is zero.

Another important equation for the diffusion model is Fick’s
law giving the photon flux from an isotropic source,

F (r, t) = −D∇φ (5.6)

where D is the diffusion coefficient given by,

D =
1

3 (µa + µs)
(5.7)

Combining equations 5.1 through 5.7 leads to the time-dependent
diffusion equation:

1

v

∂φ (r, t)

∂t
−D∇

2φ (r, t) + µaφ (r, t) = q0 (r, t) (5.8)

To get an expression for the light distribution in a medium after the
insertion of a short light pulse, an isotropic point source simulated
by a Dirac delta function is used:

q0 (r, t) = δ (0, 0) (5.9)

The solution to Eq. 5.8 using the source term, Eq. 5.9, yields the
following expression of the fluence,

φ (r, t) = c (4πDvt)
−3/2

e

�
−µavt−

r2

4Dvt

�
(5.10)

Eq. 5.10 is also called the Green’s function for free diffusion.
The equation is only valid for a point source within an infinite
homogeneous medium, but it can be used for other simple
geometries, such as a semi-infinite geometry or a thin slab.

To find solutions to other geometries, one first has to alter
the light source. If a surface is illuminated by light, the source
cannot be seen as an isotropic point source at the surface. The
most correct way to model the light source in the medium would
be to use a line of isotropic light sources, with an exponentially
decaying intensity, proportional to e−µtrz, where z is the depth
inside the medium. This will lead to an integration procedure,
but the procedure can be simplified by inserting a point source at
the depth z0 = 1/µ′

s
92. At this depth the source can be modeled
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with the simple Dirac delta function in Eq. 5.9.

The next important factor is to find expressions for the
boundary condition at the surface of the medium. Obviously
Eq. 5.10 has to be altered in a way so that light exiting through
the surface to the non scattering surrounding medium (often air or
glass) will not re-enter the medium again. It is, however, not quite
correct to assume that the fluence back through the boundary
from the surrounding medium is zero, unless the surrounding
medium has the same refractive index as the sample93. If not,
the reflection at the surface due to refractive index mismatch has
to be included. The reflection can be included by inserting an
extrapolated boundary where the fluence is set to zero94. Given
a boundary between air and a medium with a refractive index
of 1.4, an extrapolated boundary at the distance ze ≈ 5.5D is
found to roughly satisfy the surface reflections. This distance will
change when the conditions change, but it can be calculated for
different refractive indices95;96. A second boundary can be added
if a slab is to be modeled.

To get the fluence to be zero at the extrapolated sur-
face/surfaces, an infinite number of isotropic sources, both positive
and negative have to be added. For practical reasons, the calcula-
tions are often conducted using less than 40 sources. A schematic
picture of the sources can be seen in Fig. 5.2. The final equation
for the time-resolved fluence in cylindrical coordinates for a slab
geometry is thereby derived to be95:

Extrapolated boundary

Pos

Neg

z

z0

−ze

− (2ze + z0)

Figure 5.2. Schematic picture of
the first two sources in the
extrapolated boundary condition.

φ (r, z, t) =
c

(4πDct)
3/2

e−µact−
r2

4Dct × (5.11)

×

[
∞∑

m=−∞

e

�
−(z−z+,m)2

4Dct

�
−

∞∑

m=−∞

e

�
−(z−z

−,m)2

4Dct

�]

where

z+,m = 2m(d+ 2ze) + z0

z−,m = 2m(d+ 2ze) − 2ze − z0

where d is the thickness of the slab and m is the number of the
source.

When predicting the optical properties from a time-resolved
measurement, the most common technique is to fit the theoretical
diffusion model to the recorded time-resolved data using a
Levenberg-Marquardt algorithm with µa, µ

′

s and an amplitude
factor as free parameters97. It is also important to incorporate
a convolution with the instrumental response function in the
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algorithm, see Fig. 5.3. An instrumental response function that
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Figure 5.3. Example of a diffusion
evaluation. The required data is
represented by the dotted line,
while the theoretical diffusion
data is shown by the solid gray
line.

is measured incorrectly or a time scale that is slightly shifted,
could easily introduce errors of 5%98, stressing the importance
of having a good measurement protocol for the evaluations to
work properly. There are other evaluation schemes, where the
diffusion equation has been transformed or simplified into forms
that can be evaluated without a fitting procedure, e.g. by using
two measurements at different distances99.

For the evaluations of time-resolved measurements to be cor-
rect it is important that some requirements are fulfilled. First of
all, the reduced scattering coefficient must be much larger than
the absorption coefficient, µ′

s >> µa. Furthermore the distance
between the light source and detector must be larger than approx-
imately ten transport mean free paths100, µ−1

tr > 10. Both these
requirements ascertain that a diffuse light flux will be measured.

5.3 Monte Carlo simulations

Monte Carlo simulations offer a more flexible approach to light
propagation than the diffusion models, e.g. it can handle non
isotropic light101 and complex geometries. However, both meth-
ods yield similar result in cases where the diffusion solution is
valid102, see Fig. 5.4. Monte Carlo uses a random walk procedure
for the photon transport. The principle of the Monte Carlo
method is to follow one photon at a time as it is propagating
through the medium. The propagation is simulated using proba-
bility distributions for the different parameters. The trajectory of
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Figure 5.4. Comparison between a
time-resolved reflectance MC
simulation (dots) and diffusion
model (solid line) using the same
optical properties. µa = 0.01
cm−1, µ′s = 75 cm−1 and a
distance between the source and
detector of 0.55 cm.

the photon is followed until the photon is lost over a boundary or
is absorbed. The procedure is then repeated for a large number
of photons until the noise in the resulting data is good enough.
Depending on the requirements, the number of needed photons
may vary from 10,000 for a steady state reflectance simulation,
to 10,000,000 for a model of the light fluence inside the medium
with a high spatial resolution.

One limitation with Monte Carlo simulations is that one
simulation has to be done for each set of optical properties,
which lead to extensive calculation times to build a library of
simulations. Some efforts have been done to try to make the
simulation procedure faster. One approach is to scale the results
from one Monte Carlo simulation to obtain values for other optical
properties101;103;104.

The basic Monte Carlo model105 that will be described in this
section considers a layered media. It treats the photons as neutral
particles, not taking phase and polarisation into account, although
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extended Monte Carlo algorithms have tried to incorporate both
those parameters in the models106;107. A flowchart showing the
main steps in a Monte Carlo simulation is seen in Fig. 5.5. The
different steps will be described in the following sections.

Start

Launch
new photon

Set step size

Hit bondary?

Move to
boundary

T or R?

Move

Absorb

Scatter

Weight small?

Roulette

Stop

SurviveDead

T

R

No

Yes

Yes No

Figure 5.5. Flowchart describing a
Monte Carlo simulation.

5.3.1 Sampling variables

One core task in a Monte Carlo simulation is to properly sample
probability distributions. Usually a random number (ζ) generator
has a uniformly distribution over the range 0 to 1, that has to
be transformed to a non-uniform probability distribution of a
physical parameter (x)108.

The probability function, p (x), of the physical parameter in
the entire possible interval a ≤ x ≤ b is normalised by:

b∫

a

p (x) dx = 1 (5.12)

The cumulative distribution function, Fx (x1), describes the prob-
ability of a ≤ x ≤ x1

Fx (x1) =

x1∫

a

p (x) dx (5.13)

The cumulative distribution function for the uniformly random
number generator becomes:

Fζ (ζ1) =

ζ1∫

0

p (ζ) dζ = ζ1 (5.14)

By setting Fζ (ζ1) equal to Fx (x1) the random number generator is
able to properly sample the non uniform probability distribution
of the physical parameter according to Fig. 5.6. The resulting
equation for the sampling procedure is then given by:

0

p (ζ)

Fζ (ζ) Fx (x)

p (x)

ζ

ζ x

x
ζ1 x1

1

1

11

1
0

00

0

b

ba

a

Figure 5.6. Sampling procedure
for non uniform physical
properties.

ζ1 =

x1∫

a

p (x) dx (5.15)

5.3.2 Launch of photons

The launch of photons is made by assigning starting values to the
photon. The photon is characterised by its position, direction and
weight. The weight is a number between one and zero stating
how much of the photon is still alive. The use of weights is
a way to make the algorithm more time-efficient, compared to
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use a photon only as dead or alive. A weight of 1 means that
the photon has not yet been partially reflected or absorbed,
while a value of 0 means that the photon is dead. In its most
basic form the photon is launched at the center of the sample
coordinate system with a direction orthogonal to the first layer.
The calculation then simulates the incidence of an infinitely
narrow beam of light. However, the results from the model can
be changed by a simple convolution to simulate results from
a top-hat or gaussian light beam with a finite width as light
source109. Another option to simulate more complex light source
geometries is to alter the position and direction of the photons to,
for example, simulate light emitted through an optical fibre tip110.

Another aspect to take into account is the specular reflection
at the surface if the light is not launched inside the medium. The
specular reflection is calculated using Fresnel’s law for reflectance.
The reflected fraction is subtracted from the weight of the photon
before the photon enters the medium.

5.3.3 Movement of photons

When calculating the movement of a photon inside the medium,
first of all the step size has to be calculated. The step size of one
photon step is given by the mean free path of propagation, 1/µtr.
Since the attenuation is exponential, the step size, s, can be related
to a random number, ζ, by:

s =
−ln (ζ)

µtr
(5.16)

The equation satisfies the statement that the average step size
will be 1/µtr, since the statistical average of −ln (ζ) is one. After
the step size is calculated the photon is moved that distance in
the medium, in the direction decided by the previous scattering
event.

If the photon hits a boundary within the calculated step size
the photon is moved to the boundary position and the angle of
incidence, αi, and transmission, αt, are calculated and the internal
reflectance is calculated by28:

R =
1

2

(
sin2 (αi − αt)

sin2 (αi + αt)
+
tan2 (αi − αt)

tan2 (αi + αt)

)

(5.17)

being an average over the two different polarisations. The trans-
mitted fraction is subtracted from the photon weight and the re-
mainder of the photon is moved in the direction of the reflection
until the next scattering or reflection event occurs.
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5.3.4 Absorption and scattering

The absorption is handled by subtracting a fraction of the current
photon weight after one step. The fraction subtracted is defined
as:

∆W = W
µa
µtr

(5.18)

where W is the photon weight before the step.

)

θ
ψ

s

s’

Figure 5.7. Definition of the
scattering angles θ and ψ.

The scattering is defined by two angles, the deflection angle,
θ, and the azimutal angle, ψ. The definition of the angles are seen
in Fig. 5.7.

The probability function for the deflection angle is most often
described by the Henyey-Greenstein phase function6:

p (cos (θ)) =
1 − g2

2 (1 + g2 − 2gcos (θ))
3/2

(5.19)

where the anisotropy, g, is the expectation value for cos (θ),
ranging from -1 to 1. A value near 1 means an almost totally
forward scattering, while a value of 0 indicates isotropic scattering
and a value close to -1 indicates total backscattering.

Although the Henyey-Greenstein phase function works prop-
erly in most cases other phase functions, e.g. derived from Mie
theory111 or other more empirical functions have been used112

and compared113;114.

5.3.5 Photon termination

When using photon weights the photons can, in principal live for-
ever. This would lead to very long computation times, since the
photons with low weights do not affect the results in any major
way. It is important though to ensure the conservation of en-
ergy, i.e. photons cannot just be terminated, since the results
then would be incorrect. Instead a roulette procedure is used,
where the photons whose weight is below a predefined threshold,
e.g. 0.0001, is given one chance in e.g. m = 10 to survive. If it
does not survive its weight is reduced to 0 and a new photon is
launched. If it survives its weight is multiplied by m, and a new
step is taken.



Chapter 6

Time-resolved spectroscopy

Time-resolved spectroscopy of turbid media is a measurement
technique based on the fact that short light pulses are broadened
when propagating through turbid media. The dispersion can
be understood as the photons will have different path lengths
through the sample. Analysis of the light pulses before and after
the passage through the sample allows the calculation of the scat-
tering and absorption properties of the sample. The possibility
to measure the absorption and scattering properties of a sample
independently is the main advantage of this technique compared
to conventional NIR spectroscopy, described in chapter 3, where
the recorded data contains a mixture of both effects.

In this chapter instrumentations for time-resolved spectroscopy
and their capabilities will be described. A couple of alternative
techniques used for the deconvolution of scattering and absorption
effects will also be treated.

6.1 Instrumentation

6.1.1 Light sources

Numerous light sources can be used for time-resolved spectroscopy,
but this section will focus on the most widely used. An example
of a light source used in individual applications, but not described
in detail here is Q-switched lasers115.

Diode lasers

Pulsed diode lasers are, due to their compact size and stable
performance, becoming more and more popular as light sources for
spectroscopic applications. A laser diode is based on a sandwich

37
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structure consisting of different semiconductor layers, see Fig. 6.1.
The light emission is occurring in the active layer, also called the
junction, when holes from the p-doped layer and electrons from
the n-doped layer are recombining. The excess energy from the
recombination is released as photons, of which the wavelength
is determined by the band gap in the semiconductor material.
An external applied voltage acts as a pump source, constantly

1

p-doped material

Active layer

n-doped material
Light

emission

Figure 6.1. Schematic picture of a
diode laser.

supplying new electrons and holes. To induce a population
inversion the external current must exceed a threshold value,
above which lasing action is possible. The laser cavity is defined
by the end surfaces of the layered material. By modulating the
driving current, pulsed emission from the laser diode can be
obtained. Commercial pulsed laser diodes are available from 375
nm to 1550 nm having pulse lengths (FWHM) below 100 ps116;117.
A measurement of the temporal width of a typical pulsed diode
laser can be seen in Fig. 6.2
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Figure 6.2. Measured time profile
from a pulsed diode laser.

Systems for time-resolved measurements using one single laser
diode118–121 and multiple laser diodes97;122 have been reported in
the literature.

Mode-locked lasers

Within a laser cavity a number of longitudinal modes with
different frequencies are allowed. If the laser medium has a
very wide gain profile, like the most often used Ti:Sapphire, the
number of allowed modes may be as many as 105. If all these
modes are forced to oscillate in phase, the output light transforms
from a continuous beam of light into a train of very short pulses123.

The temporal width of the pulses is defined by the wavelength
range spanned by the longitudinal modes of the laser. When using
Ti:Sapphire 250,000 modes can be locked, making pulses with a
temporal width shorter than 50 fs possible. The time distance be-
tween the pulses in the pulse train is defined by the time of a cavity
round trip. Different optical set-ups exist, most of them result in a
repetition rate of about 80 MHz124;125. A simple simulation of the
pulses from a mode-locked laser with 10 modes is seen in Fig. 6.3
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Figure 6.3. Simulation of time
profile of the emission from a
mode-locked laser containing 10
longitudinal modes.

Due to the short pulses and wavelength tuneability (approx-
imately 700 to 1000 nm) of the mode-locked Ti:Sapphire laser,
several groups have reported its use in different time-resolved ap-
plications126–128.
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Pulsed continuum sources

If a high power laser is available continuum generation can be
conducted by focusing the laser into a cuvette containing a liquid,
e.g. water or ethylene glycole129;130. Nonlinear effects, such as
self-phase modulation of the refractive index due to the high peak
power, result in an instantaneous frequency shift. As a result,
almost structureless light pulses covering the whole visible and
near infrared wavelength region can be obtained and used for time-
resolved measurements131, see Fig. 6.4.

Figure 6.4. Spectrum of a light
pulse created by focusing a
high-power laser pulse into a 5
cm-long cuvette containing
water 131.

The conversion efficiency of the continuum generation can be
improved by using a tailor made photonic crystal fibre (PCF).
There are two fundamental classes of PCFs: PCFs that guide light
through the photonic band gap effect and PCFs that guide the
light through differences in the refractive index, like a standard
optical fibre.

Like in standard optical fibres, index guiding PCFs guide the
light by means of total internal reflection between the high refrac-
tive index core and the cladding with a lower refractive index. In
a PCF the differences in the refractive index is obtained by form-
ing a matrix of different materials (normally air and silica), see
Fig. 6.5. By changing the structure of the matrix the properties of
the fibre can be tailored with respect to e.g. dispersion and mode
structure. One example of the unique features only available in
a PCF is their possibility to work as a single-mode fibre for all
wavelengths simultaneously132. The fact that a PCF can be made

Figure 6.5. Schematic picture of a
PCF. The dark circles represent
holes and the light is guided in
the core, situated where one hole
is left out. The core is usually
between 1 and 3 µm.

with a small core (1-3 µm) in combination with the possibility to
have a zero dispersion at the pump laser wavelength, helps the
pulses from the pump laser to be confined in a small area and
time through the entire length of the fibre. This gives rise to an
efficient spectral broadening of the pump pulse into a continuum.
The spectral broadening is mainly due to nonlinear effects such
as self-phase modulation and stimulated Raman scattering133. A
continuum generated in a PCF can easily span the entire NIR
wavelength range134. Continuum generation in PCFs are usually
conducted using mode-locked lasers. Some time-resolved systems
for characterisation of turbid media using continuum generation
in a PCF have been reported in the literature135;136.

6.1.2 Detection schemes

Gated detection

It is possible gate to an intensifier, such as the multi channel plate
at very high speeds. The time the intensifier is active can be less
than 1 ns, and by combining the amplifier with a camera, a gated
view of the light exiting the sample at a certain time-point can



40 6.1.2. Detection schemes

be achieved137;138. By synchronising the gating of the intensifier
to the light source a time reference is gained. By sequentially
delaying the synchronising signal from the light source a series of
images can be obtained. These pictures can be combined in order
to obtain the time-resolved emission from the sample surface. The
time-resolution of a time-gated system cannot compete with the
systems decribed in the following sections, but is well suited for
imaging applications139.

Time-correlated single photon counting

The idea of time-correlated single photon counting (TCSPC)
is simple and aims at detecting the time delay between two
events, e.g. between a light pulse entering a sample and a
detected transmitted/reflected photon. By doing this for a large
number of transmitted photons a statistical representation of the
time-resolved transmission/reflectance is gained.

A TCSPC system, see Fig. 6.6, consists of two main compo-
nents, a time-to-amplitude converter (TAC) and a multichannel
analyzer (MCA). The light pulses from the light source are fed
to the sample and the stretched pulses leaving the sample are
collected and sent to the sample detector. When the sample
detector detects a photon a response pulse is sent to the TAC.
When the pulse arrives to the TAC, an internal clock in the
TAC starts and is not stopped until a reference pulse from the
light source is detected. The time delay between the pulses is
converted into a standard pulse with an amplitude proportional
to the time delay. The standard pulse is fed to the MCA that
converts the pulse amplitude to a channel and adds one count
to that channel. After repeating this procedure for many light
pulses, a histogram is formed by the MCA corresponding to the
time profile of the measured light pulse. One important constrain
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Figure 6.6. Basic components of a
time-correlated single photon
counting system.

in the method is that two photons from the same light pulse must
not reach the sample detector. The errors introduced by multiple
photons reaching the detector are called pile up errors and tend
to skew the time distribution toward earlier times. By reducing
the probability of detecting one photon per light pulse to below
0.01, the problem with pile up becomes negligible140. With laser
sources driven at a repetition rate of 50 to 100 MHz this is not a
problem, since most detectors will be overloaded before that limit
is reached141.

The sensitivity of the TCSPC technique is mainly limited
by the dark current of the sample detector. Typical values for
PMT dark currents are 100 to 500 dark counts per second. There
are several sources to the PMT dark current, where the most
prominent is thermionic emission from the photocathode and
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dynodes142. The time-resolution of a TCSPC system is dependent
on the timing accuracy of the sample channel only. This accuracy
is determined by the transit time spread in the detector for a
measured photon and the trigger accuracy in the electronics. The
timing accuracy can be up to 10 times better than the detector
rise time, resulting in a time-resolution of about 300 ps for regular
PMTs while a MCP-PMT based TCSPC system can exhibit time
resolutions as low as 30 ps141.

The compact layout of TCSPC systems has lead to the devel-
opment of several systems for medical applications97;122;141.

Streak camera

A schematic picture of a streak camera can be seen in Fig. 6.7.
When light impinges on the photocathode it is converted into elec-
trons. The electrons are accelerated by an accelerating mesh and
directed toward the sweep electrodes. A high speed voltage sweep
is applied to the sweep electrodes, deflecting the electrons. This
sweep converts the time difference between the different electrons
into a spatial distribution. The voltage sweep is synchronised with
the incoming light beam by a trigger signal from the light source.
The electrons are multiplied by an MCP before they are converted
back to light by a fluorescent screen. The light from the fluores-
cent screen is imaged onto a CCD, by which the streak image is
recorded. By having a slit in front of a large photocathode the
time dispersion of a sheet of light can be measured simultaneously
by the streak camera. This makes simultaneous time-resolved spa-
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Figure 6.7. Schematic picture of a
streak camera.

tial or spectral measurements possible. A time-resolved spectral
measurement is made by simply adding a spectrometer before the
streak camera, letting light of different wavelengths impinge on
different parts of the entrance slit of the streak camera. The re-
sulting streak image therefore have one time and one wavelength
dimension, see Fig. 6.8.

Figure 6.8. Typical example of a streak image, when the streak camera is
combined with a spectrometer to get spectral resolution.
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By looking at data from different cross sections of the
streak image, the time dispersed light for different wavelengths as
well as the spectral shape of light at different times can be studied.

Normally a streak camera can operate the sweep in two differ-
ent ways, see Fig. 6.9. At low repetition rates, less than 1 kHz,
the streak camera sweep is triggered by the triggering signal from
the light source. The streak is linear during a specified time, after
which the system is blanked before receiving the next trigger sig-
nal. The repetition rate of this single-sweep operation is limited
by the blanking procedure. At higher repetition rates an operation
mode called synchroscan is used. In synchroscan mode the streak
is made continuously by applying a sinusoidal modulation to the
sweep voltage. The frequency of the sinusoidal signal is controlled
by the triggering signal from the light source.

MCA
Start

Trigger

Trigger

Sweep voltage

Sweep voltage

time

Figure 6.9. Comparison between
single-sweep and synchroscan
operation.

The time-resolution of a streak camera is limited by three
factors: transit time spread of photoelectrons, time spread due to
the slit width and time spread due to variations in the deflection
field. Compared to a TCSPC system, the streak camera has
a superior time-resolution with FWHM as low as 1 ps. The
sensitivity of the streak camera measurement is limited by the
dark current from the photocathode and MCP, and by the read
out noise of the CCD. The maximum useful intensity of the
incoming light is limited by the fact that the time-resolution gets
worse at high intensities. This is thought to be due to the space
charge effect. The signal-to-noise ratio is generally in the order of
1000.

To facilitate the high time-resolution of the streak camera, it
is often used in combination with light sources with very short
pulses, such as the Ti:Sapphire laser.

6.2 Alternative techniques

6.2.1 Spatially resolved spectroscopy

One technique to separate the scattering from the absorption
properties of a sample is to use spatially resolved spectroscopy.
In a spatially resolved measurement light is usually delivered in
one point and the transmitted or reflected light is recorded in
several points at different distances from the light source. The
detection can be made by a mapping scheme, where the detector
is moved to different distances, or by an imaging scheme, where a
camera is used.Systems using monochromatic light sources143 and
systems using polychromatic light sources in combination with a
spectrometer144;145 have been reported in the literature.
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One benefit of using spatially resolved spectroscopy is that the
instrumentation is both cheap and robust, but since the simultane-
ous measurements are made at different source detector distances
the technique is very sensitive to inhomogeneities within the sam-
pling volume. An example of a spatially resolved measurement can
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Figure 6.10. Spatially resolved
measurement using a laser at 633
nm and a camera. The
measurement was conducted on a
pork chop.

be found in Fig. 6.10.

6.2.2 Frequency domain techniques

The purpose of a frequency domain instrument is to detect how
the phase and amplitude of the light from an intensity modulated
light source is changed when passing through a turbid sample, see
Fig. 6.11.

The modulation is usually in the MHz frequency range and
is conducted by direct modulation of laser diodes or by Pockels
cell modulation of a continuous light source. Laser diodes are the
most widely used due to their superior modulation depth of up
to 90% compared to 10% for a Pockels cell system. Several laser
diodes can be combined in one system using time multiplexing146.

Time

In
te

n
si

ty

Modulation
decrease

Phase
shift

Figure 6.11. Basic measures in
frequency domain techniques.

As detectors, both PMTs and avalanche photodiodes can be
used. The big advantage when using PMTs are their large gain
factor, which is 100 times larger than the gain in an avalanche
photodiode. The avalanche photodiodes can though detect
modulation frequencies up to 1 GHz147 while the PMTs have
problems detecting modulation frequencies above 500 MHz.

There are two main detection schemes used in frequency do-
main set-ups: homodyne and heterodyne detection. A homodyne
system detects the phase shift at the radio frequency, while the
heterodyne system shifts the radio frequency down to a lower fre-
quency for phase shift detection. A homodyne detection scheme is
less complex, but the more complex heterodyne detection scheme
is often used due to its superior phase accuracy and insensitivity
to RF noise148.

Employing one of the models described in chapter 5, the phase
shift and amplitude of the detected light can be correlated to
the optical properties of the measured sample. By using several
different modulation frequencies, an improved prediction of the
optical properties can be achieved. Several groups report systems
with the ability to predict optical properties with an accuracy
better than ±10%147;149–151.
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6.3 Pharmaceutical applications

Although NIR spectroscopists working with pharmaceutical
samples have been struggling with problems separating scattering
from absorption effects in their recorded data, surprisingly few
groups have searched for answers in the field of biomedical op-
tics. Time-resolved spectroscopy, and the alternative techniques
described above, have been used for biomedical applications for
at least 15 years and a solid theoretical foundation for light inter-
action with turbid media has been developed. A few studies have
though been made with a similar main goal as this thesis, namely
to use a measurement technique that enables the deconvolution of
the scattering and absorption properties of the measured samples.

Shinde et al.152 used a frequency domain system, based on
a diode laser, for quantitative monitoring of a blending process.
The application is limited to a binary composition, but by
introducing more lasers at other wavelengths the system will have
the capability to monitor a blend with several constituents. Pan
et al.153 used a four wavelength frequency domain system to
measure the concentration of the active ingredient in a low dose
formulation. The measurements were conducted in a blender to
follow the mixing procedure. Sun et al.154 found that the reduced
scattering coefficient, µ′

s, measured using a frequency domain
system, increased linearly with the reciprocal mean particle size
of pharmaceutical powders. The same conclusion was made by
Torrance et al.155, that also used their frequency domain system
for measurements of the concentration of active ingredients in
binary powder mixtures. This shows that the measured concen-
trations were independent of the samples particle size distribution.

Jiang et al.156, Richter et al.157 and Dali et al.158 all used
frequency domain systems to characterise colloidal suspensions,
with respect to particle size distribution and volume fraction. In
the studies polystyrene spheres were used as scatterers. Pan et
al.156 conducted the same type of study using lactose and resin
suspensions.
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Summary of papers

1. Comparison of different variable selection methods
conducted on NIR transmission measurements on
intact tablets
Abrahamsson C et al.

In this work, four different methods for variable selection in
partial least square (PLS) regression were studied. The raw
data was recorded on a NIR transmission instrument, and
the tablets measured were constructed using an experimen-
tal design containing five concentration levels of the active
substance, two different batches of the active substance as
well as one of the excipients and two levels of compressing
force. The methods used were genetic algorithm (GA), it-
erative PLS (IPLS), uninformative variable elimination by
PLS (UVE-PLS) and interactive variable selection for PLS
(IVS-PLS). All methods improved the predictive abilities of
the model compared to a model where the wavelengths were
selected manually. For the data set used in this work, IVS-
PLS and GA achieved the best results with improvements in
prediction error by 20 %.

Contribution:
I conducted major parts of the experimental work, includ-
ing tablet manufacturing and reference analysis. I made all
calculations and wrote the manuscript.

2. Multi-component chemical analysis of gas mixtures
using a continuously tuneable lidar system
Weibring P et al.

The study introduces the concept of a multi-wavelength lidar
system with multivariate analysing techniques for measuring
hydrocarbon gas mixtures. The concept was successfully im-
plemented and tested. The procedure uses a genetic algo-
rithm to select what wavelengths to measure and database
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spectra for calibration. The calibration procedure is flexi-
ble and could be conducted before a measurement campaign
without making any reference measurements. The concept
was validated using both gas cell measurements as well as
measurements on an open ended cell at a distance of 60 m.

Contribution:
I took part in the experimental work. I programmed the
genetic algorithm, made all data evaluations and took part
in writing the manuscript.

3. Time and wavelength resolved spectroscopy of
turbid media using light continuum generated in a
crystal fiber
Abrahamsson C et al.

The paper is a general description of the novel system for
time-resolved measurements, that is the experimental base
for this thesis. The system is based on short light contin-
uum pulses generated in an index-guiding crystal fibre, and
a spectrometer-equipped streak camera. The system enables
spectral recordings of absorption and reduced scattering co-
efficients of turbid media in the wavelength range 500 - 1200
nm with a spectral resolution of 5 nm and a temporal reso-
lution of 30 ps.

Contribution:
I conducted all experimental work, including setting up the
system. I made the data evaluation, but did not construct
the evaluation software. I took part in writing the manu-
script.

4. MADSTRESS: A linear approach for evaluating
scattering and absorption coefficients of samples
measured using time-resolved spectroscopy in re-
flection
Chauchard F et al.

In this study present new method for processing time-
resolved spectra. The algorithm is based on linear regression
and a two dimensional interpolation procedure. The method
was tested using time-resolved measurements on apples and
fructose powder using the system described in Paper 3. The
accuracy of the method was good enough allow the construc-
tion of a calibration model predicting the sugar content of
the apples.

Contribution:
I took part in all of the experimental work. I took part in
writing the manuscript.
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5. Least Squares-Support Vector Machines modelisa-
tion for Time Resolved Spectroscopy
Chauchard F et al.

In this study, a prediction model for time-resolved data was
obtained using a semi-parametric modeling technique : the
Least-Squares Support Vector Machines. The main advan-
tage of this technique is that it uses theoretical time disper-
sion curves during the calibration step. Predictions of the
scattering and absorption coefficient was made from mea-
surements on apples. The measurements were made using
the system described in Paper 3.

Contribution:
I took part in all of the experimental work. I took part in
writing the manuscript.

6. Time-resolved NIR/Vis spectroscopy for analysis of
solids: Pharmaceutical tablets
Johansson J et al.

Time-resolved spectroscopy in the visible and near infrared
regions was used in a feasibility study for analysis of solid
pharmaceuticals. The objective of this study was to improve
the understanding of the interaction of light with pharma-
ceutical solids and to investigate the usefulness of the time-
resolved spectroscopy as an analytical tool for spectroscopic
analysis. In conclusion, the study shows that time-resolved
NIR spectroscopy yields more information about solid phar-
maceutical samples than conventional NIR spectroscopy.

Contribution:
I took a small part the data evaluation and in writing the
manuscript.

7. Time-resolved NIR spectroscopy for quantitative
analysis of intact pharmaceutical tablets
Abrahamsson C et al.

In this work, time-resolved transmission NIR spectroscopy
was utilised to conduct quantitative measurements of intact
tablets. The experiments were conducted using the system
described in Paper 3. A comparison of the results from the
time-resolved technique with the results from transmission
NIR spectroscopy was made using tablets containing dif-
ferent concentrations of iron oxide and manufactured with
different thicknesses. A PLS model made with data from
the time-resolved technique predicted samples 5 times bet-
ter than a PLS model made data from the conventional NIR
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transmission technique. Furthermore, an improvement to
predict samples with physical properties outside those in-
cluded in the calibration set was demonstrated.

Contribution:
I conducted all experimental work, including tablet manu-
facturing and reference analysis. I made all calculations and
wrote the manuscript.

8. Scatter correction of transmission NIR spectra by
photon migration data - quantitative analysis of
solids
Abrahamsson C et al.

The scope of this study was a new methodology to correct
transmission NIR data for scattering effects. The method is
based on time-resolved measurements, made using the sys-
tem described in paper 3, and modeling of light transport
by diffusion theory. This provides an independent measure
of the scattering properties of the samples, and therefore the
path length of light. This yields a clear advantage over other
pre-processing techniques, where scattering effects are esti-
mated and corrected for by using the shape of the measured
spectrum only. PLS calibration models shows that, by us-
ing the proposed evaluation scheme, the predictive ability is
improved by 50 % as compared to a model based on trans-
mission NIR data only. The method also makes it possible
to predict the concentration of active substance in samples
with other physical properties than the samples included in
the calibration model.

Contribution:
I took part in all of the experimental work, including tablet
manufacturing. I took part in the data evaluation and in
writing the manuscript.
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Abstract

Near infrared (NIR) transmission spectroscopy is a promising method for fast quantitative measurements on pharmaceutical

tablets, but there are still some problems to overcome in order to incorporate the technique as a control tool in tablet production.

The main problem is the limited precision for multivariate calibrations based on NIR transmission data. The precision is affected

by several factors, where one of the most important is which variable to include in the multivariate calibration model.

In this work, four different methods for variable selection in partial least square (PLS) regression were studied and compared

to a calibration made with manually selected wavelengths. The methods used were genetic algorithm (GA), iterative PLS

(IPLS), uninformative variable elimination by PLS (UVE-PLS) and interactive variable selection for PLS (IVS-PLS).

All methods improved the predictive abilities of the model compared to the model where the wavelengths were selected

manually. For the data set used in this work, IVS-PLS and GA achieved the best results with improvements in prediction error

by 20%, but further measurements and investigations have to be made before any general conclusion can be drawn.
D 2003 Published by Elsevier B.V.
Keywords: Near-infrared spectroscopy; Transmission; Precision; Pharmaceuticals; Intact tablets; Variable selection

1. Introduction sources can be divided into three major categories:
When using analytical calibrations, it is important

to reduce all possible sources of error in order to get as

good results as possible. When working with near

infrared (NIR) spectroscopy on intact tablets, these
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instrumentation, reference analysis and data analysis.

Since the first commercial NIR instruments were

introduced in the pharmaceutical industry, great effort

has been made to further develop the instrumentation

to encounter the high demands set by the controlling

authorities. Using the transmission mode instead of

the more often used reflectance mode has shown to

give improvements not only in precision but also in

robustness [1,2]. Not only the measuring mode is

thought to be important but also the sample presenta-

tion has a large effect on the results [3], as well as

other optical components in the instrument [4,5].
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As in all spectroscopic calibrations, it takes a lot of

samples in order to compensate for limited precision

in the reference analysis [6,7]. The most common

technique to determine the concentration of the active

substance in a pharmaceutical tablet is high perform-

ance liquid chromatography (HPLC). If new reference

analysis techniques with better precision than HPLC

could be found, it would be beneficial when building

calibration models.

NIR calibrations are often made with multivariate

data analysis, e.g. partial least squares (PLS) regres-

sion. Many spectral pre-treatment methods have been

developed to reduce the effects of variations in the

spectral data that are not related to the chemical

variations in the samples [8–10]. These methods often

improve the calibrations, but they do not take into

account that there might be spectral regions that do not

contain any information about the chemical variations

in the samples. In fact, one of the major problems in

multivariate data analysis is to decide which variables

to include in a calibration model in order to achieve the

best performance. Classically, this selection is made

from the basic knowledge about the spectroscopic

properties of the sample, but it has been shown that

there are mathematical strategies for variable selection

that are more efficient. These algorithms work in

different ways and they have been developed for

different applications. It is therefore hard to get an

overview of which algorithm is suited for what kind of

data.

The goal of this paper was to compare four of these

algorithms in order to improve the precision of

calibration models built on data from NIR transmis-

sion measurements on intact tablets.
2. Theory

All algorithms used in this work have been devel-

oped from their original forms. The genetic algorithm

(GA) [11–13], iterative PLS (IPLS) [14] and unin-

formative variable elimination by PLS (UVE-PLS)

[15] have just undergone small adjustments in order

to work with windows of several neighbouring wave-

lengths instead of single wavelengths. The reason for

this is that neighbouring wavelengths in spectroscopic

data are often highly correlated, especially in the near

infrared region. The algorithm for interactive variable
selection for PLS (IVS-PLS) used in this work is

however quite different from the one presented by

Lindgren et al. [16]. The new algorithm works with

windows instead of single wavelengths and also has

the ability to use two different weighing modes.

2.1. The genetic algorithm

Genetic algorithms (GAs) are variable selection

methods based on the principles of genetics and na-

tural selection. Several articles about the use of GAs

have been published [11,12]. Only a description of the

GA implementation used in this research will be

provided here.

The GA consists of four basic steps, where steps 2–

4 are repeated until the termination criterion is reached:

(1) To allow easy mathematical treatment of a chro-

mosome, a coding is necessary. This is solved by

representing each variable/window (gene) with a

binary code in a vector (chromosome) with one

cell for each variable/window. The original

chromosome is then perturbed randomly to make

a number of chromosomes, the initial population.

(2) For each chromosome, the response associated

with the corresponding experimental conditions is

evaluated. This is done by making a PLS model

for each chromosome. The model is then eval-

uated by cross validation in order to get a numeric

value describing the quality of the model. This

value is known as the fitness value and is the cri-

terion for guiding the GA to the global optimum.

(3) The reproduction step creates a new population

that can be considered as the next generation. The

new generation of chromosomes is made up by

recombination of the original chromosomes. This

recombination is made by single-point crossover,

which is based on two parent chromosomes that

are cut in two pieces, each at a randomly chosen

point. They are then crossed and put together again

to form two children chromosomes that will

replace the parent chromosomes in the new

generation. The chromosomes with a high fitness

value have a higher probability to reproduce than a

chromosome with a low fitness value, all in order

to improve the overall fitness of the population.

(4) Mutations are necessary to overcome some

problems that may occur. The most essential
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problem to be solved is that if a variable should not

be selected in any of the original chromosomes, it

would never be selected in the coming generation

if mutations were not present. A mutation is

simply an inversion of a gene in a chromosome.

The mutation rate is user defined and often set to

0.001–0.01.

The algorithm is repeated until the termination con-

dition is fulfilled. The termination condition is based

on a convergence criterion, where the algorithm is

terminated when a certain percentage of the chromo-

somes are identical.

2.2. Iterative PLS

Iterative PLS (IPLS) is a variable selection method

that is designed to start with a small number of

variables/windows and subsequently add new varia-

bles/windows to or remove original ones from the data

set if that improves the model [14].

The method used consists of four steps:

(1) The original variables/windows are selected ran-

domly.

(2) An ordinary PLS calculation, using the selected

wavelengths, is made and the model is evaluated

using cross validation.

(3) The variable/window to be added or withdrawn

from the model is chosen randomly and a new

PLS model is built and evaluated by means of

cross validation.

(4) If the new cross validation value (root mean square

error of cross validation, RMSECV) is lower than

the original, the new set of variables replaces the

original. If the new cross validation value is higher

than the original, the original set of variables is

kept.

The algorithm is terminated when every variable/

window has been tested once without giving any

improvements.

2.3. Uninformative variable selection by PLS

Uninformative variable elimination by PLS (UVE-

PLS) is a method of variable selection based on an

analysis of the b regression coefficients. One advant-
age of UVE-PLS compared to other variable selec-

tion methods is that it is user independent and

therefore does not present any configuration prob-

lems [15].

The algorithm used consists of five basic steps:

(1) The first step involves building up a matrix of

random numbers (0.0–1.0) of the same size as the

X matrix. The numbers are multiplied with a small

constant (10� 10) to make them at least one order

of magnitude smaller than the imprecision of the

instrument. The multiplication retains the varia-

tion of the variables but makes their influence on

the model negligible.

(2) The new matrix is added to the original one to

form an extended matrix with twice as many

variables as the original one.

(3) As many models as there are samples are made,

where every model contains all but one sample.

This leads to a matrix of b values with as many

rows as samples and one column for each

variable, both original and random.

(4) The c values are calculated as the average of the b

values of each column divided by the standard

deviation of that column. When windows are

used, the c value of one window is calculated as

the mean of the c values of the variables in that

window.

(5) The cut-off limit is set by the largest c value of the

randomly calculated variables/windows. Every

variable/window with equal or lower c value is

left out of the final model. This means that all

random variables and all original variables that are

assumed to contain nothing but noise are elimi-

nated.

2.4. Interactive variable selection for PLS

The selection of variables in interactive variable

selection for PLS (IVS-PLS) is made dimension-

wise instead of model-wise as in the other methods.

This means that variable selection is carried out in

every PLS dimension in order to maximise the

predictive ability of the final model. The algorithm

uses cross validation as guidance to the best variable

selections.

The algorithm contains four basic steps that are

repeated for each PLS component (PLSC) (see Fig. 1).



Fig. 1. Schematic picture of the modified IVS-PLS algorithm. The algorithm works with two weighing modes and adjustable window sizes.
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(1) The key to a successful IVS-PLS calculation is

to find the best set-up for the in-parameters in each

PLSC. There are four parameters that guide the

algorithm:

(i) Window size. The window size is very much

dependent on the type of data to be analysed. It

also varies between PLSCs, e.g. as PLSC1 finds

a maximum in Q2 in a window of 100 wave-

lengths, PLSC2 might find a maximum in Q2 in a

window of 300 wavelengths. The window size

can therefore be varied between PLSCs.

(ii) Step size. The step size tells how many wave-

lengths the window should move forward

between each calculation. If a step size of 1 is

selected, every possible location of the window

in the data matrix will be tested, while the step

size selected is the same as the window size one

would calculate PLSCs for adjacent windows.

The only benefit when using a step size larger

than 1 is faster calculations.

(iii) Weighing up or down. See Section 2.
(iv) Cross validation segments. The algorithm is

evaluated by means of cross validation, and the

user defines the number of cross validation

segments.

(2) The calculation of the PLSC of a window can

be made in two different ways, weighing up or down.

The first one means to calculate a PLSC with the

variables in the window included and the rest

excluded. In the second method, the variables in the

window are excluded and the rest included. The

calculation results in one separate PLS component

for each possible window. For each component, an R2

value and a Q2 value are calculated, where Q2 is

calculated as the cross-validated R2.

(3) The evaluation of the calculation is made by

looking at a plot of R2 and Q2 versus the number of

the window. By investigating the plot, one should

decide if any of the window-based components

presents an improvement compared to a PLSC includ-

ing all variables, if it is best to include all variables in

the PLSC or if it is best to restart the iteration by
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selecting another set of in-parameters. There are a few

rules to regard while looking at the evaluation plots:

(i) Only pay attention to windows with improve-

ments in the Q2 value by 10% or more. Smaller

improvements may be of local nature and only

appear in the training set.

(ii) Leave at least the square root of the number of

variables in each dimension.

(iii) Dimensions with Q2>1 should be left unchanged.

These general rules often do not give enough

guidance to find a simple solution, if one exists, but

need to be complemented by common sense and

sometimes a trial and error approach.

(4) The calculation of the final PLSC can be

done in three different ways, depending on the in-

parameters and the result of the evaluation. If the

evaluation shows that the model with all variables

gives the best PLSC, the PLSC will be calculated as

an ordinary PLSC. If the evaluation shows that a

window PLSC gives the best results, the calculation

can be made in two different ways depending if

weighing up or down is used. If weighing up is

used, the weights from the window-based model

will be lengthened with zeros at both ends, until

the vector is of the length of the original matrix. In

the same way, the w-vector from the weighing down

PLSC will be lengthened with a vector of zeros,

with the length of the window size, inserted at the

location of the selected window. The final PLSC is

calculated by performing one iteration of the PLS

algorithm with the new w-vector as the starting

point.
Table 1

Summary of the input parameters and the results of the variable selection

Model Input parameters

Window

size

Population

size

Percent wavelengths

included initially

GA1 25 64 25

GA2 25 64 50

GA3 25 256 25

GA4 25 256 50

GA5 100 64 25

GA6 100 64 50

GA7 100 256 25

GA8 100 256 50

Original – – –
3. Experimental

3.1. Data set

The data set consisted of 360 spectra. Tablets (120,

three from each batch) were measured three times

each. Between the measurements, each tablet was

moved 10 steps in the sample holder, e.g. measured

in wells 3, 13 and 23.

3.1.1. Tablets

Homogenous tablets were manufactured according

to an experimental design. The design contained five

concentration levels between 90% and 110% of the

nominal content of the active substance, two different

batches of the active substance as well as one of the

excipients and two levels of compressing force, giving

a total of 40 different batches.

3.1.2. NIR apparatus

All NIR spectra were measured with a NIRSystems

6500 monochromator, with a NIRSystems InTact

MultiTab Analyzer presenting the samples. The

instrument is a holographic grating instrument with

a tungsten-halogen lamp as the light source and a

single indium–gallium–arsenide (InGaAs) detector.

The spectra were collected in the wavelength range of

600–1900 nm with a spectral resolution of 10 nm and

a data point spacing of 2 nm. The sample holder

consisted of a carousel with 30 sample wells.

3.1.3. Reference analysis

The UV spectrophotometer used was an HP 8453

(Hewlett Packard Sverige, Spånga, Sweden). The HP
made by the genetic algorithm

Responses

Number of

wavelengths

Components RMSEP RMSECV

150 4 1.072 0.671

180 4 1.018 0.689

140 4 1.073 0.672

160 4 1.058 0.673

165 4 1.148 0.83

165 4 1.120 0.808

260 3 1.090 0.829

325 4 1.159 0.873

– 3 1.194 0.886



Fig. 2. NIR transmission spectrum of the tablet. In the region above 1350 nm, the signal becomes noisy due to increased absorption in the tablet

and the decreased sensitivity of the detector. The region below 800 nm suffers from instrumental properties that make the spectra less

dependable.

Fig. 3. Score plot for component 1 (R2 = 0.997) and component 2

(R2 = 0.002) in a PCA model with all samples included. The

samples marked as squares are the test set that is used for external

validation.
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8453 is a diode array instrument that collects spectra

in the wavelength range of 190–1100 nm with a

resolution of 1 nm. In this study, the absorption was

measured at 274 nm and the background at 550 nm.

Each tablet was weighed and transferred into a 25

ml volumetric flask. Twenty milliliters of phosphate

buffer pH 3.0 was added and the flask was shaken

vigorously in a mechanical shaker for 30 min until the

tablet was completely disintegrated. The samples were

diluted to volume with phosphate buffer pH 3.0 and

left to sedimentate for 3 h. Five milliliters of the clear

solution was transferred to a 50 ml volumetric flask

that was filled to volume with phosphate buffer pH 3.0.

3.2. Modelling and variable selection

All multivariate models were made in Simca-P 8.0

(Umetrics, Umeå, Sweden) and programming and

variable selection in Matlab 5.3 (The Math Works,

Natic, MA).

All spectra were mean centered before calculations

and the number of PLSCs selected in the models were

as many as Simca-P 8.0 found suitable. The program

uses the cross-validated predicted fraction for both X

and Y to find the optimal number of PLSCs.

The GA used in this work was from PLS Toolbox

2.0 (Eigenvector Research, Manson, WA) and it was

run eight times according to an experimental design

where the population size, the window size and the

number of variables included in each chromosome at

initiation were varied (see Table 1). The algorithm
was terminated after 100 generations or when 80% of

the chromosomes was identical. The mutation rate

was set to 0.005, single point crossover was used and

the fitness value for every chromosome was calcu-

lated as cross validation value of the PLS model made

with four PLSCs. Locking the number of PLSCs may

not give the optimal wavelength selection since differ-

ent wavelength sets normally have different number

of significant PLSCs, but this approach gives a faster

evaluation scheme and also helps to minimise the risk

of overfitting the models.



Fig. 4. Overview of the best variable selection obtained with GA,

GA2. Wavelengths included are marked black. The model based on

these wavelengths lowered the prediction error with 15% compared

to the original model.
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The variable selection with IPLS was made using

randomly selected start variables and cross validation

was used for evaluation. The window size and the

number of wavelengths included initially were varied

at three levels each.

The UVE-PLS algorithm was run three times with

different window sizes.
4. Results and discussion

4.1. Original model

The spectral features around 1200 nm are character-

istic for the active substance (see Fig. 2). This region is
Table 2

Results and input parameters from the variable selection made by iterativ

Model Input parameters Respons

Window

size

Wavelengths

included initially

Number

wavelen

IPLS1 10 50 50

IPLS2 10 100 110

IPLS3 10 650 70

IPLS4 25 50 100

IPLS5 25 100 100

IPLS6 25 650 100

IPLS7 50 50 150

IPLS8 50 100 150

IPLS9 50 650 150

Original – – –
the second overtone region of C–H stretch vibrations.

It has earlier been found that the best wavelength range

for PLS calibrations is 800–1350 nm for a similar

formulation [1].

Three spectra were scanned for each sample. A

PLS model with all 360 spectra was calculated and the

values predicted by the model using cross validation

were analysed. The relative standard deviation, at a

single wavelength of the three spectra from the same

tablet, varied between 0.13% and 1.72% with a mean

value of 0.58%.

To overcome problems with cross validation that

may occur when more than one spectrum of each

sample is present, mean spectra were calculated. This

calculation reduced the number of spectra from 360 to

120, but when the two models, one with all 360

spectra and one with the calculated 120 spectra, were

compared, no deterioration in the predictive ability of

the model of the mean spectra was seen.

A PCA model was then made with all 120 spectra

where no outliers were detected. From this PCA

model, a test set of 20 samples was selected. The test

set was selected to cover most of the variation in the

first two principal components and was used as source

for external validation in models where variable

selection was accomplished (Fig. 3).

In order to have a measure of the quality of the

variable selection algorithms, a model was built with

the previously found suitable wavelength region.

This original model was a PLS model with three

PLSC, which gave a root mean square error of

prediction (RMSEP) of 1.194 mg/tablet when pre-

dicting the test set and a corresponding root mean
e PLS

es

of

gths

Components RMSEP RMSECV

2 1.157 0.79

3 1.124 0.8

2 1.118 0.787

2 1.132 0.79

2 1.132 0.79

2 1.132 0.79

3 1.168 0.834

2 1.305 0.886

2 1.305 0.886

3 1.194 0.865



Fig. 6. Overview of the best UVE-PLS model, UVE1. The selected

wavelengths are marked black. The improvement in RMSEP,

compared to the original model, was 7%.
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square error of cross validation (RMSECV) of 0.865

mg/tablet.

4.2. Variable selection

One can see (in Table 1) that all models after the

variable selection by GA gave slightly better RMSEP

values than the original model, which implies better

predictive power. The improvements in RMSEP were

between 2% and 15%, where the largest improve-

ments were seen in the models where the GAs had

been working with small windows. GA2 (Fig. 4) had

the lowest RMSEP value of the models made with this

variable selection technique.

Seven out of nine models built by data after

variable selection by IPLS exhibited improvements

in the RMSEP values, compared to the original model

(Table 2). The largest improvements (6%) were

obtained when small windows were applied (Fig. 5).

One interesting result is that the algorithm selected

the same variables in all three models with a window

size of 25 wavelengths (IPLS4–IPLS6) although they

started with different and randomly selected wave-

lengths.

After using the UVE algorithm, it can be seen that

the model with the smallest window size (UVE1) was

the most successful (Fig. 6), but all models gave lower

RMSEP values than the original model. The improve-

ments were in the range of 4–7% (Table 3).

The IVS-PLS algorithm was tested using many

different combinations and the most successful is
Fig. 5. Wavelengths included in the model IPLS2 are marked black.

The improvements in RMSEP achieved with IPLS were 6%.
summarised in Table 4 and Fig. 7. Three out of five

models gave lower RMSEP values than the original

model, where IVS1 showed the best improvement,

almost 20%.

All variable selection techniques improved the

predictive ability of the model, but two of the techni-

ques showed larger improvements than the others,

IVS-PLS and GA. These are also the two algorithms

that needed most input from the user. The GA is

known for its enormous configuration challenge and

IVS-PLS requires the user to choose the region and

weighing mode for every PLSC, while UVE-PLS and

IPLS are more automated.

When comparing the time needed for the computer

to make one run of the algorithms, there are two

algorithms that need far more time than the others,

GA and IPLS.

All techniques, except IVS-PLS, worked best with

the smallest windows. This may seem strange since
Table 3

Summary of the input parameters and the results of the variable

selection made by uninformative variable selection by PLS

Model Input

parameter

Responses

Window

size

Number of

wavelengths

Components RMSEP RMSECV

UVE1 10 200 3 1.113 0.847

UVE2 25 300 4 1.117 0.855

UVE3 50 250 4 1.151 0.942

Original – – 3 1.194 0.865



Table 4

Results from the variable selection with IVS-PLS

Model PLS

800–1350

IVS1 IVS2 IVS3 IVS4 IVS5

RMSEP RMSEP Selection RMSEP Selection RMSEP Selection RMSEP Selection RMSEP Selection

PLSC1 3.447 3.4599 200; 50;

02; up

3.4869 All 3.4869 All 3.4698 200; 10;

39; down

3.4698 200; 10;

39; down

PLSC2 1.605 3.1795 250; 50;

02; up

1.0423 100; 10;

36; up

2.748 100; 10;

45; down

2.8427 200; 10;

44; down

1.5213 150; 10;

23; up

PLSC3 1.194 0.9576 All 1.1714 All 1.754 100; 10;

46; down

1.3282 50; 10;

36; down

1.0999 50; 10;

46; down

The codes under selection stand for: window size; step size; window selected; weighing method. The two weighing methods are weighing up

(up) and weighing down (down).
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the features in the NIR region are much broader than

the smallest window size, but this can be explained by

the fact that the windows are selected consecutively,

e.g. when a window size of 100 wavelengths is used,

the windows starts with wavelength 1, 101, 201, etc.

The outcome of the different window sizes may have
Fig. 7. Overview of one of the be
been different if the windows could be placed any-

where in the wavelength range.

All variable selection methods selected wave-

lengths above the region selected manually (800–

1350 nm), despite the high absorbance values seen in

Fig. 2. The fact that some information is still found is
st IVS-PLS models, IVS5.
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thought to be due to stray light leaking to the detector

between the tablet and the wall of the tablet holder in

the instrument. Although the low signals in this region

are outside the detector’s linear regime, the response

in this region may contain quantitative information

that improves the model.

When comparing the different algorithms, it is

important to keep in mind that IVS-PLS is not a

variable selection algorithm in the classical sense

since it selects different variables in different PLSC.
5. Conclusions

When different variable selection techniques were

conducted on NIR transmission data, small improve-

ments of the predictive ability, compared to a model

where the wavelength range was manually selected,

were seen in all models made after variable selection,

no matter what method used. A comparison shows that

the largest reductions of RMSEP values were found

when using the genetic algorithm or interactive varia-

ble selection for PLS. However, it is important to notice

that these results are valid only for this data set and that

further measurements and investigations have to be

made before any general conclusion can be drawn.

The genetic algorithm improved the RMSEP value

by 2–15%. This test was though far from complete

and it is probably possible to find even better config-

urations of the algorithm. Although only small

changes were made in the input factors, all runs gave

different results, which proves that there is an enor-

mous configuration challenge to overcome when

using genetic algorithms.

Iterative PLS improved the RMSEP in all runs, but

in all cases, it only decreased with less than 6%.

Unlike the genetic algorithm, all runs selected similar

wavelengths and several of them gave exactly the

same results.
Uninformative variable elimination by PLS led to

reductions of the RMSEP value by 4–7%.

The method giving the best results was interactive

variable selection for PLS. The calculated reduction of

RMSEP was almost 20% in the best run. The searches

for the optimal selections are however very slow when

using IVS-PLS because the algorithm needs to be run

a lot of times before finding a good solution.
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ABSTRACT Differential absorption lidar (DIAL) measurements
are usually made on single compounds by alternately switch-
ing the wavelength between on and off a resonance line. The
selection of more than two wavelengths is a mathematical ne-
cessity for simultaneous measurement of multiple species or for
resolving interference effects between a compound of interest
and a background gas such as water vapour or carbon diox-
ide. This is especially true in the mid-IR region, where many
hydrocarbon compounds have important spectral features. We
present a method for remote measurement of gas mixtures in
the mid-IR region based on a newly developed fast-switching,
frequency-agile optical parametric oscillator lidar transmitter.
A multivariate statistical procedure has also been applied for
this system, which combines a genetic algorithm for wavelength
selection with a partial least squares method for identifying in-
dividual compounds from their combined absorption spectrum.
A calibration transfer is performed for compounds of interest
using reference spectra from an absorption spectra database.
Both indoor absorption cell measurements and outdoor remote
range resolved measurements of hydrocarbon mixtures were
performed to explore the performance of the method.

PACS 42.62 Fi; 42.79 Qx; 02.50 Sk

1 Introduction

The increased awareness of the environmental im-
pact of certain industrial activities, and more stringent reg-
ulations on emissions, call for more powerful measurement
techniques for air pollution monitoring. Especially interesting
are the hydrocarbons due to their absorption of terrestrial radi-
ation in the infrared wavelength region, which contributes to
the greenhouse effect [1]. The amount and composition of the
anthropogenic hydrocarbon emissions from sources such as
petrochemical industries, pipelines, road transportation, use
of solvents, rice paddies, and biomass burning are also crucial

� Fax: +46-46/222-4250,
E-mail: Christoffer.Abrahamsson@fysik.lth.se
∗On leave from: Department of Environmental Engineering Science,
California Institute of Technology, Pasadena, CA 91125, USA;
Present address: Atmospheric Chemistry Division, National Center for
Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, USA

for understanding their impact on the chemistry of the atmo-
sphere on regional and global scales.

In this context, optical remote sensing techniques [2]
are particularly advantageous, allowing large-area monitor-
ing and avoiding sample extraction and preparation difficul-
ties. The mid-IR wavelength region is an important spectral
range where many hydrocarbon compounds have fundamen-
tal rotational–vibrational transitions while major constituents
such as N2 and O2 do not. In Fig. 1 the absorption spectra of
some simple n-alkanes and water vapour are presented. It can
be concluded that there are significant overlaps in the absorp-
tion spectra of the hydrocarbons, as well as interference ef-
fects from water vapour. Spectrometers have frequently been
used for multiple-species detection over long atmospheric
paths, utilising different multivariate techniques to overcome
these interference effects. In these cases, the whole spectral
signature, containing hundreds of measurement wavelengths,
is utilised for the detection. In the case of lidar systems, it
would be possible to scan the entire wavelength range using
a tuneable, pulsed transmitter, but this is not feasible due to
the limited repetition rate of most lasers. Still, a substantial
number of different wavelengths need to be employed in the
multi-species lidar measurement, rather than just a pair of on-
and off- resonance wavelengths, as is customary in differential
absorption lidar (DIAL). The multi-wavelength lidar concept
raises new considerations, such as how many wavelengths and
which wavelengths should be used during a particular meas-
urement. In addition, the signal obtained from a single laser
pulse in a lidar measurement is not sufficient for data ex-
traction. On the contrary, a large number of shots have to be
averaged for each measurement wavelength in order to get
an acceptable signal-to-noise ratio. Thus, for a concentration
measurement the total number of transmission wavelengths
must be weighed by the time required to obtain a sufficient
signal for each wavelength.

A few laser-based techniques have been proposed for
remote measurements of spectrally overlapping species. Kas-
parian et al. applied a femtosecond white-light source and
a time resolved spectrometer to record whole spectral sig-
natures, ranging over hundreds of nanometers [3]. Presently,
available intensity in the mid-IR wavelength region makes
hydrocarbon monitoring impractical using this approach.
Robinson et al. used a hybrid approach, consisting of DIAL
measurements and gas sampling, to determine range resolved

With kind permission of Springer Science and Business 



526 Applied Physics B – Lasers and Optics

FIGURE 1 Example of overlapping hydrocarbon
and water absorption spectra in the middle-IR region

concentrations of hydrocarbon mixtures [4]. Quagliano et al.
employed a CO2 laser in the wavelength range from 9 to
11 µm to make long-path absorption measurements [5]. In
that case the discrete nature of the tuning of this laser necessi-
tates the limitation of a set of compounds that have interesting
spectral features coinciding with the emitted laser wave-
lengths. The same group chose to use partial least squares
techniques, which we also have explored, for analysing the
composition of hydrocarbon mixtures from their combined
absorption spectra. The most important distinction between
previous papers on the subject and the present one is that our
system can be tuned to any wavelength, in any order, in a range
of 160 cm−1, and on a shot-to-shot basis providing on-line
range resolved measurements of compound mixtures [6]. The
systems overall tuning range, 220–4300 nm, enables meas-
urements of a major part of the important trace gases in the
atmosphere.

The quantitative identification of multiple, coexisting
compounds from their combined spectrum requires not only
a measurement system that has the ability to transmit and
detect light at multiple wavelengths, but also the implemen-
tation of the appropriate evaluation tools and measurement
procedures. To manage these requirements, we will present
a method, based on a frequency agile transmitter, genetic
variable selection and multivariate statistical techniques. The
method is tested by absorption measurements in the labora-
tory and range resolved outdoor measurements on a remote
artificial smokestack.

2 Measurement procedure

The task of the multivariate regression technique is
to create a mathematical model that relates the absorption of
the measurement wavelengths to the concentration of individ-
ual components in a gas mixture. This model can then be used
to predict the composition of new gas samples.

The multivariate analysis starts with the acquisition of
spectra from gas samples with known compositions. A re-
gression model is then built, with the important constraint
that the model should be built up using the individual and
combined spectra of all compounds and concentrations that
one would likely encounter in future measurements. Vari-
ous methods exist for building a regression model, includ-

ing the well known multiple linear regression technique that
is based on ordinary least squares regression. The problem
with applying this technique to spectroscopic measurements
is the requirement that the variables (spectra) must be lin-
early independent. In addition, ordinary least squares regres-
sion tends to over-fit noisy data. The partial least squares
(PLS) technique [7] overcomes most of these problems by the
virtue of being a projection technique, i.e., the PLS technique
projects the information onto a lower dimensional subspace.
The model is built in such way that the first component con-
veys as much of the variations in the data as possible, at the
same time as it finds the relation between the two data blocks
(spectra and gas concentrations). If a one-component model is
not good enough, more components are added until the varia-
tions modelled by the last component is regarded as noise. The
quality of the model is evaluated by predicting the gas concen-
trations of the samples in a test set and thereby calculate the
mean prediction error (RMSEP) value:

RMSEP =
√√√√

n∑
i=1

(yi − ci)
2

n
(1)

where yi is the predicted, ci is the real concentration value
of the sample and n is the total number of samples. In most
studies that have been performed up to date, the multivariate
regression technique of PLS has been shown to provide the
most accurate predictive models [8] that are the least sensitive
to background noise, and therefore this technique will be used
for analysing the data in this work.

A recording of the whole spectrum would be desirable,
but due to the limited repetition rate of the laser, such meas-
urements could not be carried out in a reasonable time scale,
during which the atmospheric circumstances and the com-
pounds present could be considered as constant in the absorp-
tion path. Therefore there is a need to reduce the number of
measured wavelengths, which is easily done when measuring
mixtures containing only a few compounds. When the number
of compounds increases, the selection of suitable measure-
ment wavelengths gets more and more difficult, and in the case
of severely overlapping spectral structures, it is not possible
by the eye to determine which wavelengths to choose. There-
fore a genetic algorithm (GA) can advantageously be used as



WEIBRING et al. Multi-component chemical analysis of gas mixtures using a continuously tuneable lidar system 527

guidance when selecting which wavelengths to measure. The
GA has proven to be a valuable tool for automated variable
selection [9–11]. The drawback with GA is normally the sub-
stantial set-up preparations that have to be considered. For the
present application only some basic set-up properties of the
GA were explored, since the goal is not to optimise the GA but
just to get some guidance when selecting wavelengths. The
wavelengths selected by the GA could then be used as a base
when measuring with the system.

For a fixed number of wavelengths the GA consists of four
basic steps, where steps 2–4 are performed until a stop crite-
rion is fulfilled:

1. A number of chromosomes (different wavelength sets) are
constructed randomly. This is called the initial population.
The number of wavelengths in each chromosome is locked
to a certain number during the entire wavelengths selec-
tion procedure.

2. For each chromosome the response associated with the
corresponding experimental conditions is evaluated. This
is done by making a PLS model for each chromosome. The
model is then evaluated by means of predicting a test set
and thereby calculating the RMSEP-value. This value is
used as the fitness value and is the criterion for guiding the
GA to the global optimum.

3. The reproduction step creates a new population that can
be considered as the next generation. The new generation
of chromosomes is made up by recombination of the ori-
ginal chromosomes. The chromosomes with a good fitness
value have a higher probability to reproduce than a chro-
mosome with a bad fitness value, all in order to improve
the overall fitness of the population. The chromosome
with the best fitness value is always transferred unchanged
to the next generation.

4. Mutations are necessary to overcome some problems that
may occur. The most essential problem to be solved is that
if a wavelength should not be selected in any of the original
chromosomes, it would never be selected in the coming
generation if mutations were not present. Another import-
ant aspect is that the mutations help the GA not to find
local minima, but to find the global minimum. A muta-
tion is simply an exchange of one of the wavelengths in the
chromosome to a randomly chosen one.

Although it is optimal to experimentally record these absorp-
tion spectra using gases in a test cell, this is not practical for
such a large set of compounds that normally can be found
in a polluted atmosphere. A better alternative is to use spec-
troscopic databases, which include most species in the atmo-
sphere. The database approach also has the advantage that it
will allow the multivariate model to be modified in the field if
a previously unidentified compound would be found to exist
in the gas mixture. It is though important to adjust the database
data so it also takes the instrumental parameters into account.
For example, since field experiments are associated with noisy
signals, white noise has to be added to the spectra included in
the model. In addition, differences in laser linewidth, wave-
length stability, wavelength offset, and wavelength slope lead
to further differences in the recorded spectra. All above stated
parameters can be taken into account through a calibration

transfer procedure, which establishes a relationship between
the instrument and database responses.

Due to the above-mentioned considerations, a measure-
ment must sometimes be performed in an iterative way, espe-
cially if there is no detailed knowledge about the composition
of the pollution.

A systematic way of dealing with this is proposed in the
following procedure.
– Building a model based on experience and basic know-

ledge of the source’s emission inventory and atmospheric
conditions. For instance, a petrochemical industry emits
a wide range of hydrocarbons. Based on this knowledge
the model is built on the expected existing compounds in
the emission.

– A GA is used to select the appropriate wavelengths for
later PLS determination of the concentrations of the differ-
ent pollutants. The wavelength selection is made based on
database spectra, with added noise etc.

– A PLS model is built from database spectra, with the GA
selected wavelengths.

– The lidar measurement is performed with the required
number of shots to reach the desired signal-to-noise ratio.

– Calibration transfer is performed between the instrument
recording at the selected wavelengths and the database
spectra.

– Prediction of the individual concentrations of the com-
pounds in measured mixtures by importing the calibration
transferred data to the model.

– Checking the model prediction error statistics. If the meas-
urement gives large residuals, probably the compounds
included in the model do not match the composition of the
emission. The model is then rebuilt, based on experience,
by either increasing or decreasing the number of included
compounds until the residual information not described by
the model is minimised.

3 Experimental set-up

Experiments for this investigation were performed
with the Lund University mobile lidar system [12], which is
shown schematically in Fig. 2. The key element of the system
is a fast tuning lidar transmitter, using all-solid-state technol-
ogy, providing range- and temporally resolved atmospheric
measurements of gas concentrations. The instrument is based
on a commercial OPO laser system (Spectra Physics MOPO-
730) which has been redesigned introducing piezoelectric
transducers mounted on the wavelength tuning mirror and on
the crystal angle tuning element in the OPO. A piezoelec-
tric transducer similarly controls the frequency-mixing and
doubling stages, which have been implemented to extend sys-
tem capabilities to the mid-IR and UV regions. The system
is able to produce radiation, with an average linewidth bet-
ter than 0.2 cm−1 and a shot-to-shot tunability of 160 cm−1,
with an accuracy better than the linewidth. For instance,
this means that the fast tuning ability is within a range of
170 nm in the mid-IR wavelength region. The output power
in the wavelength regions 220–1800 nm and 2600–4300 nm
reaches 100 mJ and 20 mJ, respectively [12]. The system per-
formance in terms of wavelength, linewidth and power sta-
bility is monitored on a shot-to-shot basis in real time by
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FIGURE 2 Optical schematics of the Lund Uni-
versity lidar system and outdoor open-ended flow
cell

a surveillance system based on a Fabry–Pérot interferome-
ter. If the desired requirements are not met for a specific light
pulse the system discards the corresponding collected data
and repeats the measurement until the requirements are ful-
filled. For concentration and wavelength reference purposes,
an absorption cell system is incorporated in the lidar system,
enabling different reference mixtures to be measured at the
same time as the lidar measurement is performed. The out-
going beam from the lidar system is expanded by a variable
beam expander and transmitted out into the atmosphere by
a computer controlled transmitting/receiving unit; see Fig. 2.
A 40 cm diameter Newtonian telescope is used as a receiver.
Two parallel detection channels enable full spectral coverage
in the UV, VIS and mid-IR regions by utilizing both a PMT
and a liquid-nitrogen-cooled InSb detector. A filter system in
front of the detectors enables high signal-to-background ra-
tios for compounds in the whole wavelength region. For an
optimally adjusted IR lidar system, a measurement range of
about 400 m can be estimated.

To test the potential of the measurement procedure in de-
termining the concentration of different compounds in a mix-
ture, two test stations were built. One station consisted of
an ordinary absorption cell arrangement simulating an ideal
measurement situation. The other test station consisted of an
open-ended remote gas cell simulating a remote plume.

The absorption cell arrangement consisted of a 2 cm long
cell. All optics including the cell windows were made of CaF2 .
To eliminate interference fringes and achieve a similar power
at both detectors, the beams for the cell and reference paths
were split off by reflection from the beam line with separate
wedged beam splitters. The detectors (PbSe) were tested to as-
sure that the experiment was conducted in the linear regime
of their response. To create a gas mixture the following steps
were carried out: The absorption cell was flushed with nitro-
gen and then evacuated, after which it was filled with differ-
ent partial pressures of methane, ethane, propane and butane
(> 99% purity) using a pressure gauge. Following this, the
cell was filled with nitrogen to atmospheric pressure resulting
in concentrations of 0–140 ppm m of the above stated hydro-

carbons. For validation purposes a gas mixture was meas-
ured using a FTIR instrument (Mattsson Instruments), which
showed a good agreement with the lidar system measurement.

In order to simulate a real-life measurement, an outdoor
open-ended flow cell was built for testing the lidar system
under conditions that closely resemble emission sources such
as factory smokestacks. The facility was located 60 m from
the lidar system, and consisted of a 3 m long, 40 cm diam-
eter pipe, through which ambient air was forced from a side
pipe using a fan. At the inlet of the fan, controlled flows of
methane, ethane and propane were added to a controlled flow
of carrier gas consisting of ambient air. This mixed gas was
then introduced into the center of the main flow cell and al-
lowed to pass out each open end of the pipe, as shown in
Fig. 2. The total flow of the gas mixture was measured by
a pressure gauge inserted in the side pipe. The concentration
of the different gases in the cell was calculated by dividing
the flow of the individual gases by the total flow. All flows
could be set and monitored from a computer at the lidar sys-
tem. The average flow data of the gases and air were stored on
the computer disc every 10 s. The mass flow controllers were
tested to have a maximum error of 15%, and the variation of
the air flow was constantly measured and found to be within
2% which results in a total concentration error of approxi-
mately 15%. By firing the lidar beam through the open-ended
flow cell, range resolved absorption measurements were per-
formed. The maximal range-resolution allowed by the system
is 7.5 m. The integrated gas contents (ppm m) due to the gas
released was evaluated from the size of the resulting steps in
the lidar curves, evaluated with some smoothing of the raw
data, using an effective range interval of 15 m.

4 Results

The measuring and analysis procedure for both the
absorption cell and the open ended flow cell was performed
according to the multivariate concept described above. To
make a PLS model, first database spectra of methane, ethane,
propane, butane and water were utilised to make 150 resulting
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spectra, spanning the expected concentrations of the com-
pounds (0–200 ppm m). Also 40% of white noise and a wave-
length jitter of 0.2 nm were added to the spectra to enable
a modelling resistant to noisy data and laser wavelength jitter.
A GA was utilised to select the most significant wavelengths
to use in the PLS model according to the procedure described
above. The GA input properties were kept constant at 100 sep-
arate chromosomes (wavelength sets), 100 generations and
a 5% mutation rate, with the exception of the number of se-
lected wavelengths in order to examine the effect of that fac-
tor. Four different sets of wavelengths were compared: 10 and
20 wavelengths selected by the GA, 20 wavelengths selected
manually based upon experience of a spectroscopist, and 20
wavelengths selected by a combination of the GA and a spec-
troscopist. These four sets of wavelengths and a fifth case,
utilising all scanned wavelengths, were then used to build sep-
arate PLS models.

To validate the wavelength selection procedure and the po-
tential of the different PLS models in determining the concen-
tration of different compounds, an experiment with the indoor
absorption cell was performed. The gas cell was filled with
0–140 ppm m of methane, ethane, propane and butane span-
ning all encountered concentration situations. After the cell
was filled, a complete wavelength scan from 3305 to 3385 nm,
with a resolution of 0.1 nm, was performed. A simple calibra-
tion transfer was then performed, consisting of re-scaling and
offset adjustment in order to match the measured spectra to
the resolution and spectral response of the database spectra.
These data were then used to validate the above described PLS
models created from the database. The result from this ex-
periment is summarised in Table 1. Also the models based on
wavelength selections for 20 wavelengths selected by a spec-
troscopist (manual) and 20 wavelengths selected by a com-
bination of the GA and a spectroscopist (GA & manual) are
shown in Fig. 3. It can be concluded that a PLS model using
10 wavelengths based on a GA selection gives quite large
residuals, but a PLS model based on a 20 wavelength GA

RMSEP methane RMSEP ethane RMSEP propane RMSEP butane
(ppm m) (ppm m) (ppm m) (ppm m)

10 wavelengths GA 15 37 43 32
20 wavelengths GA 9 21 37 25
20 wavelengths manual 9 35 33 25
20 wavelengths GA & manual 7 23 19 26
Complete spectra 6 27 14 15

TABLE 1 Average errors (RMSEP)
from the predictions of the samples
measured in the indoor cell with vari-
ations of the different compounds
0–140 ppm m, showing the differ-
ences between the various wavelength
selection cases

FIGURE 3 Spectra of the four
measured substances, with the se-
lected wavelengths for the different
wavelength selection cases marked

selection improves the predictive abilities. Further increase
of the number of wavelengths, to e.g. 30–40, does not sig-
nificantly increase the prediction capabilities. The automated
GA selection of 20 wavelengths performs actually better for
ethane than a manual selection of 20 wavelengths based on
the selection of a spectroscopist. The GA & manual model
with 10 wavelengths selected by a GA and 10 wavelengths
added afterwards by a spectroscopist gives the best results,
thus achieving a robust model with predictive powers only
succeeded by the model based upon the complete spectrum.
The prediction error in the combined model is about 7 ppm m
for methane, and between 20 and 25 ppm m for the other
species. The main improvement in accuracy of the combi-
nation model compared to the manual model is achieved for
ethane and propane. For ethane, the selection of measurement
wavelengths is completely different among the two models
while for propane the number of measurement wavelengths
around the main peak is increased in the GA & manual model.
Here the aid from GA proves to be superior due to the fact
that it is difficult to determine by eye only the wavelengths that
enable a good de-convolution of the interference among the
different species.

The sharp-featured substances can be modelled in a more
accurate and robust way, as in the case of ethane, using a few
wavelengths rather than using complete spectra, due to the
fact that the errors introduced by varying interfering sub-
stances could be minimised. It can also be seen that substances
with sharp features, such as methane and ethane, are easily
modelled using just a few wavelengths whereas heavier com-
pounds with broader spectral features such as propane and
butane need a larger set of wavelengths to be modelled in
a proper way.

The cell experiment showed that the combination of GA
and manual selection gave the best wavelength selection;
therefore, these 20 wavelengths were used when measuring on
the outdoor cell. The outdoor cell system was set to deliver
0–100 ppm m of methane, ethane and propane for the differ-
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TABLE 2 Set values for the mass flow controllers and lidar system response for methane, ethane and propane

Mixture Set methane Predicted methane Set ethane Predicted ethane Set propane Predicted propane
concentration concentration concentration concentration concentration concentration

(ppm m) (ppm m) (ppm m) (ppm m) (ppm m) (ppm m)

1 0 18 50 46 50 64
2 50 53 100 104 0 0
3 0 10 100 118 0 −2
4 0 5 100 127 100 120
5 100 99 100 99 0 −7
6 100 120 100 120 0 14
7 100 101 100 107 100 109
8 50 56 50 63 50 53
9 0 24 0 −7 50 38

10 100 145 100 105 100 129
Average error 13 10 11

ent measurements. On this occasion the typical pulse energy
of the emitted IR radiation was 8–10 mJ. The range resolved
data were then used to calculate the absorption at the dif-
ferent wavelengths through the cell. The natural background
concentration of methane was measured and taken into ac-
count during the calculations. The results from the outdoor
cell measurements are summarised in Table 2. The prediction
errors are comparable between the lidar and the indoor cell
measurements, with some exceptions. The major factor for the
disagreement is probably the wind conditions. The fact that
the range resolution of the lidar system is only 7.5 m and that
the wind speed and direction affects the effective length of the
absorption path introduces large errors. The length of the ab-
sorption path could typically vary from 3 to 6 m between the
extremes of the wind conditions. This was confirmed by in-
troducing smoke to the inlet of the cell system and studying
the resulting plumes out of the cell openings for different wind
conditions.

5 Discussion

The concept of a multi-wavelength lidar system
with multivariate analysing techniques for measuring hydro-
carbon gas mixtures has been successfully implemented and
tested. The tests were carried out with the light hydrocarbons
methane, ethane, propane and butane. When larger hydro-
carbons such as heptane, hexane, and octane are measured,
the spectral overlap will be more severe and it can be dif-
ficult to determine the individual concentrations of the dif-
ferent hydrocarbons without increasing the number of wave-
lengths substantially. Recording all spectral structures over
a range of hundreds of nanometers is not possible due to pro-
longed measurement time compared to the time constants of
source emission and atmospheric variability. Thus establish-
ing the concentration of different groups of hydrocarbons,
using fewer wavelengths, could be the target for such a meas-
urement. The extension of the multivariate techniques em-
ployed in the current study to other classes of compounds is
thus one area for future development.

Multi-wavelength measurements can be advantageously
applied in other spectral regions as well. In the ultravio-
let wavelength region, overlapping aromatic hydrocarbons
are more easily measured due to less interfering species.
High accuracy measurements of sulphur dioxide with inter-
ference of ozone in the ultraviolet wavelength region have
been performed with specially designed three wavelength
systems [13]. By utilising even more wavelengths, an in-
crease in the accuracy of both sulphur dioxide and ozone
could be expected. In the same way one could achieve higher
measurement accuracy for isolated species that have been
traditionally measured by standard two wavelength measure-
ments (DIAL).
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J.-P. Wolf, L. Wöste: Science 301, 61 (2003)

4 R.A. Robinson, P.T. Woods, M.J.T. Milton: SPIE 2506, 140 (1995)
5 J.R. Quagliano, P.O. Stoutland, R.R. Petrin, R.K. Sander, R.J. Romero,

M.C. Whitehead, C.R. Quick, J.J. Tiee, L.J. Jolin: SPIE 2702, 16 (1996)
6 P. Weibring, J. Smith, H. Edner, S. Svanberg: Rev. Sci. Instrum. 74, 4478

(2003)
7 P. Geladi, B.R. Kowalski: Anal. Chim. Acta 185, 1 (1986)
8 S.J. Haswell, A.D. Walmsley: Anal. Chim. Acta 400, 399 (1999)
9 R. Leardi, R. Boggia, M. Terrile: J. Chemom. 6, 267 (1992)

10 A.S. Bangalore, R.E. Shaffer, G.W. Small, M.A. Arnold: Anal. Chem.
68, 4200 (1996)

11 L. Davies: Handbook of Genetic Algorithms (Van Nostrand Reinhold,
New York 1991)

12 P. Weibring, H. Edner, S. Svanberg: Appl. Opt. 42, 1 (2003)
13 T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi: App. Opt. 40,

949 (2001)



Volume 59, Number 10, 2005 APPLIED SPECTROSCOPY 12290003-7028 / 05 / 5910-1229$2.00 / 0
q 2005 Society for Applied Spectroscopy

MADSTRESS: A Linear Approach for Evaluating
Scattering and Absorption Coefficients of Samples Measured
Using Time-Resolved Spectroscopy in Reflection
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Time-resolved spectroscopy is a powerful technique permitting the
separation of the scattering properties from the chemical absorption
properties of a sample. The reduced scattering coefficient and the
absorption coefficient are usually obtained by fitting diffusion or
Monte Carlo models to the measured data using numerical opti-
mization techniques. However, these methods do not take the spec-
tral dimension of the data into account during the evaluation pro-
cedure, but evaluate each wavelength separately. A procedure in-
volving multivariate methods may seem more appealing for people
used to handling conventional near-infrared data. In this study we
present a new method for processing TRS spectra in order to com-
pute the absorption and reduced scattering coefficients. This ap-
proach, MADSTRESS, is based on linear regression and a two-
dimensional (2D) interpolation procedure. The method has allowed
us to calculate absorption and scattering coefficients of apples and
fructose powder. The accuracy of the method was good enough to
provide the identification of fructose absorption peaks in apple ab-
sorption spectra and the construction of a calibration model pre-
dicting the sugar content of apples.

Index Headings: Time-resolved spectroscopy; Equation of diffusion;
Multi-linear regression; Light continuum; Apple absorption coeffi-
cient; Fructose absorption coefficient.

INTRODUCTION

Near infrared (NIR) reflectance spectroscopy has the
advantage that it can be used to nondestructively measure
chemical compounds residing inside a scattering medi-
um.1 These media may be agricultural products,2 phar-
maceuticals products,3 or others. An example of appli-
cation is the prediction of sugar content in apples.4 Prom-
inent scattering does, however, present a drawback as it
modifies the measured absorption spectra. The measured
reflectance spectrum is hence a combination of both ab-
sorption and scattering effects. Consequently, calibration
models based on NIR reflectance spectra implicitly com-
pensate for scattering effects, resulting in complex and
non-robust models.5 For this reason the calibration pro-
cedure is often combined with data preprocessing tech-
niques such as standard normal variate6 or multiple scat-
ter correction.7 The benefits of the present preprocessing
techniques are, however, limited because they only pro-
duce data more correlated to the absorption coefficient,
but they are not able to extract the real absorption coef-
ficient. Furthermore, the scattering coefficient cannot be
evaluated from NIR reflectance data solely, even though
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its evaluation would be of deep interest since it carries
information about the physical characteristics of the sam-
ple. An attractive method for evaluating the scattering
properties of highly scattering samples is time-resolved
spectroscopy8 (TRS). TRS was mainly developed for
medical applications9,10 but has found its way into other
fields of research, such as pharmaceutical11,12 and agri-
cultural applications.13–16 The parameters used to describe
the optical properties of a turbid medium are the absorp-
tion coefficient ma(l), the scattering coefficient ms(l), and
the scattering anisotropy g. Often, ms(l) and g are com-
bined to form the reduced scattering coefficient m (l) 59s
ms(l)(1 2 g). TRS uses short light pulses to irradiate the
sample. The light diffusively re-emitted by the sample at
a given distance from the irradiation point is then de-
tected as a function of time.17 TRS measurements can be
conducted in either reflectance or transmission mode. In
order to obtain a simultaneous measure of the temporal
signal at different wavelengths, light pulses with a broad
wavelength profile are used in combination with a streak
camera detection system. The broad light pulses can be
generated using different techniques; one is using contin-
uum generation by focusing of a high power laser pulse
into a photonic crystal fiber.18

Once the two-dimensional signal (one temporal and
one spectral dimension) is recorded, the reduced scatter-
ing coefficient (m (l)) and the absorption coefficient9s
(ma(l)) are obtained by linking the experimental data with
theoretical or modeled data. This step is crucial to ob-
taining correct results, and many evaluation schemes
have been proposed. Three approaches are usually used:
Monte Carlo simulations,17,19 numerical optimizations,20,21

and analytical descriptors of temporal dispersion.22 Those
methods do not, however, take the spectral dimension of
the data into account. ma(l) and m (l) are calculated at a9s
given wavelength without considering neighboring wave-
lengths. A method based on a linear solution of the equa-
tion of diffusion would allow the implementation of var-
ious chemometric tools, such as multi-linear regression
(MLR), partial least squares, and N-ways methods.

This study aims at proposing a new method for finding
scattering and absorption coefficients using TRS data.
The first part is devoted to the diffusion equation and a
presentation of the suggested linear approach. In the sec-
ond part, methods and TRS instrumentation are present-
ed. The last part describes the performance of the linear
approach and its results.
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FIG. 1. Propagation of a light pulse in a turbid media.

THEORY

When the photons of a short light pulse penetrate a
turbid medium, they scatter around due to the matrix ef-
fect (Fig. 1). If the light is detected at a specific distance
from the light source, r, the detected light pulse will be
temporally broader than the pulse sent into the medium.
The dispersion of the pulse is governed by the scattering
coefficient m (l) and the absorption coefficient ma(l) of9s
the medium. The photon transport in turbid media is de-
scribed by the radiative transport equation,23 which
makes a balance between gained photons and lost pho-
tons. In the case of a semi-infinite homogeneous medium
measured in reflectance mode, the solution is given by
the time-resolved diffusion equation:17

23/2 25/2R(t, l) 5 [4pD(l)v] z (l)t exp[2m (l)vt]0 a

2 2r 1 z (l)03 exp 2 (1)[ ]4D(l)vt

Here R(t, l) is the signal measured at a given distance r
at time t, D(l) is the diffusion coefficient with D(l) 5
[3(ma(l) 1 m (l))]21, z0(l) 5 (m (l))21 is the mean free9 9s s

path of the photons, and v is the speed of light in the
medium, assumed to be constant within the measured
wavelength range.

Solving the Equation. Let t0(l) be the time where
R(t, l) has its maximum value. By dividing the signal
R(t, l) by its maximum value at t0(l), R(t0(l), l), the fol-
lowing equation is obtained:

25/2
R(t, l) t

5 exp{m (l)v[t (l) 2 t]}a 0[ ]R[t (l), l] t (l)0 0

2 2 2 2r 1 z (l) r 1 z (l)0 03 exp 2 1[ ]4D(l)vt 4D(l)vt (l)0

This can also be written as:

5/2
R(t, l) t

5 exp{m (l)v[t (l) 2 t]}a 0[ ]R[t (l), l] t (l)0 0

2 2r 1 z (l) 1 103 exp 25 6[ ] [ ]4D(l)v t (l) t0

Taking the logarithm of this equation:

R(t, l) 5 t
log 1 log5 6 [ ]R[t (l), l] 2 t (l)0 0

2 2r 1 z (l) 1 105 m (l)v[t (l) 2 t] 1 2 (2)a 0 [ ][ ]4D(l)v t (l) t0

When R(t, l) has its maximum, (]R/]t)(t0(l), l) 5 0.
]R(t, l)/]t is given by:

]R(t, l)
23/25 [4pD(l)v] z (l)exp[2m (l)vt]0 a]t
2 2r 1 z (l) 50 27/23 exp 2 t[ ]4D(l)vt 2

23/21 [4pD(l)v] z (l)exp[2m (l)vt]0 a

2 2r 1 z (l)0 25/23 exp 2 t[ ]4D(l)vt

2 2r 1 z (l)03 2m (l)v 1a 2[ ]4D(l)vt

Factoring using R(t, l), the expression at t 5 t0(l) is:

]R 5
21[t (l), l] 5 R[t (l), l] 2 t (l)0 0 0[ ]]t 2

2 2r 1 z (l)01 R[t (l), l] 2m (l)v 1 5 00 a 2[ ]4D(l)vt (l)0

Taking into account that R(t0(l), l) is a maximum and
thus different from zero, it follows that:

2 25 r 1 z (l)0212 t (l) 2 m (l)v 1 5 00 a 22 4D(l)vt (l)0

which leads to:
2 2r 1 z (l) 50 25 t (l) 1 m (l)vt (l) (3)0 a 04D(l)v 2

Substituting into Eq. 2 yields:

R(t, l) 5 t
log 1 log5 6 [ ]R[t (l), l] 2 t (l)0 0

5 1 1
25 m (l)v[t (l) 2 t] 1 t (l) 1 m vt (l) 2a 0 0 a 0[ ][ ]2 t (l) t0

This equation can be put under the following form, and
ma(l) can be found using experimental data by solving:

ma(l)G(t, l) 5 F(t, l) (4)

with:

F(t, l) 5 2log[R(t, l) 1 log[R(t , l)]0

5 t 5 t02 log 1 1 2 and:1 2 1 22 t 2 t0

1
2G(t, l) 5 v [t 2 t (l)]0t

ma(l) can be found by applying a multivariate method to
Eq. 4 where F(t, l) contains the values to predict and
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FIG. 2. Adaptive pattern for time interpolation.

FIG. 3. Setup for TRS measurements.

G(t, l) contains the variable (ma(l) is then the regression
coefficient found).

Once ma(l) has been evaluated, Eq. 3 enables us to
obtain m (l):9s

3 5
2 2 2[r 1 z (l) ][m (l) 1 m9(l)] 5 t (l) 1 m (l)vt (l)0 a s 0 a 04v 2

which gives:

23r 3 m (l) 1a[m (l) 1 m9(l)] 1 1a s 2[ ]4v 4v m9(l) m9(l)s s

5
25 t (l) 1 m (l)vt (l)0 a 02

As m (l) k ma(l), (ma(l)/ms(l)2) can be neglected com-9s
pared to 1/ms(l)9. m (l) is then linked to ma(l) by a sec-9s
ond-order equation:

2 23r 5 3r
2 2m9(l) 1 2 t (l) 2 m (l)vt (l) 1 m (l) m9(l)s 0 a 0 a s[ ]4v 2 4v

3
1 5 0 (5)

4v

Implementation on Experimental Data. An accurate
determination of t0(l) may be judged as the keystone for
successful results with the suggested approach. Experi-
mental data do, however, contain noise and the time res-
olution is limited by the measuring apparatus. These con-
straints prevent the use of the measured signal maximum
to find t0(l), since measurement noise may hide the real
maximum value of the time-resolved signal; likewise, the
apparatus time resolution restricts t0(l) prediction accu-
racy. These problems may be limited by smoothing and
artificially increasing the signal time resolution.

Let R be a matrix defined by {R(ti, lj)}, where ti ∈ {1,
. . . , p} and lj ∈ {1, . . . , q}, which defines a TRS mea-
surement (Fig. 2). A mesh of width w1 (odd) and length
w2 (even) is wrapped on a given part of R. The wrapping
is performed by fitting of a two-variable parabolic poly-
nomial function of the form at2 1 bt 1 cl2 1 dl 1 etl
1 f , with R(t, l). The segment (ti, ti11) situated at the

mesh center (bold dotted line in Fig. 2) is then interpo-
lated, where k new points are added between ti and ti11

using the parabolic equation of the wrapped mesh. By
applying this procedure on each part of R, a new matrix
R† of size ( p 3 k) 3 q is created.

For a given wavelength lj, each ti is taken as candidate
for t0(lj) and the correlation coefficient, r(ti(lj), lj), be-
tween G(t, lj) and F(t, lj) is calculated. Assuming Eq. 4
must exist at ti 5 t0(lj), the value for t0(lj) is chosen
where the highest value of the correlation coefficient is
reached, r(t0(lj), lj) (i.e., where Eq. 4 is the most verified
and where ma(l) has a positive value). The approach of
combining Eq. 4 with the above-described implementa-
tion is named MAximum Determination for Solving
Time-REsolved Spectroscopy Signal (MADSTRESS).

MATERIALS AND METHODS

Time-Resolved Spectroscopy Instrumentation. Fig-
ure 3 depicts the experimental setup. The instrument has
been described in detail by Abrahamsson et al.18 Briefly,
a mode-locked Ti:Sapphire laser, pumped by an argon-
ion laser, was used to generated 100 fs pulses centered
around 800 nm with an 80 MHz repetition rate. The laser
pulses were focused into a 100 cm long index guiding
crystal fiber (ICF) (Crystal Fiber A/S, Copenhagen, Den-
mark). The broadband light pulses generated by nonlinear
effects in the ICF ranged from 750 nm to 1100 nm. The
light was then transferred by a set of lenses into a gra-
dient index fiber guiding the light to the sample. Another
gradient fiber, with the distal tip r 5 6 mm from the
irradiating one, was used to collect the light re-emitted
from the sample. The fibers were put in contact with the
sample. A Streak Camera (Hamamatsu, ModelC5680)
coupled to an imaging spectrometer (Chromex, Model
250IS) captured the reflected light as a function of time
and wavelength R(t, l). The spectral resolution was 0.93
nm distributed over 512 pixels, while the temporal res-
olution was 2.93 ps in the span from 0 to 1900 ps, spread
over 640 pixels. Integration time was 5 min.

Samples. Fifteen Golden Delicious apples were mea-
sured using the TRS setup at an ambient temperature of
25 8C. A small part of each apple was carefully removed
in order to create a flat surface for applying the fibers.
The measurements were performed immediately after the
preparation of the apples in order to avoid flesh drying.
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FIG. 4. Recording of a two-dimensional time-resolved measurement on an apple.

FIG. 5. (w, k) tuning regarding correlation coefficient r(t0, l).

After the TRS measurement, the reference sugar content
was measured: a drop of apple juice was taken from the
scanned surface below the fibers and spread on a Euro-
mex RD645 refractometer with 0.2 8Brix accuracy (i.e.,
about 0.2 g of sugar per 100 mL).

Two other kinds of samples were also evaluated using
TRS. The first one was a cup filled with 0.5 mm diameter
fructose powder. The second was a solid tissue phantom,
prepared according to Swartling et al.24 The 6.5 cm di-
ameter and 5.5 cm high epoxy phantom contained TiO2

particles as scattering centers and toner powder as an ab-
sorber.

Prior to each sample measurement, an instrumental re-
sponse function was recorded by connecting the trans-
mitting and receiving fibers to each end of a thin metal
tube. This instrumental response function was used to
determine time zero of the streak camera response and to
measure the dispersion of the measured pulse due to the
system characteristics.

Linear Approach Implementation. The measured
signal was interpolated using the interpolation procedure
described in the Theory section. In order to reduce the
total number of parameters to tune (w1, w2, k), the follow-
ing relations were established: w1 5 w 1 1 and w2 5 w.
For each pair (w, k), the correlation coefficient r(t0(lj, lj)
was evaluated for 271 wavelengths of the apple mea-
surements. Then, the performance criterion of the chosen

pair (w, k) was taken as the mean of all r(t0(lj), lj)2. To
improve the MADSTRESS prediction efficiency, the tem-
poral window was chosen where the signal was signifi-
cantly above zero. Using the interpolated signal and the
estimated t0(l), ma(l) was evaluated by means of classical
MLR. m (l) was then evaluated using Eq. 5. Two solu-9s
tions were obtained. The one satisfying m (l) k ma was9s
chosen.

RESULTS AND DISCUSSION

Time-Resolved Spectroscopy Measurements. Figure
4a shows the light continuum that irradiates the sample.
The temporal width was about 23 ps full-width at half-
maximum (FWHM) and the spectral width was about 300
nm FWHM. The spectral profile was very sensitive to
changes in the laser intensity and variations in the in-
coupling efficiency into the ICF. For this reason the signal
appeared quite disrupted, but these fluctuations did not
critically influence the evaluations as MADSTRESS uses
the ratio R(t, l)/R(t0(l), l). The recorded signal from one
apple is shown in Fig. 4b. The temporal dispersion is
very high due to the scattering inside the apple. The mea-
sured pulse length reach 1000 ps, which implies a 20 cm
(!) light path length inside the fruit, while the input/output
fibers were only separated by 6 mm. The mean transit
time of photons inside the fruit is 234 ps, corresponding
to a mean path of 5 cm. Since photon path distribution
in turbid media have a typical banana shape,25 the mean
depth probed may be estimated to 2 cm.

Parameters Setting. Figure 5 shows the evolution of
r(t0, l)2 with regard to (w, k) values of the interpolated
mesh. The response increased rapidly when interpolation
degree, k, exceeds 10 pixels. A good result was found
for w 5 30 pixels (mesh width). The following values
were retained for the interpolation procedure: w 5 30,
and k 5 16.

Figure 6 shows the peak of a TRS measurement. De-
spite its high intensity level, the signal peak still contains
non-negligible noise. The maximum value of the TRS
curve is hidden resulting in uncertainty for t0(l) deter-
mination. This illustrates the t0(l) determination problem
and the interest of using r(t, l) as a means for t0(l) seek-
ing. The r(t, l) curve is smooth, allowing its maximum
to be found easily and without any doubt. The maximum
value of r(t, l) seems to provide a good estimation of
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FIG. 6. Determination of t0(l) for a TRS measurement at l 5 910 nm.

FIG. 7. Similarities between measured and fitted data. (a) Five examples. (b) Histogram of determination coefficients.

R(t, l) maximum. Without the r(t, l) function, t0 deter-
mination would have been harder.

MADSTRESS Performance. Comparison of Exper-
imental and Analytical Data. Figure 7a illustrates four
temporal dispersion curves measured on an apple. The
MADSTRESS analysis has provided ma(l) and m (l) val-9s
ues for each of the four curves. Using the diffusion equa-
tion with the estimated coefficient values, analytical TRS
curves were constructed. In order to get closer to reality,
the width of the irradiating peak was also taken into ac-
count. The fitted curves are plotted in black in Fig. 7a.
The raw signal and the fitted signal are very similar and
difficult to separate. However, a small delay may be ob-
served in the beginning of the rising edge of the curves.
This could be due to the temporal width of the irradiating
peak, which is neglected in the linear approach.

In order to get a more precise idea of the accuracy of
our method, the determination coefficient between the
measured TRS curves, R(t, l), and the fitted ones,
R*(t, l), have been calculated for the 271 wavelengths of
an apple measurement. The histogram of the calculated
determination coefficient is presented in Fig. 7b. The
mean value of the determination coefficients is 0.997,
which is clearly a high performance. Even the lower val-
ues (0.992) demonstrate the good performance of the
MADSTRESS method.

Reduced Scattering Coefficient m (l). In Fig. 8, the9s
reduced scattering coefficients obtained with MAD-
STRESS are shown. There is a large difference between
m (l) depending on the sample. Fructose powder logi-9s
cally appears as the most scattering sample. One way of
analyzing the results in detail is to use Mie theory, which
states that the scattering coefficient may be approximated
by the relation

log(m (l)) 5 2b log(l) 1 log(a)9s

where a is proportional to the density of scattering par-
ticles and b is linked to the mean size of the scattering
particles (Mie diameter). Whereas b values for the apple
and the phantom were near 0.5 (respectively, 0.53 and
0.58), the fructose powder b value attains 1.8. Large sizes
of the scattering particles of fructose may explain the
slope differences. There was a difference in slope be-
tween the apple scattering coefficient and the mean of the
15 apple coefficients. We also found that m (l) was9s
changing significantly from one apple to another: 18 cm21

for the lowest m (l) value, 26 cm21 for the highest scat-9s
tering coefficient (not shown in the figure). These results
imply that the density and size of the scattering centers
vary between the apples. Yet it is well known that apple
cell size and porosity are different from one apple to an-
other. Another important comment regarding fructose
m (l): it does not strictly follow a linear evolution. There9s
may be several explanations for this nonlinearity. The
first one is the sample morphology, which includes crys-
tallinity that might be important. Another important prop-
erty of fructose is its light polarization ability. Hence the
electric field of the scattering centers will increase the
wavelength variability of the scattering coefficient by
changing the scattering efficiency coefficient.

Absorption Coefficient ma(l). Figure 9a presents ma(l)
calculated values using MADSTRESS, from which dif-
ferent absorption peaks may be identified. The phantom
sample has a relatively plane and linear absorption co-
efficient, which was an objective during its making. How-
ever, since the exact composition of the toner powder was
not known it was not possible to go further in its spec-
trum analysis.

The fructose presents an absorption peak at 910 nm.
This band is a C–H stretch third overtone, which has
already been attributed to sugar by Golic et al.27 Another
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FIG. 8. m (l) for the studied samples. (a) Normal scale. (b) Logarithm scale.9s

FIG. 9. Results of absorption coefficient evaluation. (a) m (l) for the studied samples. (b) Second derivative of apple and fructose.9s

wide peak, also due to fructose, is found near 1010 nm.
This peak is due to 2 3 C–H 1 3 3 C–H vibration bands.
In-depth analysis also reveals a small peak at 880 nm
corresponding to the C–H3 third overtone.

Apple ma(l) contains a dominant peak at 970 nm. This
well-known absorption band is due to water, making up
80% of an apple’s content. The width of the water peak
is large due to different species of water giving rise to
different absorption bands (960 nm and 984 nm). The
peak also overlaps the previously identified fructose peak,
but that peak is still detectable. The bands at 880 nm and
905 nm have already been identified as fructose wave-
lengths.28,29

Another conclusion can be drawn regarding the sec-
ond-derivative mean spectra of the apples and fructose
(Fig. 9b). The derivatives were calculated using a Sav-
itsky–Golay procedure with a window 41 pixels wide.
Fructose peaks are found at 880 nm, 910 nm, and 1005
nm. In all three cases the peaks are shifted in the apple
spectrum. This phenomenon can be explained by water
interacting with the sugar. This effect is also enhanced
by changes in sample temperature.27

Using the 15 apple absorption coefficients with regard
to measured sugar content, an MLR prediction model has
been calibrated using four wavelengths. The wavelengths
(814 nm, 828 nm, 912 nm, and 1005 nm) were selected
by a stepwise algorithm using leave-one-out cross-vali-

dation. The model performance (Fig. 10) was very good,
with a determination coefficient of 0.92 and standard er-
ror of calibration (SEC) of 0.51 8Brix. It is interesting to
note that two of the fructose wavelengths were selected
by the stepwise procedure. The good performance of the
model strengthens the observations made about the fruc-
tose peaks.

CONCLUSION

Light continuum generation using photonic crystal fi-
bers has made it possible to efficiently conduct multi-
spectral time-resolved measurements. The power of the
newly developed instruments leads to the desire to use
the spectral dimension during the evaluation of the scat-
tering and absorption coefficients of the samples in order
to improve accuracy. In this study a method for evalua-
tion of the absorption and scattering coefficients using
time-resolved reflectance measurements was investigated.
The MADSTRESS method is based on a linear regression
and a two-dimensional interpolation procedure. The
method allowed us to calculate absorption coefficients
and scattering coefficients of apples and fructose powder.
The accuracy of the method was good enough to provide
the identification of fructose absorption peaks and the
construction of a calibration model predicting the sugar
content of apples. MADSTRESS, as a powerful method
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FIG. 10. Prediction of sugar concentration in apples using four wave-
lengths.

for processing data from spectrally continued TRS data
paves the way to accurate determination of scattering and
absorption coefficients in domains as varied as agricul-
tural and food products, pharmaceutical, chemistry, and
medecine. It will serve as a reference basis for chemo-
metricians who develop specific methods to remove the
scattering signal from UV-Vis and NIR spectra.
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1. Introduction

Striking advances have been made in time resolved spectroscopy (TRS)1 . While conventional

near infrared spectroscopic measurements are influenced by light scattering in the sample,

TRS deconvolutes absorption from scattering effects. The scattering properties of a sample

is dependent on the physical properties of the samples, while the absorption is mostly de-

pendent on the chemical composition of the samples. TRS was first developed for medical

applications2,3 , but is now extended to other fields, such as pharmaceutical applications4

and agricultural applications5,6 . TRS uses short laser pulses, of a few picoseconds, to irra-

diate a sample. The light signal diffusively remitted by the sample at a given distance from

the irradiation point is then temporally recorded7 . The recordings can be made in either

reflection or transmission mode. In order to simultaneously measure the temporal signal at

different wavelengths, new techniques using a streak camera for detection have been pro-

posed. There are different ways to obtain light pulses with a broad wavelength profile; one

is using continuum generation by focusing a high power laser pulse in a cuvette of water.8

The development of photonic crystal fibers has further simplified the instrumental setups for

continuum generation9 .

Once the 2-dimension signal is recorded, the reduced scattering coefficient (µ′
s) and the ab-

sorption coefficient (µa) are obtained by linking the experimental data with theoretical or

modeling data. This step is crucial to get correct results, and many methods have been

proposed. Three approaches are usually found: Monte Carlo simulations7 ,10 , numerical op-

timizations11 ,12 and analytical descriptors of temporal dispersion13 .

Since the signal cannot be described by a linear equation, a non-linear multivariate model is

required. Semi-parametric methods, such as kernel ones, provide more understandable models

than artificial neural networks. Recently Least-Square Support-Vector Machines (LS-SVM)14

methods have been developed and applied to near infrared spectroscopy issues such as a non-

linear discrimination15 ,16 and quantitative predictions.17

This paper aims at studying LS-SVM models calibrated only using theoretical data cal-

culated from the diffusion equation in reflectance mode. These models are then applied to

predict the reduced scattering coefficient and the absorption coefficient of experimental data.

2. Theory

2.A. Diffusion Equation

Photon transport in turbid media is described by the radiative transport equation18 :

1

c

∂L(r, s, t)

∂t
+ s.∇L(r, s, t) + (µs + µa)L(r, s, t) = µs

∫

4π

L(r, s, t)p(s, s′)dω′ + Q(r, s, t) (1)

Here L is the radiance at a given distance r from the irradiating source at time t and in

direction s. p(s, s′) is the Henyey Greenstein phase function, dω′ is the angle between the

2



initial photon direction s and the new one s′. c is the speed of light in vacuum. In order

to solve this equation the sample geometry must be taken into account. In the case of a

semi-infinite homogeneous medium measured in reflection, the solution is given by the time-

resolved diffusion equation7 :

R(ρ, t) = (4πDv)−3/2z0t
−5/2 exp(−µavt) exp

(

−
ρ2 + z0

2

4Dvt

)

(2)

Here R is the signal measured at a given distance ρ at time t, D is the diffusion coefficient

with D(λ) = [3(µa(λ) + µ′
s(λ))]−1, and z0(λ) = 1

µ′

s
(λ)

is the mean path. v is the speed

of light in the medium, assumed to be constant in the measured wavelength range. A

theoretical database containing time-resolved curves may be easily obtained using Eq. (2).

A model can be derived based on this database, which can then be used to predict µa and µ′
s.

2.B. LS-SVM theory

LS-SVM models constitute an alternate formulation of SVM regression19 proposed by

Suykens14 . Whereas classical multivariate regression is built on variables (e.g. time data

for TRS or wavelengths for spectroscopic data) LS-SVM methods are based on a kernel ma-

trix K. The raw data matrix Xn,p containing n samples with p variables (e.g. n time-resolved

curves), is then replaced by the Kn,n kernel defined as:

K =







k1,1 ... k1,n
...

. . .
...

kn,1 ... kn,n






(3)

Here ki,j is given by the RBF function:

ki,j = e
−‖xT

i
−xT

j ‖
2

σ
2 (4)

and xT
i is the time response for a TRS measurement. The variable space is hence replaced

by a sample space of a very high dimension where a sample is defined by its distance to the

other samples contained in the database. The proper subspace for modeling is tuned with

the σ2 parameter. The higher σ2, the wider the gaussian kernel is. Put simply, ki,j represents

the similarities between the xT
i and xT

j time responses. The model equation is then:

ŷ = Kβ + β0 (5)

where ŷ is the predicted value, K is the kernel as defined by Eq.3, β is the regression vector

and β0 is the offset term. Furthermore, the LS-SVM objective function takes into account

3



the norm of the regression vector in order to increase the model robustness. The classical

squared loss function is thus replaced by the following objective function:

min(e) = min

[∑n
i=1(yi − ŷi)

2

2
+

1

γ

(βT β)

2

]

(6)

where γ is a regularization parameter analogous to the regularization parameter of regu-

larized artificial neural networks, is used to weigh β norm. Once σ2 and γ are chosen, the

model is trained after constructing the Lagrangian by solving the linear Karush-Kuhn-Tucker

(KKT) system:

[

0 lTn

ln K + I
γ

] [

b̂0

b̂

]

=

[

0

y

]

(7)

where I refers to an [n×n] identity matrix and lnis a [n× 1] unity vector. The solution of

Eq. (7) can be found using most standard methods of solving sets of linear equations, such

as conjugate gradient descent.

3. Material and methods
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Fig. 1. Setup for TRS spectrum acquisition

3.A. Instrumentation

Fig. 1 depicts the experimental setup. The instrument has been described in detail elsewhere9

. Briefly, a Ti:Sapphire mode-locked Laser, pumped by an Ar-ion Laser, was used to generated

4



100 fs pulses centered around 800 nm with 80 MHz repetition rate. The laser pulses were

focused into a 100 cm long index guiding crystal fiber (ICF)(Crystal fiber A/S, Copenhagen,

Denmark). The broad band light pulses generated by non-linear effects in the ICF ranged

from 750 nm till 1100 nm. The light was then transferred by a set of lenses into a gradient

index fiber guiding the light to the sample. Another gradient fiber, with the distal tip 6 mm

from the irradiating one, was used to collect the light diffusively reflected by the sample. The

fibers were put in contact with the sample. A Streak Camera (Hamamatsu, ModelC5680)

coupled to an imaging spectrometer (Chromex, Model 250IS) captured the reflected light as

a function of time and wavelength R(t, λ). The spectral resolution was 0.93 nm distributed

over 512 pixels while the temporal resolution was 2.93 ps in the span from 0 to 1900 ps,

spread over 640 pixels.

3.B. Measured samples

15 Golden Delicious apples were measured using the TRS setup. A small part of the apple

was carefully removed in order to create a flat surface for applying the fibers. The measure-

ments were performed immediately after the preparation of the apples in order to avoid flesh

drying. Prior to each sample measurement, an instrumental response function was recorded

by connecting the transmitting and receiving fibers to each end of a thin metal tube. This

instrumental response function was used to determine time zero of the streak camera re-

sponse and to measure the dispersion of the measured pulse due to the system characteristics.

3.C. LS-SVM model

The LS-SVM model was derived using a theoretical calibration set. The data set was

obtained using the diffusion equation, applied for an inter fiber distance of ρ = 6 mm and

a time resolution of 2.93 ps. Each signal was normalized by division with its maximum

in order to become independent of variations in the irradiating signal intensity level. To

improve the model efficiency, the temporal window between t = 43 ps and 900 ps was

selected, where the time dispersion curves with different optical properties were significantly

different. To span the absorption and scattering variations of apples20 , a mixture design

was used as described in Fig. 2. In order to tune γ and σ2 the training set was split into

two subsets, one for calibration (subset A) and one for validation (subset B). Once the 2

parameters were chosen, the final model was constructed using the whole theoretical data set.

The LS-SVM toolbox (LS-SVM v1.4 1, Suykens, Leuven, Belgium) was used with

MATLAB 6.0 (The MathWorks, Inc., Natick, USA) to derive the LS-SVM models. In

1www.esat.kuleuven.ac.be/sista/lssvmlab/
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used are shown

order to evaluate the accuracy of this new method, the predicted values of µa and µ′
s were

compared to the ones fitted to the diffusion equation using a Levenberg Marquart (LMA)

optimization procedure, already previously used on apple TRS measurements20 .

4. Results and Discussion

4.A. TRS measurements

Fig. 3-a shows the instrumental response function. The continuum light pulses obtained

were 300 nm wide (800 nm - 1100 nm). The temporal width was about 23 ps FWHM. The
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spectral profile was very sensitive to changes in the laser intensity and variations in incoupling

efficiency into the ICF. As a result, the spectral profile of the irradiating source was changing

from one sample measurement to other. LS-SVM model uses the temporal signal at a given

wavelength normalised in order to obtain a maximum value of 1. Hence, source intensity

variation from one sample measurement to other does not act upon the model prediction

efficiency.

The recorded signal from one apple is depicted in Fig. 3-b. The temporal dispersion is very

high due to scattering phenomena inside the apple. Since the recorded signal-to-noise ratio

was high enough in the region ranging from 800 nm to 1050 nm, this spectral window was

selected for studying the optical properties of the apples.

4.B. Model tuning
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Fig. 4. Optimization surface for γ and σ2 tuning for µa modelisation

The optimization responses surface for µa prediction is illustrated in Fig. 4. This surface

represents the standard error of prediction (SEP) on the validation set B. The best prediction

of µa was found for γ = 50 and σ2 = 500. The µ′
s response surface (not presented here) gives

the optimal solution for the same values. Since σ2 values are the same for both µa and µ′
s,

the kernel matrix is the same; this means that both models are built on the same subspace,

allowing the same degree on non-linearities. Only the regression vectors are different for

predicting µa and µ′
s. Low values of robustness criteria, γ, imply the regression vectors have

a small norm which is necessary for a robust model.

4.C. Evaluation of scattering and absorption coefficients on experimental data

Fig. 5 compares µa and µ′
s values predicted by LMA and LS-SVM for one apple. The absorp-

tion coefficient curves are very similar, which proves LS-SVM prediction capabilities. In spite

of the noise, the water peak is clearly visible at 970 nm as normally seen in conventional NIR

spectra of fruits. Regarding the scattering coefficient the prediction values present an offset
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Fig. 5. Result of µa and µ′
s prediction on an apple for all wavelengths

compared to the LMA results. This can be explained by the temporal dispersion Fig. 6: LS-

SVM model considers the irradiating peak as perfectly resolved in time (time width infinitely

small), whereas LMA takes the instrumental response into account in the calculations. Since

LMA is based on convolution the predicted TRS curves are closer to the measured signal.

However LS-SVM produce acceptable results. LS-SVM curve are above LMA and slightly

peak shifted, which explains the offset previously noticed between µ′
s values.
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Fig. 6. Measured signal and fitted signals for 3 wavelengths

4.D. Prediction performances

Fig. 7 shows the LS-SVM predicted values versus LMA values of µa for the 15 apples (271

dispersion curves per sample). The determination coefficient of 0.96 is satisfactory, with a

standard error of prediction of 0.02cm−1. It should be noted that there are no real reference

values, but only reference values estimated by LMA. Fig. 8 shows a bias between LMA values

and LS-SVM predicted values for µ′
s determination. As explained before, this difference comes

from the convolution process which is not used in the LS-SVM. Since the determination
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coefficient is satisfactory (0.85), the model may be easily bias corrected by adding a constant

(−3.06cm−1). However, this approach would consider LMA values as real reference values,

although LMA has also its drawbacks and inaccuracies. For this reason, it would be more

interesting to follow a more sophisticated approach, integrating a convolution process in

the database building. In this case, the model would be calibrated on theoretical curves

obtained by convoluting the diffusion equation with the instrumental response function. Of

course, this method is more time consuming since the model must be designed for each

sample. When this approach is followed the prediction plot gives the results shown in Fig.

9. As assumed, the bias is reduced but is not small enough to be neglected. Furthermore,

the correlation coefficient between LMA and LS-SVM values decreases to 0.75. The noise

in the measured data acts differently on the two methods since they have different bases.

Visual curve analysis (Fig. 10-a) is not accurate enough to judge differences between method

performance. For this reason, the determination coefficient between the raw signal and the

two estimated signals are presented for each wavelength in Fig. 10-b. The temporal curves
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calculated using LS-SVM predicted coefficient have clearly high performance (r2 > 0.99)

very close to LMA one’s. This tends to prove the accuracy of the proposed approach.
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Fig. 9. Prediction performance of the µ′
s prediction model with convolution

approach

4.E. Conclusion

Thanks to its performance, the LS-SVM model can be applied to time-resolved data for

extraction of absorption and scattering coefficients. The model proposed in this paper has

two main advantages. The first one is that it can be used on any diffusing sample with

µa < 0.08cm−1 and 1.5cm−1 < µ′
s < 3cm−1 (but a larger model may be calibrated) such as

for human tissues. The second one is that since the model uses only 41 time resolved curve

for the model, it can easily be integrated into an embedded sensor for industrial use. Even if

the model performance is already interesting, the method may be improved by integrating

a convolution process into the database construction. In the perspective of optimization, a

data smoothing may be applied on the raw data.

LS-SVM could also be used with a data base of Monte-Carlo data. This would be very inter-

esting for measurement geometries where the diffusion approximation is not valid, e.g. where

the source and the detection fibers are situated close to each other or when the boundary

conditions are too complex to solve analytically.

As TRS transmission measurements produce the same type of curves as the reflection geom-

etry, LS-SVM model may also be derived and applied efficiently on transmission data (slab

geometry). We also think that LS-SVM modeling would be of great interest for spatially

resolved spectroscopy and phase modulation spectroscopy.
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Time-Resolved NIR/Vis Spectroscopy for Analysis of Solids:
Pharmaceutical Tablets
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Time-resolved spectroscopy in the visible and near-infrared (NIR)
regions was used in a feasibility study for analysis of solid phar-
maceuticals. The objective of the experiments was to study the in-
teraction of light with pharmaceutical solids and to investigate the
usefulness of the method as an analytical tool for spectroscopic anal-
ysis. In these experiments, a pulsed Ti:sapphire laser and white light
generation in water was utilized to form a pulsed light source in
the visible/NIR region. The light was focused onto the surface of
tablets, and the transmitted light was detected by a time-resolving
streak camera. Two types of measurements were performed. First,
a spectrometer was put in front of the streak camera for spectral
resolution. Secondly, the signal originating from different locations
of the sample was collected. Time-resolved and wavelength/spatially
resolved data were generated and compared for a number of dif-
ferent samples. The most striking result from the experiments is
that the typical optical path length through a 3.5-mm-thick tablet
is about 20–25 cm. This indicates very strong multiple scattering in
these samples. Monte Carlo simulations and comparison with ex-
perimental data support very high scattering coef� cients on the or-
der of 500 cm21. Furthermore, the data evaluation shows that pho-
tons with a particular propagation time through the sample contain
a higher chemical contrast than other propagation times or than
steady-state information. In conclusion, time-resolved NIR spec-
troscopy yields more information about solid pharmaceutical sam-
ples than conventional steady-state spectroscopy.

Index Headings: Time-resolved spectroscopy; Near-infrared; Trans-
mission; Diffuse re� ectance.

INTRODUCTION

Near-infrared (NIR) spectroscopy1,2 has been shown to
be a highly useful tool for analysis of pharmaceuticals.3–6

NIR analysis has been used for many diverse applications
in the pharmaceutical industry, such as for qualitative and
quantitative analysis of powders, pellets, whole tablets,
tablets in their blister packages, freeze-dried products,
etc. Among the advantages of NIR analysis, it can be
mentioned that NIR is nondestructive, fast, and can be
performed remotely through optical � bers—factors that
make NIR analysis particularly useful for process anal-
ysis.7 In addition, spectroscopic analysis of solids may
offer probing of solid state properties such as crystallinity
and sample density, parameters that are entirely lost by
chromatography and other wet-chemistry methods. The
discussion here is con� ned to pharmaceutical tablets;
however, the method reported in this paper is applicable
for other types of turbid samples.

Received 14 November 2001 ; accepted 14 February 2002 .
* Author to whom correspondence should be sent.
† Present address: Quality Control and Assurance , AstraZeneca Tablet

Production Sweden, SE-151 85 Södertälje, Sweden.

Advances in NIR analysis have been substantial in in-
strumental development as well as in the development of
data evaluation tools, mainly based on multivariate anal-
ysis. The instrumental development includes the use of
different detection principles such as the Fourier trans-
form spectrometer, the diode array detector, and the
acousto-optic tunable � lter approach.8 Instrumental de-
velopments also include improvements in the sample pre-
sentation, such as � ber-optic probes and the use of trans-
mission geometry rather than the traditional re� ectance
geometry.9–12 Comparing the two geometries, transmis-
sion NIR has shown better precision than re� ectance due
to the fact that the entire tablet volume is probed by the
light in the case of transmission geometry.11,12

There are, however, also some drawbacks to spectro-
scopic techniques in general and to NIR spectroscopy in
particular. Perhaps the most important drawback stems
from the fact that NIR analysis of turbid media does not
strictly follow the Beer–Lambert law. In other words, the
re� ected or transmitted intensity is not a simple function
of the absorptivity of the sample, but is also affected by
multiple scattering of light in the sample volume. In fact,
since in the red/NIR optical region scattering is more
prominent than absorption, variations in scattering prop-
erties of a sample may alter a measured signal more than
a corresponding change in absorption properties. The
light scattering properties of the sample matrix are
strongly affected by its physical parameters, such as tab-
let hardness and porosity. The more micro-cavities and
variations in the refractive index of the matrix, the more
prominent the light scattering will be, resulting in wave-
length-dependent attenuation. Other physical parameters
of relevance for tablets are the height and diameter. Small
changes in the tablet diameter, shape, or thickness have
strong effects on the transmission NIR spectrum. Simi-
larly, engravings and scores on the tablet surface will
have a strong effect on the re� ectance NIR spectrum. The
fact that NIR analysis is perhaps more sensitive to phys-
ical parameters than to chemical content limits the utility
of the technique. The most common way to deal with
these problems is the use of numerical transformations
and spectral pretreatment before analyzing the spectro-
scopic data. In this context, chemometrics has evolved as
a very powerful tool to extract minute variations from
complex spectral data sets.

Another limitation of NIR spectroscopy of pharmaceu-
ticals is that a strong light scattering in the matrix results
in varying path lengths through the tablet. The path
length is critical to how effectively the absorption will
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attenuate the signal. In a situation where the chemical
content is evaluated from the recorded transmission spec-
trum, chemometric methods are frequently used to extract
the absorption properties of interest. It is thus extremely
important that this evaluation algorithm is trained using
representative tablets. The quality of NIR measurements
is clearly limited by small variations in the physical prop-
erties of the tablets.

To be able to measure and evaluate the effects of both
absorption and scattering and to obtain a better under-
standing of the light propagation and attenuation in the
sample, more sophisticated measurement techniques are
required. Such experimental tools have been developed
mainly for studying biological tissue and can roughly be
divided into time- or frequency-resolved and spatially re-
solved techniques.13 Using one of these general approach-
es, the optical properties of the sample can be elucidated.
Hence, time- or spatially resolved spectroscopy have
been used to map, for instance, human breast,14 brain,15

and skin16 tissues, as well as green leaves from plants.17

The optical properties of pharmaceutical solids have also
been measured, e.g., in connection with determination of
absorption coef� cients for powders18 and effective sam-
ple size.19 One interesting feature found in all these stud-
ies was the strong domination of scattering over absorp-
tion for some but not all wavelength regions. The optical
properties of a turbid sample can be described by the
absorption coef� cient ma, the scattering coef� cient ms, and
the scattering anisotropy g. Together, these three param-
eters characterize the interaction of light with the sample.
Often, ms and g are represented as the reduced scattering
coef� cient ms 9 5 (1 2 g)ms. In order to model the light
propagation in the sample, either hard models, such as
diffusion theory, or numerical methods, such as Monte
Carlo modeling, are utilized and � tted against the exper-
imental data. In addition, chemometric tools are often
used in connection with numerical � tting algorithms for
a better characterization of the sample.

In this paper we have explored the use of time-resolved
transmission spectroscopy as an analytical tool for phar-
maceutical tablets. Both wavelength-resolved and spa-
tially resolved data have been obtained at a high time
resolution by using ultra-short pulsed lasers and a streak
camera. The main objectives of the investigation were to
estimate the degree of light scattering in this type of tab-
let and to evaluate whether this more sophisticated mea-
surement technique can improve NIR spectroscopy. The
experiments were mainly carried out in the visible rather
than in the NIR optical region, although the aim is to
extend future measurements further into the NIR region,
where characteristic absorption features may enhance the
analytical quantitative information. The obtained data are
discussed in relation to conventional NIR spectroscopy
to indicate the potential advantages of time-resolved
spectroscopy over steady-state techniques.

MATERIALS AND METHODS

Optical Set-Up. A system for ultra-short white light
illumination and picosecond (ps) time-scale detection was
utilized to measure the photon propagation time through
the sample tablets. The general-purpose light source was
a table-top tera-watt laser system located at the Lund La-

ser Centre.20 It used an Ar-ion laser pumping a Ti:sap-
phire laser as a master oscillator and one or two Nd:YAG
laser-pumped ampli� er stages. The Ti:sapphire laser was
passively mode-locked at a frequency of 76 MHz to yield
100 femtosecond (fs) pulses at a wavelength near 800
nm. Before ampli� cation, the pulses were sent to a pulse
stretcher consisting of two gratings yielding different
path lengths for different wavelengths within the line pro-
� le, creating chirped pulses. After pulse stretching, the
pulses had a pulse length of about 260 ps. A Pockels cell
was used to select pulses for the ampli� er stages at a
repetition rate of 10 Hz. The ampli� er stages employed
Q-switched Nd:YAG laser pumped Ti:sapphire crystals.
After ampli� cation in two stages the pulse energy could
be as high as 450 mJ. The ampli� ed pulses were sent to
a compressor, where another pair of gratings was used to
compress the pulses back to about 200 fs. The compres-
sor had a transmission ef� ciency of about 50%. These
transmission studies required substantially lower pulse
energies than those available, and a maximum of 50 mJ
was utilized.

The experimental set-up used for the transmission
studies is shown in Fig. 1. In the case of the wavelength-
dispersed measurements, the light pulse train from the
laser system was focused into a water-containing cell us-
ing a 15-cm-focal-length lens (L1) for white light gen-
eration. Self-phase modulation of the refractive index was
induced, resulting in a spectral pro� le ranging from the
UV to the NIR region. As a result, laser pulses of 200 fs
duration were accessible at all the desired wavelengths.
The light from the white light generator was made par-
allel with an achromatic camera lens (L2). The light was
focused with a 100-mm camera lens (L3) onto the sam-
ple, which was � xed in an iris holder allowing light to
pass through the sample. The average light power used
at the sample surface was approximately 1 mW and the
size of the laser spot on the sample was approximately 1
mm. The transmitted light was imaged onto the 120-mm
entrance slit of a spectrometer (Oriel, Model 77480) us-
ing two 50-mm camera lenses (L4 and L5). The spec-
trometer was equipped with one of two different gratings
optimized for the blue or NIR optical region. The output
from the spectrometer was imaged onto a streak camera
(Hamamatsu, C1587) using a pair of camera lenses (L6
and L7) providing an overall magni� cation of either 1 or
0.4. In the case of spatially resolved measurements, the
white light generator was removed and the light trans-
mitted through the sample was directly imaged onto the
streak camera without passing though the spectrometer.
The streak camera received a trigger signal from a pho-
todiode close to the Ti:sapphire laser. The trigger signal
was preampli� ed, stabilized by a constant fraction dis-
criminator, and delayed in a delay generator before it was
sent to the streak camera control unit. The signal from
the streak camera was fed to a PC and the time-dispersed
transmission curves were stored and displayed on the
monitor. The signal from up to 100 laser pulses was in-
tegrated to allow a suf� cient signal-to-noise ratio. The
time resolution of the streak camera was about 20 ps and
the time window was about 2 ns. The optical set-up al-
lowed a fraction of the excitation light to be split off and
sent directly to the spectrometer slit in order to have a
� xed time reference in the recorded time-resolved spec-
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FIG. 1. Experimental set-up for time-resolved transmission of tablets. L1: lens, L2–L7: achromate camera
lenses, PD: photo diode , CFD: constan t fraction discriminator.

FIG. 2. Time-resolved transmission of a tablet using 200 fs pulses at 790 nm. The transmitted intensity is
displayed as a function of time (abscissa) and position on tablet (ordinate). Below the picture is a scan
across the picture at the position indicated between the dashed lines. The bright spots to the far left in the
picture originate from light leaking beside the tablet, thus with very little time retardation.

tra. Using the reference pulse it is possible to partly cor-
rect for the electronic time jitter that limits the time res-
olution.

Samples. Model Samples. Solutions of varying con-
centrations of intralipid were used as model substances.
Different amounts of ink were added to the intralipid so-
lution in order to obtain different absorption coef� cients
for the sample solutions. Detailed experimental condi-
tions are given elsewhere.21

Tablets. The manufacturing and experimental design
has been described in detail previously12 and will only be
described here in part. The tablets consisted of � lm-coat-
ed pellets (AstraZeneca R&D Mölndal) and excipients,
and were manufactured according to an experimental de-

sign in which several tablet parameters were varied. The
most abundant component in these tablets was micro-
crystalline cellulose. The heights of the tablets were 3.5
and 4 mm and the diameter was 9.0 mm. The tablets were
stored at room temperature until the measurements were
taken.

Data Evaluation. The transmission data obtained from
the streak camera were primarily displayed as 3D matri-
ces. In Fig. 2, a data matrix from a spatially resolved
measurement is shown. The transmitted intensity is
shown as a function of photon migration time (abscissa)
and position of light exiting the sample (ordinate). The
main information comes from the light area in the center
of the image. The smaller white areas in the left part of
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FIG. 3. Time-resolved transmiss ion spectra of solutions of Intralipid and ink. The Intralipid concentrat ion
was varied with zero ink concentrat ion (left graph) and held constant for varying concentrat ions of ink
(right graph).

FIG. 4. Time-resolved transmission of a 3.5-mm-thick tablet using 200
fs pulses at 790 nm. The pro� les correspond to light exiting the tablet
at the center, 2 mm off the center, and close to the margin of the tablet,
respectively. The curves are autoscaled to the same maximum intensity.

the image are due to light leakage between the sample
holder and the sample. A horizontal scan through the im-
age (between the dashed lines) results in a time pro� le
at a given position on the sample, as is shown below the
image in Fig. 2 for the center of the sample. In the same
way, vertical scans through the image may be extracted
(not shown). These are consequently interpreted as time-
gated one-dimensional images (or spectra, if the spec-
trometer is used).

Monte Carlo Simulations. Monte Carlo simulations
were utilized to model the light transport through the tab-
lets. One of the most used and best validated implemen-
tations of Monte Carlo simulations of photon transport in
multilayered tissues (MCML)22 was used. The routine
was altered for this application to allow a cylindrical ge-
ometry mimicking a tablet for which the radius and thick-
ness were changed.

RESULTS AND DISCUSSION

Absorption and Scattering in Turbid Media. Time-
resolved transmission experiments were performed on
pharmaceutical tablets to roughly estimate the optics of

the tablets. In addition to the streak camera measurements
reported here, some measurements on tissue phantoms
are discussed at this point in order to improve the un-
derstanding of the experimental data. The time-resolved
transmission data of tissue phantoms were recorded with
a time-correlated single-photon counting technique at 640
nm rather than with the streak camera and have been
described in detail previously.21 The tissue phantom con-
sisted of a series of Intralipid water solutions with ink
added as an absorber. By varying the particle concentra-
tion of the Intralipid and the ink concentration, both the
scattering coef� cient and absorption coef� cient were var-
ied. In Fig. 3 (left graph) it is observed that by increasing
ms9 the transmission pro� le is shifted towards longer
times. On the other hand, when ma is increased (right
graph) merely the late slope of the pro� le is affected,
leaving the peak position almost unchanged. For very
high ms9 the pro� les approach a symmetric diffusion pro-
� le, whereas for high ma the curves collapse to Beer–
Lambert’s law. Hence, from the analysis of time-resolved
transmission pro� les, it is possible to qualitatively un-
derstand the optical paths of the samples. An interesting
observation from Fig. 3 is that at early gate times changes
in ma have a very small effect on the measured light in-
tensity, whereas ms 9 affects the early transmitted light to
a much higher degree.

In Fig. 4, time-resolved transmission pro� les extracted
from the image in Fig. 2 are shown. The different time
pro� les correspond to horizontal scans through the center
(region marked between dashed lines), the mid-upper, and
the upper part of the data image. These in turn, can be
interpreted as light exiting through the center part, the
off-center part, and close to the margin of the back side
of the tablet. The light was focused onto the central part
of the front side of the tablet as illustrated in Fig. 2. A
most striking observation is the high mean photon prop-
agation time, approximately 1 ns. Assuming a refractive
index of 1.4, this corresponds to a mean optical path
length of more than 200 mm for a tablet with a thickness
of 3.5 mm. This indicates extraordinarily strong light
scattering, also supported by the symmetric diffusion-like
time pro� le. Monte Carlo simulations were performed for
a tablet-shaped object and compared with the experimen-
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FIG. 5. Time-resolved transmission pro� les of a tablet using ultra-short
white light pulses. The pro� les were extracted from the raw data matrix
at 500, 600, 700, and 790 nm, respective ly. The curves are autoscaled
to the same maximum intensity.

FIG. 6. Time-resolved transmission spectra; data extracted from same
data matrix as the data in Fig. 5. The extracted spectra correspond to
gating times indicated in the � gure. Note that all spectra are uncorrected
for the spectral instrument function. Each set of spectra is normalized
at local maximum intensity around 800 nm.

tal data in order to estimate the optical properties of the
sample. The � at cylinder used in the simulation had a
diameter of 9 mm and a thickness of 3 mm. The best � t
between the experimental data and the simulated was
found when ms 9 was set to 500 cm21 and ma was set to
0.01 cm21.

Comparing the three scans, it is noted that the light
exiting from the margin of the tablet is shifted in time in
relation to the centrally transmitted light. It can also be
observed that the marginal pro� le is broadened compared
to the center pro� le. With Fig. 3 in mind, these obser-
vations indicate that the light exiting further away from
the center exhibit more light scattering than the central
rays. This is consistent with a longer average path length
for light recorded close to the margin as compared to that
detected in the center.

Time-resolved data were collected with the spectrom-
eter attached to the streak camera, enabling spectral in
addition to temporal resolution. Thus, the data matrix
here has a spectral rather than a lateral dimension. In
these experiments, light from the center portion of the
tablet backside was collected. In Fig. 5, a number of time
pro� les extracted from the data matrix at various wave-
lengths are shown. Note that the experiment was per-
formed with a slightly modi� ed optical set-up and the
time scale is shifted compared to that in Fig. 4. As can
be observed in Fig. 5, the time pro� le is more narrow
for shorter wavelengths. In addition, the peak appears at
slightly shorter times at shorter wavelengths. This sug-
gests that the light transmission is more dominated by
absorption at shorter wavelengths than at longer wave-
lengths. The effect of light scattering appears to be less
signi� cant since the peak intensity only shows a small
shift upon the changing wavelength. In Fig. 6, the same
data is displayed as time-gated spectra, i.e., transmission
spectra for a number of different photon propagation
times. The spectra are normalized to the same intensity
to better illustrate the spectral differences. Comparing the
spectra at different propagation times, it is again shown

that at shorter wavelengths the light is attenuated more
rapidly. The spectral features in Fig. 6 are not of partic-
ular importance in this study and originate not only from
the sample but also from the detector response function
and the spectrum of the white light source (including,
e.g., inverse Raman effects23).

Photon Migration in Tablets. A series of measure-
ments were performed using tablets with three different
contents of the active substance. The experimental data
was evaluated as shown in Fig. 7. In the lower graph (e),
an example of a time pro� le is shown. In the upper four
graphs (a–d ), time-gated spectra are shown, one graph
for each of four gate times analyzed. These gate times
are approximately indicated in the time pro� le in the low-
er graph. In each of the four upper graphs, spectra from
each of the three tablets are shown. In prompt light (a),
light that has passed the tablet in a straight forward man-
ner, very little difference between the curves can be ob-
served: the three spectra have virtually the same shape
(spectra autoscaled). However, for the spectra obtained at
0.25 ns photon propagation time (b), a substantial con-
trast between the 43-mg and the 52-mg tablets is ob-
served. The behavior is similar at longer times (c, d ),
however, with a gradual loss of contrast as the gate time
is increased. The important conclusion from this experi-
ment is that the spectral contrast is different for different
photon propagation times, and there appears to exist an
optimal gating time where the highest contrast between
tablets of different strengths is attained. Thus, by sepa-
rating the spectral information in time, a higher analytical
selectivity can be reached compared with the steady-state
case of traditional transmission (NIR) spectroscopy.

It is interesting to compare the spectra in Fig. 7 in view
of the effects shown in Fig. 3. As was discussed above,
the absorption properties of the sample do not affect the
early transmitted light, but the importance of absorption
increases at longer times. For the tablet spectra in Fig. 7,
it is observed that the most reliable spectral differences
are found at medium propagation times. If the spectral
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FIG. 7. Time-gated transmission spectra (a–d ) at gate times indicated in the time pro� le (e). In each graph spectra from 3 tablets of different
tablet strengths are shown. Each set of spectra is normalized at local maximum intensity around 650 nm.

differences were due only to absorption, Fig. 3 predicts
that the contrast would increase with increased gate time,
which is obviously not the case here. This suggests that
not only the absorption but to a great extent also the
scattering is important for the analysis of these samples.

Implications for NIR Spectroscopy. The main ad-
vantage of time-resolved spectroscopy is that the spectral
contributions from both absorption and scattering effects
can be experimentally determined. An attractive possi-
bility should be to develop analytical methods for tablets
of different shapes, thickness, and granular structure,
based solely on their absorption characteristics, some-
thing that is impossible with today’s NIR instruments.
Also, calibration transfer between different systems
should be simpli� ed with a technique capable of mea-
suring pure absorption features.

Future developments of time-resolved spectroscopy for
quantitative analysis of solids, such as tablets, powders,
etc., have to include both instrumental improvements to
push the technique further into the NIR spectral region
and development of new data evaluation techniques. The
white light generation can be made much more compact
and can be further optimized by harder focusing of the
laser light and by using other nonlinear media, such as

sapphire or photonic bandgap � bers. The collection optics
can be improved by using optics coated for the desired
wavelength region and in particular a more ef� cient spec-
trometer. The data collection can also be improved by
increasing the repetition rate of the laser up to the kHz
region for better data averaging. The main challenge in
extending further into the NIR region is the lack of ef-
� cient photo cathode materials available for streak tubes;
the quantum yield of the S1 material drops two orders of
magnitude going from 800 to 1200 nm. Measurements in
the 800–1200 nm spectral region were performed in ad-
dition to the experiments reported above. Results com-
parable to the above data matrices were obtained, how-
ever, with poor signal-to-noise ratios, preventing any
meaningful evaluation.

An alternative approach is to use a different technique.
Phase modulation spectroscopy is an attractive alternative
technique in which the phase of the measured light is
compared with the phase of the light source, a simple
NIR-emitting lamp. From the phase difference, the pho-
ton propagation times can be calculated to yield the same
information as with time-resolved techniques. The major
advantage of this technique is the simplicity and low cost
of the optical set-up. A possible disadvantage is the lim-
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ited time resolution. Spatially resolved methods may also
be an alternative to time-resolved techniques. The bene� t
of spatially resolved techniques is a much simpli� ed ex-
perimental set-up; however, a homogeneous sample is re-
quired. Future work will also include improvements of
the data evaluation. Three-way analysis such as the PAR-
AFAC method 24 appears to be a useful alternative to
Monte Carlo calculations. A more extensive study of sim-
ulation of photon propagation through tablets is currently
being performed.

CONCLUSION

Time-resolved transmission measurements were per-
formed on pharmaceutical tablets in a feasibility study to
investigate the usefulness of the general technique for
analytical work. The results show that the light scattering
of the samples is very high, leading to mean optical path
lengths of 20–25 cm. Monte Carlo simulations suggest a
reduced scattering coef� cient in the range of 500 cm21

for a typical tablet. The spectral characteristics were
found to depend on the delay of the detector gate time.
For light with a long propagation time through the sample
matrix, the spectrum was found to peak at higher wave-
lengths in relation to the early light. This was due to a
greater attenuation of the blue/green light. Gated trans-
mission spectra were recorded for tablets with different
contents of the active substance, and it was found that
the contrast between tablets was higher for some photon
propagation times than for others. In particular, for these
samples short times yielded no contrast, whereas medium
times exhibit high spectral contrast. Thus, by gating the
light transmission in time, a higher analytical contrast can
be achieved than with conventional transmission spec-
troscopy. The technique seems promising and future
work will be focused on extending the spectral range fur-
ther into the NIR spectral region.
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Near-infrared (NIR) spectroscopy is a useful technique
for quantitative measurements of intact tablets, but it
suffers from limitations due to the fact that changes in the
physical properties of a sample strongly affect the re-
corded spectrum. In this work, time-resolved transmis-
sion NIR spectroscopy was utilized to conduct quantitative
measurements of intact tablets. The technique enables
separation of the absorption properties of the sample from
the scattering properties and can therefore handle changes
of the physical parameters of the samples in a better way
than conventional NIR transmission spectroscopy. The
experiments were conducted using a pulsed Ti:sapphire
laser coupled into a nonlinear photonic crystal fiber as
light source. The light transmitted through the sample was
measured by a time-resolving streak camera. A compari-
son of the results from the time-resolved technique with
the results from conventional transmission NIR spectros-
copy was made using tablets containing different concen-
trations of iron oxide and manufactured with different
thicknesses. A PLS model made with data from the time-
resolved technique predicted samples 5 times better than
a PLS model made data from the conventional NIR
transmission technique. Furthermore, an improvement
to predict samples with physical properties outside those
included in the calibration set was demonstrated.

In recent years, the application of transmission near-infrared
(NIR) measurements of intact tablets has emerged as a useful
technique for quantitative measurements.1,2 It is faster than the
traditionally used chromatographic methods, and it does not have
the problems with subsampling that the reflectance NIR measure-
ments have.3 The ability to make transmission measurements of
intact tablets relies on the relatively low absorption in this
wavelength region. The main absorption bands in the NIR region
are vibrational overtones and combination bands of hydrogen

bonds, having their fundamental absorptions in the mid-infrared
region. The transition probability of the overtones is much lower
than that for the fundamental transitions, which makes the
measured absorbance in a solid pharmaceutical sample in this
region low, especially in the wavelength range 800-1400 nm,
where the water absorption is low. Multiple wavelengths together
with multivariate analysis are regularly employed in order to make
quantitative calibrations, since the broad and often overlapping
absorption bands often cannot be coupled to one specific com-
ponent in the tablet. Previously, multiple linear regression was
the preferred choice, but the development of new multivariate
tools has made the partial least squares (PLS) the most frequently
used calibration method for NIR spectroscopy today.4 In addition
to NIR spectroscopy, other thechniques, such as Raman spec-
troscopy, have proven useful for pharmaceutical analysis. How-
ever, Raman spectroscopy also suffers from limitations, in par-
ticular the small sampling volume associated with Raman
spectroscopy of solids.5,6

Light scattering in intact tablets is due to the many microcavi-
ties causing rapid spatial changes in refractive index within the
tablet. The scattering properties of a tablet are thus very depend-
ent on the manufacturing process, e.g., on the compression force,
grain size, etc. The scattering in a tablet is ∼3-4 orders of
magnitude larger than the absorption, which leads to very long
optical path lengths. For example, a transmission measurement
through a 3.5-mm-thick tablet results in a mean optical path length
of 20-30 cm.7 There is, however, a huge span in effective path
lengths in such a measurement. Some photons have path lengths
as short as a few millimeters, while others have bounced back
and forth within the tablet for as long as a meter before they can
escape and reach the detector. From this it can be understood
that variations in tablet density, radius, and thickness also affect
the measurement and that small changes in the physical param-
eters during the manufacturing process can affect the NIR
transmission signal more than the concentration variations to be
measured.

Several data pretreatment methods have been developed to
try to compensate for the scattering in the tablets, and in that
way improve the quantitative calibrations. The standard normal
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deviate,8 multiplicative scattering correction,9 and orthogonal
signal correction10 are all examples of pretreatment methods used
to enhance the ability to construct accurate PLS calibrations.
Despite the many efforts, it has still been proven hard to
incorporate tablets from different batches or tablets manufactured
under different conditions into the same quantitative calibration
model with a good result.

Similar problems, to accurately measure the absorption if the
scattering is not well known, are faced in another field, biomedical
optics. In that field, both diagnostic measurements and laser
treatment dosimetry depend critically on the optical properties of
tissue. It is thus important to be able to measure those. Several
methods to measure these properties have been developed,
including the integrating sphere,11 spatially resolved,12 and time-
resolved measurements.13

Techniques to measure the optical properties developed
primarly for medical applications have been used in some
pharmaceutical applications. Scattering and absorption properties
have been measured in order to calculate the effective sample
size in diffuse reflectance NIR spectroscopy of powders14,15 as well
as for particle size analysis.16 Measurements of the optical
properties have also been used to make quantitative measure-
ments of pharmaceutical powder blend homogeneity.17

When using time-resolved measurements, the optical proper-
ties of a sample can be assessed by analyzing the broadening of
a short light pulse after the passage through the sample. Several
methods and models have been developed to extract the optical
measurements from such measurements at discrete wave-
lengths.18,19 These models show that a change in the scattering
coefficient mainly alters the peak position, while a change in the
absorption coefficient will alter the final slope of the time
dispersion curve.

In our previous work, we investigated the basic capabilities of
time-resolved NIR spectroscopy as an analytical tool for spectro-
scopic analysis.7 In this work, we report on measurements
performed using a novel instrument for time-resolved broadband
NIR spectroscopy. The results demonstrate the capability to
separate absorption from scattering properties of pharmaceutical
tablets using time-resolved spectroscopy and thereby allow recordings of pure absorption spectra. Improved quantitative

assessments are thus possible and also for samples with scattering
properties different from those covered by the calibration samples.

EXPERIMENTAL SECTION
Samples. The tablets used in this work consisted of red iron

oxide and microcrystalline cellulose (MCC). The MCC and iron
oxide were weighed and mixed in a mortar. The powder blend
was pressed into tablets with a diameter of 9 mm using a manual
tablet press. The compression force was held constant for all
tablets. The tablet set consisted of four concentration levels
(batches A-D) and three tablet thicknesses (batches 1-3). A total
number of 27 tablets were produced with the characteristics given
in Table 1. One sample from batch D2 was destroyed during the
reference analysis and is therefore taken out of all evaluations.

Time-Resolved Measurements. The experimental arrange-
ment used in the study is depicted in Figure 1.

The Ar ion laser-pumped mode-locked Ti:sapphire laser
produced pulses shorter than 100 fs at a repetition rate of 80 MHz.
The wavelength of the laser light was near 800 nm, and the energy
of each pulse was 4 nJ. The light was focused into the PCF using
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Table 1. Summary of the Batch ID of the Tablets Used
in This Work

concentration iron oxide (%)

weight (mg) 0,1 0,08 0,065 0,05

300 A1 B1 C1 D1
400 A2 B2 C2 D2
500 A3 B3 C3 D3

Figure 1. Overview of the instrumentation for time-resolved NIR
measurements.
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a standard ×40 microscope objective lens with a numeric aperture
of 0.65. An optical isolator was used between the laser and the
optics, to prevent optical feedback into the laser due to reflections.
A prism compressor was also used in the setup to compensate
for the time dispersion caused by the different optical components
used. The PCF (Crystal Fibre A/S) was 0.5 m long with a core
diameter of 2 µm, manufactured to have zero dispersion at 760
nm. The dispersion properties of the fiber combined with core
diameter results in a high peak power of the light through the
entire fiber, yielding a widely spectrally broadened light emission
due to nonlinear effects. The main broadening effects in the PCF
are identified to be self-phase modulation and stimulated Raman
scattering.20 As a result of this, light pulses with almost the same
temporal width as the laser, and a spectral width spanning from
400 nm to at least 1200 nm was accessible. The light distribution
was not flat though, but modulated with peaks with high intensities
surrounded by wavelength regions with low intensities. To
increase the signal-to-noise ratio, three measurements were made
on each sample. The PCF was slightly realigned between each
measurement in order to flatten the average light distribution in
the range 860-1150 nm. This provides a good signal-to-noise ratio
in the entire wavelength range. The output end of the PCF was
put 2 mm from the face of the tablet held into place by an circular
iris holder. The spot size on the tablet was ∼2 mm. The light
from the backside of the tablet was imaged onto the 250-µm slit
of an imaging spectrometer (Chromex, model 250 IS), coupled
to a streak camera (Hamamatsu, model C5680). The system
measures a 600-nm broad wavelength region with a spectral
resolution of 5 nm. The streak camera operated in synchro scan
mode, allowing all light pulses to be collected. A small portion of
the laser light was redirected by a beam splitter onto a photodiode
that triggered the streak camera sweep. The system had a total
temporal range of 2.1 ns with resolution of 4.5 ps. The instrumental
response function was in the range of 30 ps when averaging over
50 s.

Conventional Transmission NIR Measurements. The con-
ventional transmission NIR spectra were measured with a NIR-
Systems 6500 monochromator, with a NIRSystems InTact Multi-
Tab Analyzer presenting the samples. The spectra were collected
in the range of 600-1900 nm, but as in previous reports, the range
800-1350 nm was used when building calibration models.

Reference Analysis. For the reference analysis, the samples
were heated in beakers with 40 mL of HNO3 (70%) for 60 min
and then transferred into 100-mL flasks and diluted to volume
with water. Calibration samples were made using the same
method, using concentrations between 1 and 7 ppm iron oxide.
The samples were then analyzed using a Perkin-Elmer 3300 atomic
absorption spectrometer. By analyzing reference samples, the
relative error introduced by the method was measured to be
smaller than 2%.

Evaluation of Time-Resolved Measurements. The evalua-
tion of the data was based on the shape of the time dispersion
curves, and it was made entirely independent for the different
wavelengths. No white light correction was therefore necessary.

To combine the three measurements in the best possible way,
optimizing the signal-to-noise ratio, a threshold procedure was

employed. The signal level for an individual measurement had to
exceed this threshold to be included in the analysis. The threshold
was set so that all wavelengths from 860 to 1150 nm was covered
in at least one of the three measurements. The wavelength range
was chosen to incorporate important absorption features of both
constituents. The final slopes of the time-resolved signals were
calculated for each individual wavelength, one at the time. The
time dispersion curve for each wavelength was first normalized
to have intensities between zero and one and then logarithmic
transformed. A line was fitted to a 210-ps-long region 105 ps from
the peak; see Figure 2. The slopes calculated at the different
wavelengths were extracted, plotted as a function of wavelength,
and used in the analysis.

Multivariate Analysis. All multivariate models were made in
Simca-P 10.0 (Umetrics AB, Umeå, Sweden). All spectra were
mean centered before calculations, and the number of principal
components selected in the models were as many as Simca-P 10.0
found suitable. The program uses the cross-validated predicted
fraction for both X and Y to find the optimal number of PLSCs.
The software found the optimal number of principal components
to be three for all models in this work.

RESULTS AND DISCUSSION
Design of Technical Device. The introduction of a photonic

crystal fiber and a synchroscan streak camera unit into the
instrumentation extended the measurement capability further out
into the NIR region. It is important to reach the second overtone
region starting at 1100 nm in order collect good absorption data
from pharmaceutical samples, and the measurements in this work
reached wavelengths as high as 1150 nm with a sufficient signal-
to-noise ratio. The instrumentation is a complex laboratory system
that is not easily adapted to simple applications.

The simple, but effective evaluation scheme used in this work
had the big advantage of evaluating an intrinsic property at each
wavelength independently. The evaluation was therefore inde-
pendent of both the spectral distribution of the light source and
the intensity of the light and why no normalization or white light
correction was needed. The evaluation scheme had the limitation
of extracting only the absorption properties, but new and more

(20) Genty, G.; Lehtonen, M.; Ludvigsen, H.; Broeng, J.; Kaivola, M. Opt. Express
2002, 10, 1083-1098.

Figure 2. Evaluation of the time-resolved measurements was made
by fitting a line to the final slope of the time dispersion curve for each
individual wavelength. The fit was made in the shaded region of the
curve.
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complex evaluation tools that allow the extraction of both the
absorption and scattering properties of the sample are under
development and will further enhance the technique.

Mechanistic Basis. Results from the conventional transmis-
sion NIR measurements are shown in Figure 3. The figure shows
absorption spectra from four tablets with the same thickness but
with different concentrations of iron oxide. The spectra exhibit a
distinct absorption peak from MCC around 1200 nm. The main
absorption band from iron oxide is prominent in the lowest
wavelength region, below 1000 nm. The spectra from the different
tablets exhibit different attenuation in this wavelength region, with
the highest concentration of iron oxide having the highest
attenuation. Figure 4 shows the extracted slope coefficients as a
function of wavelength from time-resolved measurements of the
same four tablets. The measurements were made in the wave-
length region 860-1150 nm. The slope spectra are relatively noisy,
partly due to the low signal in the time-resolved measurement,
but also due to the fact that these spectra are evaluated from the
slope of a curve rather than a plot of the signal level itself. This
type of analysis is very sensitive to the noise in the original signal.
When the absorption of a sample is high, the final slope of the
time dispersion curve is steeper than the final slope of the time

dispersion curve from a sample with low absorption. This is clearly
seen in the figure as a steeper slope in the wavelength region
below 1000 nm for tablets with higher concentration of iron oxide.
Comparing the time-resolved slope coefficients with the conven-
tional transmission NIR measurement yields clear similarities. The
slope spectra are noisier than the conventional NIR spectra, but
both show differences between the tablets in the region 850-
1000 nm where the iron oxide absorbs the light.

Figure 5 shows the slopes as a function of wavelength from
measurements of tablets with the same nominal iron oxide
concentration but with different thicknesses. The slope spectra
are noisy, and the change in thickness between the tablets
introduces an offset in the slope values. Unlike conventional
transmission NIR measurements on tablets with different thick-
nesses, see Figure 6, where the longer path length of the light
will introduce not only an offset of the absorption profile but also
an increased contrast, the differences in shape between the slope
spectra are smaller than the noise level. This is because the slope
in the slope spectra is proportional to the path length-independent
absorptivity, while the conventional NIR spectra are proportional
to the total attenuation, which is strongly dependent on the optical
path length.

Figure 3. Conventional transmission NIR data from measurements
of tablets with the same thickness but with different concentrations
of iron oxide. The tablets all weighed 400 mg and contained 0.05,
0.065, 0.08, and 0.1% iron oxide, respectively.

Figure 4. Decay slope versus wavelength from measurements of
tablets with the same thickness, but with different concentrations of
iron oxide. The tablets all weighed 400 mg and contained 0.05, 0.065,
0.08, and 0.1% iron oxide, respectively.

Figure 5. Decay slope versus wavelength from measurements of
tablets with the same concentration of iron oxide, but with different
thicknesses. The tablets contained 0.05% iron oxide and weighed
300, 400, and 500 mg, respectively.

Figure 6. Conventional transmission NIR data from measurements
of tablets with the same concentration of iron oxide but with different
thicknesses. The tablets contained 0.05% iron oxide and weighed
300, 400, and 500 mg, respectively.
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Assay of Chemical Content. A PCA model was made from
all 26 samples using the slopes calculated from the time-resolved
measurements. The wavelength range 850-1160 nm was used in
the calculations. A score plot of the first two components was
constructed to display the main contribution to the spectral
information, see Figure 7. It was found that the samples are spread
in two almost orthogonal directions. Principal component 1 divides
the samples into the three different thickness groups, while
principal component 2 spread the samples according to their
concentration of iron oxide.

A PLS model was constructed by using 12 of the samples. This
PLS model was used to predict the iron oxide concentration of
the other samples. By doing this for the two different techniques,
a quantitative comparison was done. The 12 calibration samples
included samples from all thickness groups and all concentration
levels.

The models were based on three PLS components and the
RMSEP values for the conventional NIR measurements was
0.0080% (m/m) iron oxide, compared to 0.0019% (m/m) iron oxide
for the time-resolved measurements. The relative prediction error
in the time-resolved calibration was on the order of 2.5%, compared
to 12% for the conventional NIR calibration. The latter number
may seem high for a NIR method, but it is explained by the fact
that the calibration model contains only 12 samples that span a
wide range of thicknesses and concentrations of iron oxide. To
achieve a good predictive ability of a PLS model based on
conventional NIR spectra of samples with such divergent physical
properties, far more than 12 samples are needed.

To compare the robustness of the two measurement tech-
niques, calibration models were build by using all samples from
two of the thickness groups and using the samples from the third
thickness group as a prediction set.

The RMSEP values were in this case 0.0026% (m/m) iron oxide
for the time-resolved data and 0.011% (m/m) iron oxide for the
conventional NIR data. The relative error for the time-resolved
data was in this case 3.5% compared to 15% for the conventional
NIR data. Again, the time-resolved method is superior to the
conventional NIR method and allows the analysis to be extrapo-
lated outside the calibration range of the PLS model.

The fact that the PCA model yields two orthogonal components
and that PLS calibrations are linear over a wide range and are
even valid outside the calibration range support the conclusion
that pure chemical information can be attained with time-resolved
spectroscopy. By using the slope of the time-resolved curves,
information attributed directly to light absorption and with no
relation to light scattering can be attained. So far the analytical
precision is limited by the determination of the slope. There
should be a significant potential for improvements by using other
data evaluation schemes.

CONCLUSIONS
In this work, we have used a newly developed instrumentation

for time-resolved transmission broadband NIR spectroscopy to
separate the absorption from the scattering of the samples. The
time-resolved measurements were used to make quantitative
assessments of intact tablets with different thicknesses, and the
results were then compared with conventional transmission NIR
spectroscopy.

The comparison shows that the time-resolved technique is
better at handling physical variations of the tablets, in this case
different thicknesses. Although the thickest tablets were more
than 50% thicker than the thinnest, the relative prediction error
was only 2.5% in a PLS model incorporating slope spectra from
tablets with different thicknesses, compared to 12% for a PLS
model based on the conventional transmission NIR technique. The
slope spectra also showed better potential than the conventional
NIR technique when predicting samples from a thickness group
not included in the PLS calibration.

The time-resolved technique seems promising, for analysis of
solid samples with varying physical properties, which would make
the samples difficult to analyze with conventional NIR techniques.
The future work will be focused on increasing the signal-to-noise
ratio in the measurements and enabling measurements on real
pharmaceutical tablets. Other evaluation schemes will also be
developed, to get a better understanding of the interaction between
the light and the sample.

Received for review August 17, 2004. Accepted November
22, 2004.
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Figure 7. Score plot of a PCA model made from all 26 samples
using the slopes calculated from the time-resolved measurements.
The scores are from the first two principal components of the PCA
model.
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The scope of this work is a new methodology to correct conventional
near-infrared (NIR) data for scattering effects. The technique aims
at measuring the absorption coefficient of the samples rather than
the total attenuation measured in conventional NIR spectroscopy.
The main advantage of this is that the absorption coefficient is in-
dependent of the path length of the light inside the sample and
therefore independent of the scattering effects. The method is based
on time-resolved spectroscopy and modeling of light transport by
diffusion theory. This provides an independent measure of the scat-
tering properties of the samples and therefore of the path length of
light. This yields a clear advantage over other preprocessing tech-
niques, where scattering effects are estimated and corrected for by
using the shape of the measured spectrum only. Partial least squares
(PLS) calibration models show that, by using the proposed evalu-
ation scheme, the predictive ability is improved by 50% as com-
pared to a model based on conventional NIR data alone. The meth-
od also makes it possible to predict the concentration of active sub-
stance in samples with other physical properties than the samples
included in the calibration model.

Index Headings: Scatter correction; Near-infrared spectroscopy;
NIR spectroscopy; Partial least squares; PLS; Photon migration;
Time-resolved spectroscopy; Diffusion.

INTRODUCTION

Near-infrared (NIR) spectroscopy is an important tool
for assessment of the chemical content of solid samples
due to the fact that the samples can be analyzed directly
in their native solid state. NIR spectroscopic measure-
ments can be conducted both in transmission1–4 and re-
flectance5,6 mode, and the development of fiber optical
probes7–10 has enabled measurements directly in the re-
action vessels, e.g., in a pharmaceutical process line.

Although the versatility and speed of NIR spectro-
scopic measurements has made it an important tool in
process analytical chemistry, the technique has some lim-
itations. One of the major drawbacks of NIR spectros-
copy is its sensitivity to variations of the physical char-
acteristics of the samples.3,11 This is due to the fact that
the measured absorbance follows the Beer–Lambert law
and is therefore dependent on the concentration of the
constituent to be quantified, but also on the path length
of the light passing through the sample. The path length
of the light passage between the light source and the de-
tector is dependent on the physical parameters of the sam-
ples, e.g., sample thickness, particle size distribution, and
sample compactness. In fact, when measuring on an in-
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tact tablet in the NIR wavelength range, the scattering is
about 1000 times more prominent than the absorption,12

which means that a small change in the physical param-
eters of the samples can alter the measured spectra to a
larger extent than the alterations introduced by the vari-
ation in concentration of the sample constituents.

Several mathematical spectral pretreatment methods,
e.g., standard normal deviation,13 multiplicative scatter
correction,14 and orthogonal signal correction,15 have all
been proposed to correct NIR spectra in order to elimi-
nate systematic variations unrelated to analyte concentra-
tions. Despite the many efforts, it has still proven hard
to incorporate samples from different batches or samples
manufactured under different conditions into the same
quantitative calibration model with acceptable results.

An alternative to mathematical pretreatment methods
is to use a direct measurement of the scattering properties
of the samples to correct conventional NIR spectra. Dif-
ferent measurement techniques have been developed to
deconvolute the scattering and absorption properties of a
sample. These techniques include time-resolved,16 spa-
tially resolved,17 and integrating sphere measurements.18

The techniques to measure the optical properties were
developed primarily for biomedical applications but have
also been used in some pharmaceutical applications. Scat-
tering and absorption properties have been measured in
order to calculate the effective sample size in diffuse re-
flectance NIR spectroscopy of powders19,20 as well as for
particle size analysis.21 Measurements of the optical prop-
erties have also been used to make quantitative measure-
ments of pharmaceutical powder blend homogeneity.22

When conducting time-resolved measurements a tem-
porally very short light pulse is sent through the sample
to be analyzed. The temporal shape of the pulse is altered
when passing through the sample due to the dispersion
of the light inside the sample. By analyzing the modified
temporal shape of the pulse, the optical properties of that
sample can be deduced.23 A variety of different evalua-
tion schemes have been developed for evaluating time-
resolved data, ranging from simple evaluations like the
final slope fitting24 to more complex schemes like diffu-
sion25 and Monte Carlo models.26

The aim of this work was to introduce a methodology
to improve quantitative assessments made from conven-
tional NIR transmission data by using a scatter correction
scheme based on the measurements of the actual scatter-
ing properties of the samples. To measure the scattering
properties of the tablets in this work a novel broad-band
time-resolved system was used in combination with dif-
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fusion modeling of light transport. The results demon-
strate the capability to deconvolute the absorption and
scattering properties of pharmaceutical tablets using time-
resolved spectroscopy. The quality of the quantitative as-
sessments after the scatter correction was greatly im-
proved, compared to assessments made directly from
conventional NIR data. The improvements were espe-
cially large for samples with physical properties different
from those covered by the calibration samples. The work
also points out one possible direction for the development
of NIR spectrometers, aiming at a system consisting of a
standard NIR spectrometer in combination with a time-
resolved diode-laser-based system at a few discrete wave-
lengths. Such a system would enable measurements of
the absorption of samples without any contribution from
scattering effects.

THEORY

Optical Properties of Turbid Media. The interaction
between light and a turbid medium is governed by the
optical properties of that medium. In this work the light
will be assumed to be diffusely scattered and light trans-
port will be modeled by the diffusion approximation.

The optical properties can be divided into absorption,
primarily a measure of the chemical content of the sam-
ple, and scattering, dependent on the physical character-
istics of the sample. The parameter used to describe the
absorption of light is the absorption coefficient, ma, which
is defined as the probability for absorption per unit
length. The scattering of light is caused by variations of
refractive index within the sample and is in the diffusion
approximation described by the reduced scattering coef-
ficient, m , which is defined as the probability for an iso-9s
tropic scattering event per unit length.

Diffusions Models. The measured time-resolved dis-
persion curves were analyzed using a solution of the ra-
diative transport equation, under the diffusion approxi-
mation, for a semi-infinite slab.27 The solution is based
on the introduction of an isotropic point source in the
sample at a distance z0, equal to the inverse of m from9s
the surface. This is applicable for many types of geom-
etries as long as the solution is calculated for points far
away from the source. Another restriction is that the re-
duced scattering coefficient must be much larger than the
absorption coefficient for the diffusion approximation to
be valid. Although single scattering events may not be
isotropic, but rather be more prominent in specific direc-
tions, the validity of the diffusion model is dependent on
the fact that the light is so vastly scattered that it loses
its directionality and can be treated as isotropic. The dif-
fusion approximation is valid when the distance between
the light source and detector is larger than 10 times the
mean free path of the photons in the sample,28 which is
greatly exceeded by the samples used in this work.

Since the refractive index changes at the surfaces of
the slab, reflections will occur, and hence extrapolated
boundaries, where the fluence rate equals zero, are intro-
duced at a distance ze from the real surface. Mirror sourc-
es are introduced around the extrapolated boundaries to
fulfill the boundary condition.29 In this study 30 mirror
sources were used. At a time t and a radial distance r

from the injection point, the transmittance through a slab
is given by

2r
exp 2m ct 2a1 24Dct

T(r, t) 5
3/2 5/22(4pDc) t

` 2 2z z1,m 2,m3 z exp 2 2 z exp 2 (1)O 1,m 2,m1 2 1 2[ ]4Dct 4Dctm52`

where

z 5 d(1 2 2m) 2 4mz 2 z for positive sources,1,m e 0

z 5 d(1 2 2m) 2 (4m 2 2)z 1 z2,m e 0

for negative sources.

where c is the speed of light, m is the number of the
source, d is the thickness of the slab, and D is the dif-
fusion coefficient given by

1
D 5 (2)

3(m 1 m9)a s

An expression for steady-state transmission can be cal-
culated by integrating the time-resolved expression over
t, which gives

1/2` 2 21 m (r 1 z )a 1,m2 2 23/2T(r) 5 z (r 1 z ) 1 1O 1,m 1,m 5 6[ ]14p Dm52`
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EXPERIMENTAL

Samples. The tablets used in this work were produced
in a cylindrical shape with flat end surfaces. The tablets
had a diameter of 10 mm and thicknesses varied between
1.85 and 2.75 mm. All tablets had the same weight, and
the thickness was varied by varying the compression
force during the manufacturing process.

Three granulated materials with different concentration
of active substance were used. The three granulated ma-
terials were sieved so that each tablet contained only par-
ticles of a certain size fraction. Two sieves were used,
giving three different size fractions. The population in-
vestigated consisted of 82 tablets with approximately 9
tablets of each combination of particle size and concen-
tration. The number of samples in the different batches
is summarized in Table I. The different size fractions dif-
fered somewhat in concentration, but these differences
were revealed by the reference analysis and therefore
only made the concentration span of the samples larger.

As reference analysis, ultraviolet-absorption measure-
ments were made on the tablets after they were dissolved
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TABLE I. Overview of the number of measured tablets from the
different batches.

Sieve fraction (mm)

,150 150–400 .400

Nominal concentra-
tion (% weight)

28.5
31.8
34.9

9
10

9

10
9
8

9
9
9

FIG. 1. Overview of the instrumentation used for the time-resolved
measurements.

in phosphate buffer pH 3.0.30 The absorption was mea-
sured at 274 nm and the background at 550 nm on an
HP 8453 UV/vis spectrometer (Agilent Technologies
Sweden AB, Spånga, Sweden). From calibration samples,
the content of active substance in the samples was cal-
culated using the Beer–Lambert law. These values were
used as reference values in the multivariate calibration
models.

Time-Resolved Measurements. The time-resolved
system used in this work has previously been described
in detail.31 Briefly, the experimental arrangement is de-
picted in Fig. 1. An Ar-ion laser pumped mode-locked
Ti:Sapphire laser produced pulses shorter than 100 fs at
a repetition rate of 80 MHz. The wavelength of the laser
light was centered around 800 nm, and the energy of each
pulse was 4 nJ. The light was focused into an index guid-
ing crystal fiber (ICF) using a standard 403 microscope
objective lens with a numeric aperture of 0.65. An optical
isolator was used between the laser and the optics to pre-
vent optical feedback into the laser due to reflections. A
prism compressor was also used in the setup to compen-
sate for the time dispersion caused by the different optical
components. The ICF (Crystal Fibre A/S, Birkerod, Den-
mark) was 1 m long with a core diameter of 2 mm, man-
ufactured to have zero dispersion at 760 nm. The disper-
sion properties of the fiber combined with the small core
diameter resulted in a high peak power of the light
through the entire fiber, yielding a widely spectrally
broadened light emission due to nonlinear effects. The
main broadening effects in the ICF were identified to be
self-phase-modulation32 and stimulated Raman scatter-
ing.33 As a result of this, light pulses with almost the same
temporal width as the laser, and with a spectral width
spanning from 400 nm to at least 1200 nm, were acces-
sible. However, the light distribution was not flat, but
modulated with peaks with high intensities surrounded
by wavelength regions with low intensities. The light
from the output end of the ICF was focused by a lens
onto the face of the tablet held into place by a circular
iris holder, preventing stray light from reaching the de-
tection system. The spot size on the tablet was approxi-
mately 2 mm. The light from the backside of the tablet
was imaged onto the 250 mm slit of an imaging spec-
trometer, Chromex 250 IS (Bruker Optics Scandinavia
AB, Taby, Sweden) coupled to a streak camera, Hama-
matsu C5680 (Hamamatsu Photonics Norden AB, Solna,
Sweden). The system measures a 600 nm broad wave-
length region with a spectral resolution of 5 nm. The
streak camera operated in synchro scan mode, allowing
all light pulses to be collected. A small portion of the
laser light was redirected by a beam splitter onto a pho-
todiode that triggered the streak camera sweep. The sys-
tem had a total temporal range of 2.1 ns with resolution

of 4.5 ps. The instrumental response function was in the
range of 30 ps when averaging over 300 s.

Conventional Transmission Near-Infrared Mea-
surements. The conventional transmission NIR measure-
ments were conducted on a Bomem MB 160 PH Fourier
transform spectrometer (ABB Automation Technologies
AB, Sollentuna, Sweden). The spectrometer was
equipped with a tablet sampler making transmission mea-
surements possible. The measurements were made in the
wavelength range from 800 nm to 1500 nm with a res-
olution of 16 cm21 in the entire range.

Deconvolution of Scattering and Absorption Prop-
erties of Samples Using Time-Resolved Measure-
ments. The time-resolved data was evaluated for each
wavelength individually in the wavelength region ranging
from 800 to 1100 nm. The evaluation was made by fitting
the measured time dispersion curves to the time-resolved
diffusion model (Eq. 1), convolved with the instrumental
response function (see Fig. 2). The dip at 275 ps in the
photon migration data is due to detector sensitivity var-
iations, but the effect is corrected before the evaluation.
The data points included in the calculation were deter-
mined by two thresholds set to include all points with
higher intensity than 20% of the peak intensity on the
rising edge and higher than 10% on the falling edge. The
evaluation algorithm used a Levenberg–Marquardt itera-
tive procedure to extract ma and m from the data.9s

Scatter Correction of Conventional Transmission
Near-Infrared Data. An overview of the complete scat-
ter correction scheme is depicted in Fig. 3. The scattering
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FIG. 2. An example of the evaluation of the time-resolved measurements, which was made by fitting the measured data to the time-resolved
diffusion model. The measured data marked by the thicker line was used in the evaluation at this particular wavelength.

FIG. 3. Overview of the scatter correction procedure.

FIG. 4. The calculated absorption coefficients of a tablet from the batch
with the highest nominal content of active substance and the medium
sieve fraction.

coefficients calculated from the time-resolved measure-
ments at five wavelengths (855, 905, 955, 1005, and 1075
nm) were used in the scatter correction procedure. Using
only five of all the available wavelengths had two objec-
tives. First of all to mimic a simplified laser diode based
system for in situ measurements, but also to facilitate the
use of the other measured wavelengths to verify the cor-
rectness of the following steps of the evaluation scheme.

The scattering coefficients were calculated as an av-
erage over a 10 nm wide window to increase the signal-
to-noise ratio. These values were used to calculate the
scattering dependence on wavelength. The calculation
was done by fitting the points to Eq. 4, which approxi-
mately describes the wavelength dependence of Mie scat-
tering:34

m 5 alb9s (4)

This approximation made it also possible to extrapolate
the scattering coefficients into wavelength ranges not
measurable by the present time-resolved system.

The extracted scattering coefficients from the Mie ap-
proximation were combined with the conventional NIR
data and the steady-state diffusion model (Eq. 3) to ex-
tract the absorption coefficients in the entire wavelength
range covered by the conventional NIR instrument (see
Fig. 4). This calculation was also conducted using a Lev-
enberg–Marquardt iterative procedure. The resulting ab-
sorption coefficients were independent of the path length
of the light through the sample and therefore independent
of the scattering properties of the sample.

Multivariate Calibrations. All multivariate calibra-
tion models were made in Simca-P 10.0 (Umetrics AB).
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FIG. 5. A typical fit of the measured scattering to the equation defined
by Mie theory. The measured scattering values are plotted to show the
average and the standard deviation of ten measurements. The dotted
line shows the extrapolation into longer wavelengths.

FIG. 6. Comparison between scatter corrected NIR spectra and absorption coefficient spectra calculated from time-resolved measurements.

All spectra were mean centered before calculations and
the number of principal components (PLSCs) selected in
the models were as many as Simca-P 10.0 found suitable.
The program uses the cross-validated predicted fraction
for both X and Y to find the optimal number of PLSCs.
In all models the samples not used in the calibration were
used as a validation set, and the root mean square error
of prediction value (RMSEP) (Eq. 5) was used to eval-
uate the performance of the different models.

n
2( ŷ 2 y )O i i

i51ÎRMSEP 5 (5)
n

where ŷ is the concentration of active substance predicted
by the PLS model, y is the concentration of active sub-
stance measured by the reference analysis, and n is the
number of samples. To get a better idea of the quality of

the models, the RMSEP was divided by the mean con-
centration of the samples, giving the relative error in %.

RESULTS AND DISCUSSION

Deconvolution of Scattering and Absorption Prop-
erties of Samples Using Time-Resolved Data. The fit-
ting of the time-resolved diffusion model to the time-
resolved data was generally very good. The fit shown in
Fig. 2 is typical for this step of the evaluations. A fit of
the calculated scattering coefficients from the five wave-
lengths to the equation given by Mie theory is seen in
Fig. 5. Values of b (see Eq. 4) were in the range from
20.25 to 20.5 for different samples.

After the scattering had been combined with the con-
ventional NIR measurement and the steady-state diffu-
sion model, the resulting absorption coefficients were
compared to the absorption coefficients extracted from
the time-resolved measurements alone. This comparison
revealed that 70% of the samples showed a good agree-
ment, with residuals below 10%, as seen in the left part
of Fig. 6. The resulting 30% of the samples exhibit ab-
sorption coefficients that deviated from the absorption co-
efficients calculated directly from the time-resolved mea-
surements. The deviations could be rather small, occur-
ring just in limited wavelength regions, but some of the
samples disagree completely, as seen in the right part of
Fig. 6. The main source of error for this sometimes large
deviation is thought to be errors introduced by an esti-
mated time delay between the instrumental response
function and the sample measurement, but also the sig-
nal-to-noise ratio in the evaluation of the scattering co-
efficients at the five wavelengths is crucial in order to
obtain good results. The delay between the instrumental
response function and sample measurements was calcu-
lated to be 15 ps. The delay occurs due to the insertion
of a filter when measuring the instrumental response
function, which was a necessity in order not to over-ex-
pose the detection system. Using this calculated delay
gave unrealistic values of the absorption coefficients. Pre-
vious measurements on tissue phantoms, with known op-
tical properties, have shown that by adding an extra 20
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FIG. 7. Observed versus predicted values when predicting the 65 thick-
est tablets using a PLS models based on the 17 thinnest tablets. The
scatter corrected data lies much closer to the line of optimal fit than the
conventional NIR data.

ps to the calculated time delay, correct values of the ab-
sorption coefficient were gained. Therefore, a time delay
of 35 ps was used in all evaluations. At this point, the
reason for the extra time delay is not fully understood,
but work to increase the understanding of the evaluation
scheme is planned.

Quantitative Analysis Using Scatter Corrected
Near-Infrared Data. To evaluate the data from the scat-
ter correction scheme described above, a comparison with
conventional NIR measurements was performed. The
data from the scatter correction scheme will further on
be referred to as the scatter corrected data. This to sep-
arate it from evaluations based on uncorrected conven-
tional NIR data alone.

Basic Model. In order to compare the precision of the
two methods, models based on half the data set were
constructed and used to predict the other half. Both the
calibration and validation sets included tablets from all
nine batches. The model based on conventional NIR data
resulted in an RMSEP value of 4.1% using five PLS com-
ponents, while scatter corrected data resulted in an
RMSEP value of 1.8% using six PLS components.

This evaluation shows that by correcting the conven-
tional NIR data using time-resolved spectroscopy, the
predictive ability of the constructed PLS models im-
proved by more than 50%.

Models Based on Different Tablet Thicknesses. By
building two different models, one only including the 17
thinnest tablets and one including only the 12 thickest
tablets, a comparison of the robustness of the two meth-
ods was made. The validation sets contained the rest of
the tablets, 65 and 70 samples respectively. To build a
calibration model with that few samples, and to use it to
predict samples with physical characteristics lying out-
side the parameter space spanned by the calibration sam-
ples, is troublesome when using conventional NIR data.
The two models based on conventional NIR data showed
the presumed quite poor predictive abilities, with RMSEP
values of 5.2% and 11.2% for the models based on the
thinnest and thickest tablets, respectively. The results
from the scatter corrected data did not show the same
drastic deterioration when compared to the basic model
as the results from the conventional NIR data. When us-
ing scatter corrected data the RMSEP values for the two
models were found to be 2.4% and 3.6% for the model
based on the thinnest and thickest tablets, respectively.

This clearly shows that correcting conventional NIR
data with time-resolved measurements at five wave-
lengths increases the robustness of the calibration models
and makes it possible to predict samples with different
physical dimensions than the tablets included in the cal-
ibration model (see Fig. 7).

Models Based on Tablets with Different Particle
Size Distributions. To further compare the ability of the
two techniques, all tablets manufactured from the largest
particle size fraction (27 samples) were used as calibra-
tion set. When predicting the tablets made from the other
two particle size groups the same kind of pattern as in
the previous models was seen. The conventional NIR
model gave prediction errors of 5.3% while the scatter
corrected model showed a RMSEP value of 2.8%, further
proving the robustness of the models based on scatter
corrected data.

Future Prospects. Although the instrumental setup for
the time-resolved measurements used in this study only
works in a research environment, the measurements and
evaluations are conducted in a way that mimics a sim-
plified laser diode based system. Such a system could be
small and robust enough to be used for laboratory use as
well as for on-line or at-line measurements in a process
environment.

Combining a conventional NIR spectrometer with a
simple time-resolved system could be an important step
in making NIR spectroscopy more robust, making it pos-
sible to measure absorption spectra without any contri-
bution from scattering effects. The technique might also
be used for calibration transfer schemes35,36 or other ap-
plications where additional information about the scatter-
ing properties of samples can complement conventional
NIR data.

CONCLUSION

The scope of this work is a new methodology to cor-
rect conventional NIR data for scattering effects. The
technique aims at measuring the absorption coefficient of
the samples rather than the total attenuation, measured in
conventional NIR spectroscopy. The main advantage of
this is that the absorption coefficient is independent of
the path length of the light inside the sample and there-
fore independent of the scattering effects.

The method is based on time-resolved spectroscopy
and modeling of light transport by diffusion theory. This
provides an independent measure of the scattering prop-
erties of the samples and therefore the path length of
light. This yields a clear advantage over other prepro-
cessing techniques, where scattering effects are estimated
and corrected for by using the shape of the measured
spectrum only.

Partial least squares calibration models show that, by
using the proposed evaluation scheme, the predictive
ability is improved by 50% as compared to a model based
on conventional NIR data only. The method also makes
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it possible to predict the concentration of active substance
in samples with other physical properties than the sam-
ples included in the calibration model.
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