
Measurement of trace components in aqueous
solutions with near and mid infrared

Fourier transform spectroscopy

Peter Snoer Jensen

Lund Reports on Atomic Physics
LRAP-299

Doctoral Thesis
Department of Physics

Lund Institute of Technology
March 2003



This thesis was typeset by the author on an Intel based computer running the
Gnu/Linux operating system with the command:

cat thesis.ms|soelim|refer|tbl|pic|eqn|groff -ms -P-g >thesis.ps

and afterwards transformed from postscript format into pdf format with pstopdf.

Vi, ed and ghostview were used for editing and viewing the thesis. Data were
processed using ANSI C programs based on routines from Numerical Recipes in
C by Press et al. and compiled with the GCC compiler. sh scripts, sed and AWK
filters were used to automate complicated calculations. Visualization and graphs
were prepared using Gnuplot. The scientific papers were written using the TEX
system. The author warmly recommends these tools.

Copyright © 2003 Peter Snoer Jensen
Printed by Pittney Bowes Management Services, DK
March 2003

Lund Reports on Atomic Physics, LRAP-299
ISSN 0281-2162
LUTFD2(TFAF-1052)/1-54(2003)
ISBN 91-628-5587-5



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . .  2
List of papers . . . . . . . . . . . . . . . . . . . .  3
1. Introduction . . . . . . . . . . . . . . . . . . . .  4
2. Infrared Spectroscopy . . . . . . . . . . . . . . . .  7
3. Fourier transform infrared spectroscopy .  .  .  .  .  .  .  .  .  .  . 9
4. Dual-beam Fourier transform infrared spectroscopy .  .  .  .  .  .  . 23
5. Quantitative analysis . . . . . . . . . . . . . . . . .  28
6. Chemometric calibration techniques . . . . . . . . . . . .  30
7. The near and mid infrared absorption spectrum of water . . . . . .  38
8. Trace component quantification in aqueous solutions . . . . . . .  40
9. Haemodialysis treatment . . . . . . . . . . . . . . . .  42
Acknowledgements . . . . . . . . . . . . . . . . . .  45
Summary of papers . . . . . . . . . . . . . . . . . .  46
References . . . . . . . . . . . . . . . . . . . . .  48



2

Abstract

This thesis treats various aspects of the measurement of trace components in
aqueous solutions with Fourier transform infrared spectroscopy. This technique
has several applications from such diverse fields as dairy industry and biomedical
optics. The use of infrared spectroscopy for trace component quantification is
made difficult by the large absorption of water which dominates the spectrum.
The signals from the trace components are small in comparison and must be
detected under circumstances where the water spectrum determines both instru-
ment configuration and usable wav enumber regions. In addition the absorption of
water may be changed by the presence of other components in the solution or by
variations in temperature. The papers, upon which this thesis is based are con-
cerned with several aspects relating to this problem. The influence of the water
absorption spectrum and the configuration of spectrometers are discussed. One
publication treats the problem of selection of optimal transmission cell pathlength
for measurement of trace components in aqueous solutions. Another publication
presents a dual-beam, optical null, Fourier transform spectrometer for measure-
ments of trace components in the near infrared spectral range that offers an
improvement compared to traditional Fourier transform spectrometers. A third
publication presents measurements of the temperature induced variations of the
absorption spectrum of water and of aqueous solutions of glucose. In addition,
two specific applications, both concerning the measurement of trace components
in spent dialysate, are demonstrated. One manuscript describes the application of
the the dual-beam spectrometer to measure real-time, on-line concentrations of
urea in spent dialysate during treatment of patients. Finally, a manuscript demon-
strates the feasability of simultaneous measurement of urea, phosphate, and glu-
cose concentrations in spent dialysate with mid infrared transmission spec-
troscopy.
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1. Introduction

Water is the biological solvent. Indeed, life itself is not possible without it.1 This
may be explained by the abnormally large dielectric constant of water which
gives it a striking ability to dissolve ionic substances.2 Determination of trace
components in aqueous solutions is desirable in many div erse applications such
as biomedical diagnostics, dairy industry and waste water analysis. All of these
applications demand increasing accuracy and reliability, faster answers, simple
sample handling and, if possible, non-invasive and non-destructive measurement.
The usual chemical analysis does in many cases provide high accuracy and relia-
bility but fails to satisfy the other demands.

Methods based on infrared spectroscopy has the potential to satisfy the demands
that chemical analysis does not. Infrared spectroscopy probes the vibrations of
the functional groups of molecules by letting infrared light interact with the sam-
ple under investigation. This is a non-destructive, and possibly non-invasive,
method which is, in principle, capable of identifying and quantifying organic
molecules. Each organic molecule has a unique infrared spectrum, and the
strength of this spectrum is proportional to the concentration of the molecule.
This means that simultaneous determination of several trace components from
one spectrum is feasible provided that the spectra are sufficiently different in the
spectral regions that are accessible. Unfortunately, the water in aqueous solutions
absorbs strongly in the infrared spectral region because of its high concentration.
The signals of interest from the trace components are small in comparison and
must be extracted from this strong and varying background.

This thesis treats some important aspects of this problem which relates to the fun-
damental properties of water itself and to the instrumentation used for infrared
spectroscopy of aqueous solutions. This thesis is based on work carried out at
Risø National Laboratory, Optics and Fluid Dynamics Department, Denmark. It
has been largely experimental and has aimed to produce results of general utility
and to take advantage of these results in specialized cases as well. This thesis
consists of five original scientific papers and the present summary that describes
the field to which these papers contribute. This summary makes no attempt to
completeness; references to the literature are provided for that purpose. Material
contained in the original scientific papers is only minimally duplicated here.

Historically, mid infrared spectroscopy has been used primarily for identification
of pure substances in organic chemistry. The arrival of minicomputers, the HeNe
gas laser, and the fast Fourier transform in the 1960’s made the Fourier transform
infrared (FT-IR) spectrometer practical. It became the instrument of choice
because it improves signal-to-noise ratio by orders of magnitude compared to a
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grating instrument.† At about the same time multivariate methods for analysis of
spectral data with many independent overlapping variations found applications in
the chemical field. These methods have made quantitative analysis practical in
situations where simple measurements of peak heights to determine concentra-
tions are impossible because the peaks are masked by other variations in the
spectra that are comparable or much larger. Since then improvements in instru-
mentation, and the huge progress in data processing capability caused by the
increased capability of electronic computers and resulting progress in the devel-
opment of algorithms for numerical analysis has had tremendous impact. Appli-
cations of mid infrared spectroscopy for quantitative analysis of substances has
had large success in gas analysis where spectral lines are sharp and isolated, and
the background transparent. The use of near infrared spectroscopy has emerged
since the 1970’s as a technique for on-line monitoring and process control that is
now widely used.3 Within the biomedical field, vibrational spectroscopy is
emerging as a potential diagnostic tool with many div erse applications.4 The
increasingly prevalent disease diabetes mellitus has created a demand for contin-
uous non-invasive monitoring of blood glucose concentration. Therefore, meth-
ods to do so based on a variety of techniques, including near and mid infrared
spectroscopy, has been sought intensively in latter years.5-15 The arrival of FT-IR
microscopes for multi-spectral imaging of tissue has spawned considerable
research to characterize cancer from infrared spectra in the hope that pathologists
may be given an objective tool for diagnosis.16-19

In the research related to the application of infrared spectroscopy for the mea-
surement of trace components in aqueous solutions, much effort has gone into the
development of multivariate techniques and the application of these techniques
on model systems. Most of the work presented in this thesis investigates the
possibility of obtaining the best possible measurements in a given spectral region
by consideration of the limitations imposed by the water and the used instrumen-
tation. The motivation for this approach may be found in the huge success of the
multivariate methods that have reached a level where only marginal further
improvements may be expected. Another motivation may be found in the
prevalent optimization methods within this field that are frequently based on
results from chemometric calibration experiments. The conclusions reached
from such experiments are frequently disregarding the influence of the water
absorption spectrum or conditions imposed by the instrumentation. Rather, data
are regarded as isolated quantities with the result that misleading conclusions are
formed. The standard Fourier transform spectrometer is almost exclusively used
for accurate measurements of spectra of aqueous solutions. Part of this thesis

† This improvement is a result of the so-called Fellget, Jaquinot, Connes, and reso-
lution advantages that are discussed in section 3.3.
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investigates the possibility of improving this instrument by operating it in a dual-
beam, optical null mode. Within the biomedical field, the determination of trace
components in spent dialysate from treatment of patients with renal defects is of
diagnostic value. This thesis presents measurements of three key components,
namely urea, glucose, and phosphate, with the purpose of quantifying these
molecules on-line during the treatment of patients and thereby eliminate the need
for a traditional analytical chemical analysis. On-line quantification of urea con-
centrations has been carried out during the treatment of patients with the dual-
beam, optical null, instrument.

The present summary will briefly explain the fundamental principles of infrared
spectroscopy. Then follows a description of the standard Fourier transform spec-
trometer. The advantages, limitations and applications of dual-beam, optical sub-
traction Fourier transform spectroscopy is then described. Having presented the
fundamental physics and instrumentation, a description of the principles of quan-
titative analysis, and multivariate analysis is given. After this discussion of the
methodology and techniques found in this field, a discussion of the the absorption
properties of water is presented. A discussion of the measurement of trace com-
ponents in aqueous solutions follows. Lastly, a general description of renal dis-
eases and the treatment of patients by haemodialysis is given. The importance of
monitoring the treatment is stressed and the motivation for applying FT-IR spec-
troscopy to do so is giv en.
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2. Infrared Spectroscopy

This chapter gives a brief overview of the most basic concepts of infrared spec-
troscopy. Standard references are the books by Colthup, Daly, and Wiberley,20

and Pavia, Lampman, and Kriz.21

In a simple model of a molecule, one finds that the bond strength in molecules
and their mass determines the resonant frequencies at which vibrations are exited
and light is absorbed. In the simplest description, two atoms in a bond are
regarded as a simple harmonic oscillator with resonant frequency in wav enumber
units†

ν =
1

2π c √ K /µ (2.1)

where K is the force constant, µ = m1m2/(m1 + m2) is the reduced mass of the
two molecules with masses m1 and m2, respectively. Typical atomic masses are
1, 12, and 16 atomic mass units (exemplified by the H, C and O atom, respec-
tively) and bond strengths are 8. 5, 4. 5 and 16 N/cm (exemplified by the CH
bond, the OH bond in H2O and the CO bond in CO2, respectively)22 Therefore,
resonant frequencies lies in the infrared part of the electromagnetic spectrum
from 4000 − 500 cm−1 (2. 5 − 12 µm). Stretching, bending and even more compli-
cated vibrational modes, including several atoms in a molecule, may be excited.
Stretching vibrations have large force constants and exists in the high wav enum-
ber region, whereas bending vibrations have comparatively smaller force con-
stants and exists in the low wav enumber regions. In addition, overtone and com-
bination bands may be excited because of anharmonicity of the vibrations, such
that light with higher frequencies may exite these vibrations. For a vibration to
be infrared active, it must cause a change in the dipole moment of the molecule.20

Therefore, vibrations around a center of symmetry are not infrared active.‡ For
molecules in the gas state, fine structure of absorption bands arise from the differ-
ent rotational states. Molecules in the liquid state interact so frequently by colli-
sions that absorption bands are broadened. Molecules in the solid state are locked
such that peaks are more distinct than in the liquid state. The infrared spectrum
of a given molecule provides information about the functional groups present in
it and may be used to identify the molecule. The concentration of a given
molecule may also be determined, see chapter 5. Interestingly, the thermal radia-
tion from matter at temperatures from room temperature to 800 K has it’s maxi-
mum between 2200 and 500 cm−1. The maximum moves tow ards higher fre-
quencies as the temperature is increased. Therefore, infrared spectroscopy is also

† The wav enumber unit cm−1 is commonly used in infrared spectroscopy. It is the
frequency of the radiation divided by the speed of light c. To convert wav enumbers
in cm−1 to wav elength in µm divide 104 with the wav enumber.

‡ In contrast, the Raman effect, which is inelastic scattering of radiation, requires a
change in polarizability and therefore a change in the induced dipole moment.
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used for measurements of temperature, determination of spectral emissivity, and
remote sensing.
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3. Fourier transform infrared spectroscopy

Fourier transform infrared (FT-IR) spectroscopy is today the standard technique
for quantitative measurements of infrared spectra. The key concepts of this tech-
nique are presented in this chapter as an introduction to the field. The purpose is
to supply the reader with a basic understanding of the technique and present it’s
possibilities and limitations with a special emphasis on the applications relating
to measurements of aqueous solutions. Fourier transform infrared spectroscopy
is a vast subject. The short description presented here is based on material from
the texts by Griffiths and de Haseth23 and Hirschfeld24 to which the reader is ref-
ered for further details.

3.1. Basic working principle

The Fourier transform infrared spectrometer is basically a Michelson interferom-
eter with a broadband light source, a detector, and an accurate control of the mir-
ror displacement. A schematic drawing is shown in Fig. 3.1. The intensities of
the beams for a monochromatic ligth source with unit intensity, the optical path-
length difference, φ , and the beamsplitter reflectance and transmittance coeffi-
cents R and T are illustrated in the figure.† The mirror displacement is con-
trolled by measuring the zero-crossings of the interference signal from a HeNe
laser also passing through a Michelson interferometer. Sev eral different practical
realizations of this instrument are possible and commercially available. The one
we have used is implemented with corner-cubes instead of flat mirrors as shown
in Fig. 3.2. Again the intensities of the beams are illustrated for a monochromatic
light source of unit intensity. The arrangement with corner-cubes has two advan-
tages. Firstly, the corner-cubes reflect light 180° regardless of the angle of the
incoming light making the configuration immune to tilts of the mirror. Secondly,
the corner-cubes separate the incoming and outcoming ray, making the use of
two inputs and two outputs of the interferometer practical.

The FT-IR spectrometer measures an interferogram hn, which is an array of dis-
cretely measured points, containing the AC variation of the intensity at the detec-
tor as a function of the displacement of the movable mirror. This interferogram.
is converted to an intensity spectrum of the light by Fourier transformation as
explained in section 3.2.

Because of the high accuracy of the mirror position, determined by the interfer-
ence signal of the HeNe laser, multiple scans may be co-added such that a linear
av eraging of the signal may be carried out. In principle, this allows improvement
of the signal-to-noise ratio with the square root of the number of scans. The
maximum displacement of the movable mirror determines the spectral resolution

† The optical pathlength difference is two times the mirror displacement.
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Figure 3.1: Schematic drawing of Fourier transform infrared spectrometer. The
intensity of the beams are sketched for a monochromatic light source of unit
intensity.

of the spectrometer.

3.2. Calculation of single-beam spectrum

For an ideal beamsplitter with no absorption, equal transmittance and reflectance
coefficients R = T = 0. 5, and a monochromatic light source with intensity p1 at
wavenumber ν , the intensity P1, measured at the detector as function of the phase
shift φ = 2πν γ at an optical pathlength difference of γ is given by

P1 = 0. 5p1(1 + cos φ ). (3.1)

The AC variation of this signal is known as the interferogram. It is a cosine func-
tion with period determined by the wav enumber of the incoming light. For a
broad-band light source, the measured signal is a superposition of the cosine
functions belonging to each wav enumber. The relation bewteen the interferogram
and the spectrum of the light source is therefore ideally a cosine transform. In
practice, the interferogram is never completely symmetric and it therefore also
contains sine components.

The measured interferograms in this thesis have all been double-sided, that is
symmetrical around the zero pathlength difference point. An example interfero-
gram is shown in Fig. 3.3. They hav e been converted into single-beam intensity
spectra as shown in the flowchart Fig. 3.4. First the mean of the interferogram is
subtracted. Then, the interferogram is apodized by multiplication with a window
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Figure 3.2: Schematic drawing of Fourier transform infrared spectrometer with
corner-cube mirrors. Dashed lines show second input and output. The intensity
of the beams are sketched for a monochromatic light source of unit intensity.

function. This apodization function is zero at the endpoints of the interferogram
and one in the center. It’s purpose is to make the interferogram zero at the ends,
such that discontinuities are avoided. Many different apodization functions
exists.23, 25, 26 They differ in the tradeoff between reduction of sidelobes, and res-
olution of the spectrum. The interferogram is then zero-filled by an integer
power of two if a spectrum with artificial higher resolution is desired.† The inter-
ferogram is then optionally rearranged by splitting it in two halves and exchang-
ing them. This rearrangement is in principle not necessary. It merely shifts the
phase by making the interferogram symmetrical around the first array element.
The interferogram is then Fourier transformed using the relation

Hn =
N−1

k=0
Σ hk e2π ikn/N . (3.1)

† The tails of the double sided interferogram is extended with a number of zero’s
mimicking a spectrum measured with a higher maximum mirror displacement and
therefore a higher spectral resolution. But as the added values are nothing but
zero’s, no additional spectral information is obtained. The result is an interpolation
in the spectral domain under the assumption that no higher resolution components
than those in the measured interferogram are present.26
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Figure 3.3: Central part of interferogram measured at 32 cm−1 resolution through
1 mm of water using a Peltier cooled InAs detector. Short wav elengths has been
removed by a long wav e pass filter with cutoff at 5000 cm−1. The single beam
spectrum resulting from data processing of this interferogram is shown in Fig.
3.5.

In practice this is implemented using the fast Fourier transform (FFT)
algorithm.26, 27 The inverse relation is given by

hk =
1

N

K−1

n=0
Σ Hne−2π ikn/N , (3.2)

where Hn is the complex array containing the Fourier transform of hn This
Fourier transform is a function of wav enumber ν . There is no universal agree-
ment as to the sign in the exponent of the forward and inverse Fourier transform,
nor to the distribution of the normalisation constant 1/N .26 The measured inter-
ferogram is real. Consequently, the values at negative frequencies are the com-
plex conjugates of their positive counterparts. Therefore, time and storage may be
reduced by a factor of two by using a special implementation of the discrete
Fourier transform.27 The phase spectrum Φ(ν ) is then calculated as

Φ(ν ) = atan(Im(ν )/ Re(ν )), (3.3)
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where Re(ν ) and Im(ν ) are the real and imaginary parts of Hn, respectively, with
index n corresponding to ν .

Igram
Subract
Mean

Apodize Zero-fill

Re-Arrange
Fourier

Transform
Phase

Spectrum
Intensity
Spectrum

Store/Read
Phase

Figure 3.4: Flowchart describing the data processing of interferograms. Dashed
boxes are optional.

The calculation takes into account the sign of the nominator and denominator,
thereby mapping the angle correctly onto the full unit circle.† From this phase
spectrum, the intensity spectrum I (ν ) is calculated as

I (ν ) = Re(ν ) cos Φ(ν ) + Im(ν ) sin Φ(ν ). (3.4)

This procedure has two advantages compared to the nearly equivalent calculation
of a power spectrum as

P(ν ) = (Re(ν )2 + Im(ν )2)1/2. (3.5)

In the power spectrum, P(ν ), noise will always give a positive contribution, while
noise in the intensity spectrum, I (ν ), contributes with both positive and negative
values.25 The calculation of the intensity spectrum also makes it possible to sub-
stitute a phase calculated from another interferogram. This is necessary in dual-
beam applications, to be described in chapter 4, where the phase of the dual-
beam spectrum is poorly determined because of high nulling ratio, finite resolu-
tion, and resulting leakage of information between neighboring points in the
spectrum.28 The intensity spectrum resulting from this processing of the interfer-
ogram from figure 3.3 is shown in figure 3.5.

Physically, the phase does not depend on the light intensity entering the interfer-
ometer. The phase is a wav enumber dependent property of the interferometer and

† The standard function atan2(x,y) in C and FORTRAN is designed for this pur-
pose.
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Figure 3.5: Single beam spectrum resulting from data processing of the interfer-
ogram shown in Fig. 3.3.

the electronic circuits in the detector system. The interferometer begins where
the light reaches the beamsplitter and ends at the detector where the light is mea-
sured. By fundamental theorem of Fourier analysis, the phase may be shifted by
a time displacement of the measured signal,26 such that the absolute value also
depends on any rearrangement of the interferogram prior to Fourier transforma-
tion. Figure 3.6 shows the single-beam spectra and the phases calculated from
interferograms measured with a reference blackbody set at temperatures 400 °C
and 900 °C. We see that, apart from noise, the two phase spectra are identical
and the phase does not depend on the intensity distribution. Notably, the differ-
ent intensities of the water absortion bands between 4000 and 3500 cm−1 does not
influence the phase spectra.

Other methods of calculating the intensity spectrum exists of which the Mertz
method, and to a lesser degree the Forman method, has become the standards.29

So standard, in fact, that the effects of phase correction, resolution, apodization
and other parameters are almost always discussed in terms of these methods.28, 30

The Mertz method uses a shorter symmetrical double sided interferogram to cal-
culate a low resolution phase spectrum. The intensity spectrum is then calculated
from Eq. 3.4 with values of the phase that have been obtained by interpolation in
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the low resolution phase spectrum. There are two main advantages to this. Firstly,
the resolution of the interferogram may be increased while storing the same num-
ber of points by measuring an asymmetrical interferogram with a larger maxi-
mum retardation. Secondly, the computational burden is smaller because of the
smaller number of calls to the atan function. Today, howev er, these advantages
are diminished by todays computers. There are disadvantages to the use of these
methods which are caused by the asymmetry of the single-sided interferogram
and the interpolation in the low resolution phase spectrum.28, 30 The procedure
where a full phase correction is used on a double-sided interferogram should pro-
vide the most accurate results25 and is critical in situations where differential
spectra are measured.28 For these reasons, single-beam spectra have been calcu-
lated using full phase correction. The measurement of an asymmetrical interfero-
gram could still be preferable in special applications. One could think of situa-
tions where only a single scan pr. measurement is possible. Measurements at
very high resolution, where mechanical considerations with respect to the mirror
displacement becomes important and the computational burden large would be
another such situation.
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3.3. Advantages over grating instrument

The FT-IR spectrometer has replaced the grating instrument because it possesses
a number of advantages. These advantages have been discussed by Hirschfeld,24

Griffiths and de Haseth23 and others. Here follows a short description of these
advantages and some comments regarding their impact on measurements on
aqueous solutions.

In a traditional grating instrument, each spectral point is measured sequentially.
In contrast, an FT-IR instrument measures all spectral points simultaneously. This
results in an improvement in SNR proportional to √ N where N is the number of
spectral points. This is known as the Fellget advantage. For measurements on
aqueous solutions, the spectral range is usually limited to a narrow region
selected by the chosen pathlength of the transmission cell and the spectral resolu-
tion is chosen to be low because of the broad absorption found in the liquid state.
If we assume a spectral range of 1000 cm−1 with a spectral resolution of 16 cm−1

we have an improvement by roughly a factor of eight compared to a grating
instrument. A grating instrument with a detector array will also measure all spec-
tral points simultaneously and an FT-IR spectrometer will possess no Felgett
advantage over such an instrument.

The absence of a slit in an FT-IR instrument increases it’s light gathering power
compared to a grating instrument. The light gathering power is usually expressed
as the product of the allowed solid angle of the incoming beam and it’s cross sec-
tional area and is known as the troughput Φ. The ratio of throughputs in the FT-
IR and grating case is given by Griffiths and de Haseth as23 as

ΦF

ΦG
=

2π AF faν 2

AGhνmax
, (3.6)

where index F refers to the FT-IR instrument and G to the grating instrument A is
the area of the mirror / grating, f is the focal length of the grating instrument h is
the slit height and a the grating constant. This advantage is seen to be largest at
high wav enumbers, it is commonly known as the Jaquinot advantage. The
Jaquinot advantage is reduced in cases where sensitive cooled detectors are
employed. In these cases, it is commonly necessary to reduce the intensity reach-
ing the detector to avoid saturation.

Wa venumber determination is accurate through the fringe determination of the
HeNe laser. This not only means that high resolution spectroscopy is possible,
but also allows co-addition of spectra such that the signal to noise ratio may be
improved by the square root of the number of scans. This reproducibility of the
wavenumber scale is also important when weak absorption on a large background
is to be detected. This advantage is known as the Connes advantage.
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The resolution of an FT-IR spectrometer depends only on the mirror displace-
ment which may be accurately determined. The larger the displacement the
higher the spectral resolution. This advantage is of less importance in spec-
troscopy of aqueous solutions, where the required spectral resolution is low.

3.4. Limitations of FT-IR spectrometers

The FT-IR spectrometer is an instrument, which is capable of achieving extraor-
dinarily high signal-to-noise ratios. Even so, there are disadvantages to this tech-
nique that become important when the ultimate performance of these instruments
required. An elaborate discussion of instrumental effects in FT-IR spectroscopy
is given by Hirschfeld.24 This includes effects of mirror displacement from sam-
pling points, double modulation of radiation, emission from the detector and
other effects.

Many instrumental effects become serious because the measurement of an
absorbance spectrum with an FT-IR spectrometer is a two stage process.† First a
reference spectrum I0(ν ) is measured and then a sample spectrum I (ν ). The tem-
poral difference between the two measurements means that the instrumental vari-
ations are not necessarily eliminated, and one is left with a signal where one has
payed for stability, by accepting increased noise, without receiving it.‡ Such
instrumental variations may happen on timescales smaller than the time required
for a single scan, such that it is impossible to measure a satisfactory reference.
The co-addition of interferograms to reduce noise also means that the temporal
difference between the measurement of sample and reference increases. Sec-
ondly, the measurement of a small signal riding on top of a large signal is always
undesirable because small changes in the large signal may be comparable to the
small signal one measures. Thirdly, the finite dynamic range of the analog-to-
digital converter means that the digitization of a signal with a large dynamic
range of which the relevant information is stored in only very few bits is undesir-
able. In the case where detector noise is sufficiently low and the intensity reach-
ing the detector sufficiently high, the large dynamic range may even result in a
situation where signal-averaging by co-addition of sequential scans does not
improve signal-to-noise ratio because the noise is smaller than the distance
between two bits on the analog-to-digital converter. In this case one speaks of
digitization noise.23 § In on-line applications, the ideal optical sensor is small

† Grating instruments are usually dual-beam instruments with a chopper that alter-
nates a beam through a sample and reference such that a modulated signal is mea-
sured at the detector. In this fashion, the spectrometer measures the transmittance
of the sample directly.

‡ When analysis is based on single-beam spectra, such variations are not even
sought to be compensated in the measurement process.

§ The application of dual-beam FT-IR spectroscopy attempts to remove these prob-
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with no moving parts, cheap and simple. In contrast, the FT-IR spectrometer is
large, expensive and complicated.

3.5. Sources in IR and NIR

The most commonly used light source used in the mid infrared region is a SiC
globar. This is a rod, heated to a temperature of about 800 °C by a current passing
through it, which emits thermal radiation with a maximum intensity at approxi-
mately 2100 cm−1. In the near infrared region, quartz halogen tungsten filament
lamps, are usually employed. They hav e a temperature of about 2500 °C provid-
ing maximum intensity at 5500 cm−1. The absorption of quartz in the mid
infrared region prevents application of this light source in that spectral region.

3.6. Detectors in IR and NIR

The standard detector in most FT-IR instruments is the deuterated triglycine sul-
phate (DTGS) detector. This is a thermal detector, a so-called pyroelectric
bolometer, that consists of a ferroelectric crystal which has a Curie point close to
room temperature. The crystal therefore exhibits large changes in electrical
polarizability when exposed to modulated radiation. By placing electrodes on
the crystal faces, the crystal acts as a capacitor across which an AC voltage may
be measured. This detector is very linear, stable, and has a wide spectral range
of operation.

Semiconductor based quantum detectors are used when increased sensitivity and
low noise is required. In the mid infrared spectral region, the mercury cadmium
telluride (MCT) detector is almost exclusively used. This detector usually
requires cooling by liquid N2. In the near infrared spectral region InSb and InAS
detectors are employed. These detectors may be liquid N2 or Peltier Cooled.
Compared with the DTGS detector, these detectors have lower noise, higher sen-
sitivity, but a narrower spectral range of operation. The levels of intensity they
may be exposed to is far lower than the ones the DTGS accept. The MCT detec-
tor in particular has a non-linear behavior when exposed to too high levels of
intensity.

The difference in linearity between the mid infrared MCT detector and the near
infrared InSb and InAs detectors may be understood from the structure of these
detectors. These detectors are constructed to be sensitive to different energy lev-
els of radiation. In a semi-conductor structure with a conduction band separated
from a valence band by a band-gap, a current can be measured when free electron
are created in the conduction band by absorption of photons with energies greater

lems related to dynamic rang by a simultaneous measuerent of the difference
between sample and reference. The technique is described in chapter 4.
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than the band-gap. A mid infrared detector has a small band-gap as it is required
to detect radiation with low energies and thermal excitation creates a consider-
able number of electrons in the conduction band, even when the detector is
cooled. The reservoir of electrons that may be excited by the incoming IR radia-
tion is therefore small. This is illustrated in figure 3.7. With too much light inten-
sity reaching the detector, the reservoir is dried out and the detector saturates.

Small
bandgap

Conduction band

Valence band

Zero energy

Many thermal electrons

Small electron reservoir

Radiation excited electrons

Thermally exited electrons

Figure 3.7: Bandgap properties of mid infrared quantum detectors.

A near infrared detector is required to detect much higher energies and, conse-
quently, it has a much larger band-gap. For this reason, thermal excitation does
not create as many electrons in the conduction band. A higher incident flux of
radiation is therefore permissible before saturation sets in. This is illustrated in
figure 3.8. The use of dual-beam techniques where the intensity reaching the
detector is twice as high as in the single-beam case is therefore much more lim-
ited by the MCT detector in the mid infrared region than by the InAs detector in
the near infrared region. A thorough discussion of infrared detectors is given by
Kinch.31

3.7. Infrared windows

The window materials used as in FT-IR spectrometers and sample accessories
must be transparent to infrared radiation. The most common infrared windows
are salts that are hygroscopic and therefore ill suited for use in connection with
aqueous solutions. Most beamsplitters consists of a base of such a material with a
coating and FT-IR spectrometers are therefore either sealed, with a dessicating
material within, or purged with dry air, free of water and carbon dioxide. These
two gasses have intense infrared absorption bands and the purge also has the
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Figure 3.8: Bandgap properties of near infrared quantum detectors.

purpose of reducing the concentration of these two gases. The most commonly
used window material for measurements on aqueous solutions is CaF2 which is
only very weakly dissolved by water and has an index of refraction which is close
to that of water. Another commonly used material is ZnSe which has a higher
index of refraction but is soft. In the near infrared spectral range, quartz and sap-
phire windows may be employed. They hav e the advantage of being hard and
chemically inert. A table of infrared materials is shown in Table 3.1.

Material Spectral range Refractive index Water solubility
cm−1 at 1000 cm−1 g/100g

KBr 48800 − 345 1.52 53.5
NaCl 52600 − 457 1.49 35.7
CaF2 79500 − 1111 1.39 0.0016
ZnSe 15000 − 461 2.4 insol.
Sapphire 40000 − 1608 2.6 insol.
Suprasil 300® 57142 − 2857 2.5 insol.
Diamond 30000 − 30 2.4 insol.

Table 3.1: Properties of infrared window materials. The spectral range is given
for a window thickness of 1 mm, except for Suprasil, where the thickness is
10 mm. Data from Pike Technologies, Madison WI, USA, Catalog 2001.



21

3.8. Sampling techniques

The measurement of an absorption spectrum of an aqueous solution is mainly
carried out using two different sampling techniques, namely through the applica-
tion of a transmission cell or an attenuated total reflection (ATR) cell.32 In this
work, the use of an ATR cell has been limited to preliminary investigations an no
ATR spectrum is presented. Even so, the technique is standard, and preferred by
many other groups, so a description of both techniques is given. The transmision
cell consists of two IR transparent windows between which the aqueous solution
is placed. The light ray of the interferometer then passes through the IR windows
and the aqueous solution before reaching the detector. This is illustrated in figure
3.9.

Light in Light out

Sample

IR windows

Figure 3.9: Schematic drawing of transmission cell.

Transmission cells are well suited for near infrared spectroscopy of aqueous solu-
tions. In this spectral region optimal pathlengths are in the range 0. 5 − 10 mm
and consequently much larger than the wav elength of the light. In the mid
infrared region, the pathlength is in the range 7 − 50µm which is of the same
order of magnitude as the wav elength of the light. This means that multiple
reflection inside the transmission cell may cause fringe effects in the spectrum in
the mid infrared region, but not in the near infrared region.†

The magnitude of this effect increases with the difference between the index of
refraction of the sample and of the window material. For an accurate determina-
tion of the absolute absorption coefficient of water, it is necessary to correct for
the difference in Fresnel reflection at the interfaces in an empty cell and in a
water filled cell because the index of refraction of water is dependent on the
wavenumber. Instead, one may measure a reference spectrum of a water filled
sample, with pathlength δ , and a sample spectrum with a pathlength of d + δ , to

† This effect is normally used to determine the pathlength of a transmission cell.
The pathlength is given by d = (n∆ν )−1 where n is the index of refraction of the
sample (normally air), and ∆ν is the period of the fringe pattern in cm−1.
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obtain the absorbance spectrum of the sample at pathlength d , thereby eliminat-
ing the difference in index of refraction at the interfaces.

Attenuated total reflection is a sampling technique where light passes through a
crystal or an IR optical fiber and is totally internally reflected. The evanescent
wave reaches into the sample and is altered by changes in the absorption and
index of refraction of the sample. This is illustrated in figure 3.10.

Light in

Light out

Evanescent field
Sample

Internal reflection element

Figure 3.10: Schematic drawing of ATR cell.

This allows absorption spectroscopy with penetration depths comparable to the
wavelength of the light. More precisely, the penetration depth, dp, defined as the
depth of 1/e attenuation, is given by23

dp =
λ

2π np(sin2 φ − n2
s /n2

p)
1
2

(3.7)

where λ is the wav elength of the light, np is the index of refraction of the crystal,
ns is the index of refraction of the sample and φ is the angle of incidence. This
technique has become standard in the mid infrared spectral region where the
depth of penetration of a typical ATR cell is close to the optimal. The main
advantages compared to a transmission cell consist in elimination of fringe
effects present in transmission cells with comparable pathlengths and ease of
sample handling. An ATR cell is not recommended in the near infrared region
where it’s depth of penetration is too small to give a reasonable signal from the
analytes. The sensitivity of the ATR technique may be improved by multiple
reflection cells. The main disadvantage of this technique is the vulnerability to
adsorption onto the ATR cell. For comparison with transmission spectra, the
ATR spectra must be corrected for the wav enumber dependent penetration
depth23 and for the the anomalous dispersion of water.33
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4. Dual-beam Fourier transform infrared spectroscopy

The measurement of weak signals on a strong and varying background is gener-
ally considered difficult and the ability of the FT-IR spectrometer to remove a
common background by subtraction of a reference from a sample signal in the
measurement process leaving only their difference has been suggested early by
Fellget.34 Some nine years thereafter applications of this technique were demon-
strated by by Bar-Lev,35 Low and Mark,36 Vanasse,37-39 Griffiths,40 Chan-
drasekhar, Genzel, and Kuhl.41-43 The different variants of this technique are all
known as dual-beam FT-IR spectroscopy. Notably, the application of dual-beam
FT-IR spectroscopy for measurements on biological samples were suggested by
Chandrasekhar, Genzel, and Kuhl as early as 1976.41 This chapter will describe
the principles of dual-beam FT-IR spectroscopy for the two modes of operation
known as single-input-double-output and double-input-single-output. The advan-
tages one seeks to obtain compared to a traditional single-beam mode of opera-
tion and the subtle differences between the two modes of operation are described.
The limitations and difficulties of the dual-beam FT-IR technique are described.
A short list of notable previous applications are given that are followed by a
motivation for applying this technique for measurements of aqueous solutions.

In dual-beam FT-IR spectroscopy, the symmetry of the Michelson interferometer
is taken advantage of to provide either two inputs or two outputs, or both. This is
illustrated in Fig. 4.1. The following presentation closely follows that given by
Chandrasekhar, Genzel, and Kuhl.41 Assume two monochromatic light sources
emitting radiation at wav enumber ν with intensities p1 and p2 placed at input 1
and input 2, respectively. The intensity at at output 1, P1, will then be

P1 = p12RT (1 + cos φ ) (4.1)
+p2[(R + T )2 − 2RT (1 + cos φ ) + 4RT cos Φ cos(φ − Φ)]

+4(p1 p2 RT )
1
2 cos(φ /2) × [R cos(Φ − δ − φ /2) + T cos(Φ + δ − φ /2).

In this expression, φ is the optical phase shift 2πν γ as in section 3.2, Φ is the
phase difference between the reflected and transmitted beams on the beamsplitter,
δ is the phase difference of the two input beams, and R and T are the reflectance
and transmittance coefficients of the beamsplitter. The corresponding expression
for the intensity at output 2, P2, will be similar. It may be obtained by exchang-
ing p1 and p2, and changing the signs of φ and δ in Eq. 4.1. These two expres-
sions may be simpified if we assume that the beamsplitter is ideal such that
R = T = 0. 5 and Φ = π /2. If we further assume that the two inputs are uncorre-
lated, the last term in Eq. 4.1 will be rapidly varying and average to zero. One
then obtains the following expressions for the intensities at the two outputs:

P1 = 0. 5( p1 + p2 + (p1 − p2) cos φ ) (4.2)
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Figure 4.1: Schematic drawing of Fourier transform infrared spectrometer with
corner-cube mirrors. Dashed lines show second input and output. The possibil-
ity of two inputs and two outputs is shown.

and

P2 = 0. 5( p1 + p2 − (p1 − p2) cos φ ). (4.3)

One observes that the sum of the two output intensities is equal to the sum of the
two input intensities and independent of the optical phase shift, φ . If the two
inputs have identical intensity, both outputs will have zero modulation. If the
second source intensity is zero, p2 = 0, Eq. 4.2 reduces to Eq. 3.1 as it should.

4.1. Advantages of dual-beam FT-IR spectscopy

The removal of the background common to the sample and reference forces the
signal of interest to emerge from a flat baseline where it is more easily quantified.
The dynamic range of the signal is reduced and the full range of the analog-to-
digital converter in the spectrometer may be employed to digitize only the signal
of interest, excluding the background.† This prevents the spectrometer from
being limited in performance by digitization noise as described in section 3.4.
Most instrumental variations are common to both inputs and should therefore
cancel in the measurement process. The optical subtraction happens on a per-
point basis in the interferogram with exact synchronicity and is therefore capable
of eliminating variations that takes place on timescales smaller than a single scan.
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4.2. Double-input-single-output mode:

If the two inputs have different intensities, one may measure an interferogram at
one of the two outputs which contains only the difference between the two
inputs. This is essentially the method that has been used in papers I and IV.† In
those papers, light is collected from a single source and two beams are passed
through each their transmission cell before entering the spectrometer through the
input ports. Let Ts and Tr denote the transmittance of the sample and reference
cells, respectively, and let p = p1 = p2 denote the intensity of the common
source. Equation 4.2 is then modified to

P1 = 0. 5p(Tr + Ts) + (Tr − Ts) cos φ . (4.4)

The direct difference between the transmittances of the two cells is measured as
the AC part of Eq. 4.4. This is known as a double-input-single-output configura-
tion.

4.3. Single-input-double-output mode:

If one uses only a single input, p1 and passes the two outputs through a sample
and a reference cell, respectively, before letting them reach a common detector,
one speaks of a single-input-double-output configuration. Denoting the transmit-
tance of the sample and reference, Tr and Ts, respectively, The intensity at the
combined output is

P1+2 = P1Tr + P2Ts = 0. 5p1(Tr + Ts) + (Tr − Ts) cos φ . (4.5)

Again, one measures only the difference in transmittance between the two sam-
ples.

4.4. Differences between the single-input-double-output and the double-
input-single-output configurations.

The expressions Eqs. 4.4 and 4.5 look deceptively alike. There are subtle differ-
ences although both methods are described as dual-beam, optical null, optical
subtraction FT-IR spectroscopy. Both methods have in common, that a DC com-
ponent of the measured intensity at the detector is two times that found in the
normal single-beam mode of operation of an FT-IR spectrometer. This presents
problems with saturation of the normally employed MCT detector in the mid
infrared spectral region.44 In this spectral region, beamsplitter absorption also
limits the degree of opticall nulling that may be obtained.23

In the double-input-single-output mode of operation, the eigenradiation of the
reference and sample is modulated by the interferometer such that sample and

† For obvious reasons, this is also the mode of operation for dual-beam FT-IR
remote sensing applications.
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reference temperature differences are included in the measurement. The addition
of the two beams are simple, because the light in the two beams are uncorrelated,
but the technique requires that light with equal intensity and spectral distribution
is passed through the sample and reference. The alignment and of the optical
components are facilitated by the placement before the interferometer. The use
of two inputs also enable a higher total intensity to be measured compared to the
use of only a single input.

In the single-input-double-output mode of operation, the eigenradiation of the
sample and reference remains unmodulated and contributes only with a DC term
on the detector which is not measured. In this mode of operation the sample and
reference are part of the interferometer and interference problems may arise. The
detector must be sufficiently large to average out interference fringes resulting
from this undesired modulation. Another possibility is to measure the light at the
two outputs with each their detector and add the signals electronically instead.
This procedure reduces the interference problems and minimizes the total inten-
sity reaching a single detector, but is limited by the requirement that the two
detectors must have identical characteristics. In this case one speaks of electronic
subtraction.

4.5. Earlier applications

The applications have been primarily in the mid infrared region for various mea-
surements of weak absorption in a transparent medium with the background to be
eliminated consisting of the source intensity distribution. The early application
of Griffiths, Gomez-Taylor, and Kemeny for the determination of trace compo-
nents in gas chromatography is a good examples of a single-input-double-output
experiment.45, 46 A Later application by Tripp and Hair for the detection of
adsorbed polymer monolayers on mica demonstrates that the double-input-single-
output mode of operation may be used with advantage for samples at room tem-
perature.47, 48 The work by Beduhn and White demonstrating the feasability of
single-input-double-output with electronic subtraction.49 In these cases, The non-
linear behavior of the MCT detector has limited the use of this technique,
because it becomes necessary to reduce the intensity reaching the MCT detector
with corresponding decrease in signal-to-noise ratio as a result. As an example
Tripp and Hair reported a nulling ratio of a factor of 50 that only translated into
an improvement in signal to noise ratio of five because of the non-linear behavior
of the MCT detector.
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4.6. Advantages in the near infrared for measurements on aqoueous solu-
tions

As described in section 3.6, near infrared detectors accepts a higher incident flux
before they saturate. In addition there is no beamsplitter absorption and the
eigenradiation of samples at room temperature is small. The measurement on
aqueous solutions in the near infrared spectral range requires only a low resolu-
tion. The spectral range may be reduced to a narrow range with no loss of infor-
mation because the optical pathlength and the absorption spectrum of water only
allows a high sighnal-to-noise ratio in a narrow region as described in paper II.
The absorption of water also helps to reduce the incident flux on the detector.
The optimal transmission pathlenght is long compared to those required in the
mid infrared region, therefore a couple of transmission cells with equal path-
length is easily constructed. We were curious as to wether these advantages
would result in an improvement when the double-input-single-output mode of
operation were compared with the single-beam mode. Paper I demonstrates, that
one obtains a significant advantage in the combination band 5000 − 4000 cm−1 by
measuring with a dual-beam instrument instead of a single-beam measurement.
Even though the main variations present in both types of measurements, instru-
mental variations are eliminated in the dual-beam measurement.

4.7. Differences in computation

As described in section 3.3 the calculation of a dual-beam spectrum from a mea-
sured dual-beam interferogram requires the use of a single-beam phase spectrum.
Another difference from measurements with a single-beam instrument lies in the
calculation of an absorption spectrum from a sample, I , and a reference I0. As
described in chapter 5, the absorbance, A, is giv en by A = − log10 I /I0. The mea-
sured dual-beam spectrum, D, is the difference between the sample and reference
D = I − I0. Therefore, the absorbance may be written with good precision as
A = (1/ ln 10) × (D/I0). We hav e assumed that D is much smaller than I and used
the Taylor expansion for the log function.
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5. Quantitative analysis

The concepts of quantitative analysis are presented in this chapter. The interest
focuses on the influence of drift and noise as two key factors that determine the
success of any quantitative measurement. The advantage of a full spectral mea-
surement, as in FT-IR spectroscopy, to distinguish between these two quantities
and the possibilities for reducing their impact on quantitative measurements are
discussed.

In quantitative analysis, one traditionally measures the absorbance of a substance
to determine a concentration. The absorbance A(ν ), at a given wav enumber ν , is
given by

A(ν ) = − log10 I (ν )/I0(ν ) (5.1)

where I (ν ) is a measurement of the sample intensity and I0(ν ) is a  measurement
of the reference intensity. The choice of reference depends on the application. In
many cases a reference with no sample present is used. In other cases a reference
is chosen which resembles the sample. This issue is disussed in paper II. Most
grating instruments measure the ratio I (ν )/I0(ν ), known as the transmittance,
directly, but the Fourier transform instrument measures the sample and reference
intensity spectra separately. By taking the ratio of I (ν ) and I0(ν ), one creates a
dimensionless number which ideally eliminates all the dependency on the instru-
ment, including spectral intensity distribution of the source and sensitivity of the
detector. This is on condition that the instrument remains constant between the
measurement of sample and reference. Note, that noise is not eliminated and still
depends on the source and detector. The noise is increased because the relevant
signal is composed of two measurements, each containing noise. The increase in
noise pays for elimination of instrumental effects, including drift.

5.1. Beer’s law

Quantitative analysis is based on Beer’s law, which states that the absorbance of a
substance, at a given wav enumber ν , is proportional to the molar concentration c
of the substance and the pathlength l:

A(ν ) = ε (ν )cl; (5.2)

where ε (ν ), known as the molar absorptivity, is the wav enumber dependent pro-
portionality constant. Beer’s law says that the intensity decays exponentially
with pathlength and with the concentration of the substance.

Chemometric methods to extract the concentration from a measurement where
several components have overlapping signals exists, of which the ones most com-
monly applied will be discussed in chapter 6.
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5.2. Drift, noise, and data pre-treatment

Traditionally drift and influences from instrumental effects have been considered
more problematic than noise. In applications where small signals are to be
detected, and with the now available methods of data analysis, noise may prove
to be more problematic than instrumental effects. If one considers a single point
measurement, at a given wav enumber, noise and drift are indistinguishable. If
one has available a full spectrum, on the other hand, drift and influences of instru-
mental variations may be reduced because they hav e a spectral structure that may
be included in the calibration process. Noise, is impossible to remove from a sin-
gle spectrum because it is uncorrelated from point to point in the spectrum.

Noise may be reduced by averaging a large number of measurements, but the
SNR is proportional to the square root of the number of measurements. This
strongly limits this procedure because the measurement time becomes pro-
hibitively large.50 In practice it turns out that many FT-IR instruments fail to sig-
nal average well beyond a certain point.51 The spectrum may be low-pass filtered,
which does in a sense remove noise. But such a procedure is based on a priori
assumptions about the spectrum, which may not be true, and reduces the spectral
resolution of the data. In addition, it is doubtful that such a smoothing represents
an advantage in a calibration. Smoothing is probably most justified when used as
a graphical technique to guide the eye.27 High-pass filtering, including derivation,
may remove baseline variations, but such a procedure will also remove any
broad-band variation which is part of the signal of interest. In general, any data
pre-treatment which is carried out to remove drift will result in an increased noise
or degraded spectral resolution. Noise therefore ultimately limits the calibration.
For this reason, single-beam spectra (or logarithmized single-beam spectra) are
also used today in quantitative analysis. In this case, variations and drift are
included in the modeling of the data instead of eliminated in the measurement
process.52 The FT-IR instrument has the advantage over the grating instrument in
possessing a superior signal-to-noise ratio. In contrast, the dual-beam infrared
grating instrument is made to eliminate drift by measuring the transmittance
directly. The dual-beam, optical null, FT-IR spectrometer also seeks to eliminate
drift in the measurement process, but does so by measuring a difference between
two samples instead of a ratio. A dimensionless number is therefore not obtained.

The variability of the sample population also influences the accuracy of any cali-
bration. With a large variability in a sample population, many calibration samples
and many independent spectral points will be necessary to maintain stability and
accuracy. The variability of the sample population is usually given as an intrinsic
part of a job, and reducing a population variability then means to exclude certain
classes of samples. This may be necessary, but is seldom desirable.
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6. Chemometric calibration techniques

In this chapter, various methods for analysis of spectroscopic data are described.
These methods have been used in the original scientific papers as available
method without a detailed description. This chapter is thus, on purpose, slightly
more extensive than the others providing details not found in the scientific
papers.

In traditional statistics, a large number of measurements of a single quantity, or
paired quantities, are carried out and used to provide the information of interest.
There does exist a large class of experiments, to which spectroscopic measure-
ments belong, where comparatively few measurements of a large number of inde-
pendent quantities are carried out. To take advantage of such data, a reduction of
dimensionality is necessary. This reduction is made possible by the covariance
between measured variables. Principal component analysis (PCA),53 principal
component regression (PCR), and partial least squares regression (PLSR)54 are
all methods based on such data reduction schemes. They are, today, the most
commonly used data analysis methods used in mid and near infrared spec-
troscopy for quantitative analysis.

6.1. Principal component analysis

Principal component analysis takes a collection of spectra arranged as a matrix,
X, where each row, Xi , is a  spectrum, and decomposes this matrix into a product
of two other matrices, the score matrix, T, and the transpose of the loading
matrix, P, and a matrix, E, such that

X = T ⋅ PT + E. (6.1)

The matrix E is zero if the full dimension of P is retained. The advantages of the
decomposition are obtained only when the dimension of the data is reduced. In
this case, the signal is separated from the noise contained in E as a residual. This
decomposition may be viewed as a transformation to another coordinate system,
where the new axes, Pi , are the spectra of the variations found in the data set.
The new coordinate system is orthonormal and rotated so that the first axis lies in
the centre of the data and minimizes the variance when subtracted from the data.
The second axis lies in the center of this new data set where the first axis has
been subtracted and so on ... † The new set of axes, P, is known as the loadings
and the coordinates in this new coordinate system, Ti , are known as the scores.

The principal component analysis is identical to a singular value decomposition

† This is a sketch of the NIPALS algorithm, which is commonly used to carry out
the PCA.54 This method may be employed with minor modifications if data points
are missing. This is not an issue when measuring infrared spectra with a Fourier
transform spectrometer, howev er.
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(SVD) of the matrix X into the product of an orthonormal matrix, U, a diagonal
matrix, w, and the transpose of an orthonormal square matrix, V:

X = U ⋅ w ⋅ VT (6.2)

In this case, the score matrix, T, is identical to the product of the matrix U and
the diagonal matrix w. Deletion of principal components representing noise, is
then carried out by setting the corresponding small value in the diagonal matrix w
to zero. Double precision versions of routines from Numerical Recipes in C27 for
singular value decomposition has been used in this work to carry out the principal
component analysis. The difference between the two mathematically equivalent
formulations is largely conceptual. PCA stresses the graphical interpretation of
the data in the transformed coordinate system. The scores (coordinates) may be
interpreted to detect outliers and drift and the loadings (axes) may be interpreted
as spectra of the primary variations found in the data. These in turn may be iden-
tified with physical or chemical variations.

It is customary to center the data matrix X by subtracting the mean spectrum x
before carrying out PCA. In some applications the data matrix is scaled by divi-
sion with the standard deviation spectrum, s. We hav e not done that in this work.

As a simple example of this graphical interpretation, PCA on a data matrix con-
sisting of 40 single beam spectra taken with 10 minutes intervals, measured with
an empty beam using an MCT detector were carried out. The first measurement
was carrried out 10 minutes after filling the detector with liquid N2. Figure 6.1
shows the first diagonal values w. The figure reveals two dominating orthogonal
variations in the data set. Figure 6.2 shows the first and second loading vectors
V1 and V2. The first loading vector is seen to model the sensitivity of the detec-
tor which is the broad shape of the baseline Moreover, the contents of H2O and
CO2 in the empty beam are represented by OH bending vibrations at
2000 − 1400 cm−1, OH stretching vibrations at 4000 − 3500 cm−1 and assymetri-
cal stretch vibrations of CO at 2300 cm−1. There is a covariance between the sen-
sitivity of the detector and the contents of water and carbon dioxide in the mea-
sured data set. The two variations are physically independent. There is no causal
connection, yet they both vary monotonically with time. Detector sensitivity
increases monotonically and H2O, and CO2 concentration decrease monotoni-
cally. Both variations converge tow ards som stable value. This means that the
two types of variations may not be completely separated. Figure 6.3 shows a
score plot of the first and second scores, U1 and U2. Each data point represents a
spectrum, such that the essential variation of the spectra are represented by two
variables. One observes that the detector stabilizes within 1 hour as the single-
beam intensity modeled by the first score converges. A much slower convergence
is the gradual removal of H2O and CO2 by the continuous purge of the
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Figure 6.1: Diagonal values from PCA of MCT data.

instrument which is modeled by the second principal component. The third load-
ing vector, which is not shown, contains information related to CO2 alone. The
rest of the loading vectors contains noise and may be disregarded.

6.2. Principal component regression

The orthogonality and reduced dimension of the new coordinate system makes
the scores ideally suited for multiple linear regression (MLR) when one wishes to
use the spectra for calibration with some control value y, typically a concentra-
tion, attached to each measured spectrum. Carrying out multiple linear regres-
sion on the transformed data set emerging from the principal component analysis
is known as principle component regression (PCR).

The result of the PCR calibration is a regression vector, r, which depends on the
number of principal components that has been retained in the data set. This
regression vector, r, is then multiplied as a dot product with a spectrum to predict
a concentration value belonging to the spectrum.

This is equivalent to finding the best solution, in a least squares sense, to the
equation
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X ⋅ r = y, (6.3)

with the regression vector, r, as unknown, by first carrying out the singular value
decomposition of X, then zeroing the appropriate number of eigenvalues wi’s
and then backsubstituting.27 Having carried out the singular value decompositon,
Backsubstitution is a trivial operation because the matrices U and V are orthonor-
mal and have their inverses equal to their transposes. The inverse of the diagonal
matrix w is a diagonal matrix containg the inverses of the elements of w. There-
fore the regreession vector r may be estimated from

r = V ⋅ diag[1/wi] ⋅ (UTy). (6.4)

This is the method that has been employed in this thesis for PCR.

Having determined the regression vector r one may then measure a new set of
spectra Xnew and apply Eq. 6.3 to predict the concentrations ynew of the samples
corresponding to these spectra.
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Figure 6.3: Score plot of MCT data first vs. second score.

6.3. Partial least squares regression

Another calibration technique, known as partial least squares regression54

(PLSR), is also commonly used. This technique takes advantage of the y values
when transforming the data set, such that spectral variations in X that correlates
with the variation y are selected. In this fashion, signals buried below more domi-
nating irrelevant variations are extracted. This frequently yields simpler models
with fewer principal components, now called PLS factors. The price one has to
pay for this advantage is that the axes in the transformed coordinate system are
no longer orthogonal and that the model is more sensitive to over-fitting.54, 55 As
with PCR, PLSR results in a regression vector r which is multiplied with a spec-
trum as a dot product to obtain an estimate of the concentration value correspond-
ing to the measured spectrum. As a general idea, it is a useful check of the cali-
bration process to use both these methods to construct the regression vector and
compare the obtained results. Typically, differences between regression vectors
obtained by the two methods is a sign that something unhealthy is going on.
Keeping too many components leads to models where spurious correlations cause
poor prediction of concentrations belonging to spectra not included in the calibra-
tion model. Principal component regression has generally been favored by the
author because of the neutral behavior with regard to concentration values and
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lack of tendency to over-fit compared to PLSR. For most of the experiments
upon which this thesis is based, sample variability is small and the difference
between the two methods of calibration is small. The advantages of PLSR does
not then emerge, when compared with PCR on the data from these experiments.
Even so, both methods of calibration have been applied and results compared,
choosing the optimal calibration model as the best of both methods.

6.4. Effect of over-fitting on the regression vector

It is instructive to look at the way the regression vector changes as more and
more principal components are included in the model. Typically, the regression
vector begins with a broad shape which does not resemble the spectral shape of
the control variable it should predict. As more principal components are added,
the regression vector resembles the spectral shape of the pure control variable. If
interferences are present, the regression vector is then given a lower weight in
those spectral regions where the interferences reduce the correlation between the
control variable and the data or it is adjusted to compensate for the change caused
by the interference. When over-fitting takes place, the regression vector tends to
weigh the strongest peak of the control variable and to oscillate in such a way as
to average out the spectral values found elsewhere in the spectrum. The multi-
variate nature of the calibration is reduced and one is left with essentially an uni-
variate model which is much more sensitive to changes in the spectrum that has
not been included in the calibration. This is exemplified by the regression vectors
for predicting urea concentrations from single-beam spectra presented in Paper I,
Fig. 10. By retaining more components, the PLSR calibration will give increas-
ingly accurate prediction of the data upon which it is built. Application of the
model to predict concentrations of an independent data set will then result in a
large error, often manifested as a bias. This error is caused by a change in spec-
tral structure in the new data set combined with the rapid oscillation and univari-
ate nature of the over-fitted regression vector.

6.5. Influence of signal-to noise ratio on the predictive ability of calibration
models.

Given a very accurate regression vector, r, from a calibration model based on a
large number of samples and a single spectrum from a sample we wish to esti-
mate the concentration of that sample. One may then show, with a simple argu-
ment given in paper II, that the uncertainty in the determination of the concentra-
tion is proportional to the square root of the number of independent spectral
points containing information that correlates with the concentration and inversely
proportional to the noise level of these spectral points. The noise level is there-
fore a stronger factor than the number of independent spectral points, when one
wishes to optimize the predictive ability of a model. The number of independent
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spectral points is important in the sense that it determines how many independent
variations the model can handle and therefore compensate for spectral interfer-
ences.

6.6. Validation of calibration models

Clearly, the construction of a calibration model has as its object to predict the
concentration of new samples from their spectra. The ability to do so should be
verified by testing the calibration model on an independently measured data set.

Testing is frequently done by splitting a measured data set in two nearly equal
subsets, constructing the model from one of the two subsets, and predicting the
concentrations of the other. If the data set is split in two at random, such that
they are intertwined in time, the model will in principle only interpolate when
tested on the other part of the data set. This is also the case for cross-validation
schemes where the model is constructed repeatedly from parts of the data and
tested on the remaining parts. These are the predominant validation methods
found in the current literature.

Successful testing of a calibration model is more impressive when the test set is
measured at a separate later time, possibly by another person, and even better on
a different instrument. In the latter case one speaks of transfer of calibration. If
transfer of calibration is possible, the calibration becomes commercially interest-
ing, provided there is a demand for measurements of the control variable,
because calibration is an expensive procedure to carry out. This topic currently
receives considerable attention.56 One method is based on calibration on a refer-
ence instrument. To make a transfer of calibration possible, the spectrum of a
standard sample is measured on this reference instrument. By measuring the
spectrum of the standard sample on other instruments and adjusting this spectrum
in software to match the one measured on the reference instrument, sufficient
similarity of the spectra are obtained to make the transfer of calibration possible.

The calibrations presented in this thesis have consistently been validated from
completely independent test sets measured at least one day later than the calibra-
tion set.

6.7. Validation measures

The common method of quantifying the quality of the predicted concentrations
from a data set is by calculation of the root-mean-square error of prediction,
RMSEP, giv en as
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RMSEP = 
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(6.5)

where n is the number of samples y are the predicted concentrations and ŷ are
the corresponding reference values. The same formula may be used to estimate
the calibration models internal consistency by applying it to the data upon which
it is built. In that case one speaks of the root-mean-square error of calibration,
RMSEC. One may further distinguish between systematic errors, most com-
monly manifested as a bias, and statistical errors. The presence of a bias indicates
problems with drift or diffent types of samples in calibration and test set,
whereas statistical errors result from noise.

6.8. Chemometry and instrument configuration.

Noise in a given spectral region destroys the possible correlation with a variation
in the y vector. Therefore PCR and PLSR will create regression vectors that give
a high weight to spectral regions with low noise if it contains a correlation with
the y vector. Paper II demonstrates that the noise level changes strongly with
wavenumber for a given choice of pathlength when measurements of aqueous
solutions are carried out. Therefore, one may predict in advance, solely from the
absorption spectrum of the samples, the spectral regions that will be selected by
the regression vector. This was a major motivation for paper II. It is commonly
assumed in chemometric analysis, that the noise level in spectral data are roughly
identical across a spectrum. Consequently, the results of the analysis are inter-
preted as intrinsic properties of the samples and not as properties of the instru-
mental configuration. For chemometric analysis of aqueous solutions, this com-
mon assumption does not hold. The noise level depends very strongly on the
choice of transmission pathlength, such that the results of the chemometric analy-
sis will be different if this pathlength is changed. In this case it will be necessary
to compare the results of the chemometric analysis with the noise levels in the
spectra to obtain the correct information of the intrinsic properties of the sample.
As pointed out in paper II, the chosen pathlength selects a narrow spectral region
where the SNR is optimized. One may therefore profitably optimize this spectral
region by filtering out light in the other spectral regions and maximize the inten-
sity in the chosen region. If information in different spectral regions are required,
and it is possible to carry out more than one measurement, then one should do so
with different choices of pathlength. Interestingly, Hirschfeld has suggested the
use of a stepped transmission cell to improve the dynamic range of transmission
measurements as early as 1978.57 The author has seen no other publications
where this technique has been applied.
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7. The near and mid infrared absorption spectrum of water

Passing from a description of the measurement and data analysis techniques
employed in this work, we will now dev ote our attention to the properties of the
measured samples and their influence on possible applications. This thesis is
concerned with measurements of trace components in aqueous solutions. The
near and mid infrared spectra of such solutions are dominated by the absorption
spectrum of water which is described in this chapter. Much information concern-
ing the fysics and structure of water and aqueous solution is contained in the five
volume treatise on water by Franks1, 58-61

Water, H2O, in the liquid state has an absorption spectrum as shown in Fig. 7.1.
The data has been taken from paper III and has been measured at 37 °C. The
most recent compilation of the absorption spectrum of water at 25 °C is given by
Bertie and Lan.62 The strongest absorption bands are the OH stretch band ν1,3

found betweeen 3800 and 3000 cm−1 and the OH bend band, ν2, at 1644 cm−1.
At 800 to 500 cm−1 one finds a broad strong absorption band caused by collective
motion of water molecules, the so-called libration band νL. These three bands
are not resolved in Fig. 7.1. A combination band ν2 + νL is found at 2100 cm−1

and a combination band ν1,3 + ν2 is found at 5160 cm−1. Overtone bands are
found at approximately 6900 cm−1. The major absorption bands are listed in
Table 7.1.

Wa venumber / cm−1 Vibration mode

500-800 Libration, broad
1644 H-O-H bend
2128 H-O-H bend + libration
3250 Fermi enhanced overtone of H-O-H bend
3450 O-H symmetric stretch
3600 O-H asymmetric stretch
5160 H-O-H bend + (a)symmetric O-H stretch
7050 O-H stretch overtone and combination

Table 7.1: Absorption bands of water as listed by Venyaminov and
Prendergast.63

Signals from trace components are superposed on this absorption spectrum, and
an absorption spectrum of an aqueous solution containing any trace component in
a clinically relevant concentration will be indistinguishable by eye from the
absorption spectrum of water shown in Fig. 7.1. Information about the structure
of liquid water may be extracted from the water absorption spectrum and from
it’s dependency on temperature. For this purpose, interest focuses on the main
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Figure 7.1: Molar absorptivity of water at 37 °C. Data has been taken from paper
III.

absorption bands of water.1, 62, 64, 65 The addition of salts,66 acids and alkalies67

are also known to influence the absorption properties of water. For the purpose
of quantifying trace components in aqueous solutions, interest focuses on spectral
regions where the influence from the water absorption is minimal and reasonable
pathlengths may be employed. Paper III contributes with accurate tabulated data
of the temperature variation of the absorption spectrum of water in the mid and
near infrared spectral regions. The paper further contains a discussion of the
influence of these variations on practical measurements of trace components in
the mid and near infrared spectral regions while Paper II contributes to an
improved understanding of the influence of the water absorption spectrum when
spectrometers are configured for trace component detection.
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8. Trace component quantification in aqueous solutions

This chapter provides a brief description of the published results, regarding the
quantification of trace components in aqueous solutions, that have influenced the
work presented in this thesis. These works have been focused on clinical applica-
tions. This could be regarded as a much to narrow focus, but most of the clinical
applications require measurements of very low concentrations of molecules in
very complex liquids. Moreover, the methods claimed to be successful are
required to pass strict tests if anyone are to invest in their development into a
commercial product as the consequences of instrument failure may have sev ere
consequences. The most studied biological aqueous solutions of clinical interest
are blood, blood serum. urine, and recently, spent dialysate. In addition amniotic
fluid, and oral mucosa have been studied.8, 68 A comprehensive review of the near
and mid infrared applications of near and mid infrared spectroscopy with a large
section devoted to measurements on biological fluids is given by Heise.69 Vonach
and Kellner have analyzed whole blood for glucose in the mid infrared region
employing a transmission cell. They achieved standard errors of prediction of
13. 1 mg/dl.13 Heise and co-workers have slightly lower standard errors of predi-
cion for glucose, 9. 8 mg/dl using an ATR micro-Circle cell.70 Similar results are
obtained with the same technique by Haaland and co-workers.9 Heise and co-
workers have also measured protein, cholesterol and urea in whole blood.69 The
concentrations of urea, creatinine, sulphate, and phosphate has been determined
in urine by the same authors.70 standard error of prediction for urea was 13 mM.
A slightly higher standard error of prediction has been obtained by Shaw,
Kotowich, and Mantsch by near-infrared transmission spectroscopy, who also
determined creatinine and protein.71

Arnold, Small and co-workers have concentrated their efforts in the combination
band region, 4000 − 5000 cm−1. They hav e demonstrated this spectral region to
be well suited for the determination of glucose, urea and other components in
different fluids including blood serum and dialysate.72, 73 In studying the blood
serum, the standard error of prediction for glucose was 23 mg/dl. These author
have carried out extensive inv estigations based on model systems with syntheti-
cally prepared samples to develop calibrations that are insensitive to temperature
variations,12 or are based on single-beam spectra.52 The same authors have inv es-
tigated the possible use of the 6500 − 5500 cm−1 spectral region, containing over-
tone bands, for the determination of glucose, urea and other components.73, 74

The primary motivation for investigating the overtone band region is found in the
weak absorption of water that allows deeper penetration of light. This is impor-
tant in non-invasive measurements for biological purposes. The main example is
the, yet to come, non-invasive glucose sensor for diabetic patients. Unfortunately,
the broad and weak nature of the overtone bands found in this spectral region
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makes it much less suited than the combination band region.

Commercial systems exist for measurement of trace components in milk and
wine using mid infrared transmission spectroscopy.75 The high concentrations of
glucose, fructose and lactose in sugar cane juice and fruit juices may be deter-
mined with both mid and near infrared transmission spectroscopy.76, 77

Three of the papers contained in this thesis contributes to this field. Paper I
demonstrates measurements of urea and glucose in aqueous solutions in this
combination band 5000 − 4000 cm−1 spectral region with a dual-beam instru-
ment. Paper IV presents measurements with a similar dual-beam instrument in
the same spectral region for the determination of urea in spent dialysate. Paper V
presents measurements of urea, glucose and phosphate in spent dialysate by mid
infrared transmission spectroscopy in the 100 − 1500 cm−1 spectral region.
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9. Haemodialysis treatment

This chapter gives a brief description of the causes, the consequenses and the
treatment of chronical renal failure. The correct treatment is currently difficult to
determine and the monitoring of trace components by FT-IR spectroscopy is a
possible diagnostic tool for that purpose. The present description has been based
mainly on the book edited by Eidemark and Bro.78

There are about 4000 patients with chronical insufficent renal function in Den-
mark, which has a population of approximately 6 million. Of these, approxi-
mately 1600 are subject to haemodialysis treatment. A simple scaling of these
figures to a global population of 6 × 109 yields that approximately 4 million peo-
ple suffers from chronical renal failure. This estimate is probably to high. Renal
failure is mainly a result of a number of diseases that are more prevalent in older
patients. It may be more accurate to state, that 0.07% of the population of the
western world suffers from chronical renal failure. In Denmark, 20% of the
patients with renal failure have diabetes. Vascular diseases are responsible for
11% of the cases. Another 26% of the cases are caused by Pyelonephritis and
Glomerulonephritis, which are inflammatory disesases. Renal failure results in
an accumulation of end stage products of the metabolic processes taking place in
the body. Metabolic acidosis, overhydration hyperphospataemiea, hyperkalaemia
and hypertension arise. Arterial hypertension is also a common cause of renal
failure. The symptoms of renal failure are few. The most common symptom is
fatigue. In more severe cases, anaemia, loss of appetite, dry skin, and paresthesia
occur. Nearly all organs are influenced by an uremic condition, including the
immune defence system, such that a patient with renal failure has less resistance
against infections. With no treatment, complete renal failure is lethal.

Patients with renal failure are subject to haemodialysis treatment. In this treat-
ment, the removal of toxins from the blood are carried out by an artificial kidney.
Blood from the patient is pumped out of the patient, through a filter, where a
porous membrane separates it from a stream of dialysate, and again into the
patient. The difference in osmotic pressure across the porous membrane results in
a diffusion of toxic components from the blood to the dialysate. A pressure gra-
dient across the membrane is used to remove exess liquid from the patient to
maintain his dry weight. In this way, the function of the kidneys are mimicked
by the dialysis station. The pore size of the porous membrane determines the
size of the molecules that may be removed. Numerous small and medium size
molecules are removed by this process. Which of these that are toxic is under
much debate. The rate of removal depends on the size of the molecule, the filter
pore size, and a number of physiological factors. Some molecules are mainly
extracellular and some are intracellular. Their removal is then also determined by
their transport properties from and to the cells.
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The efficiency of the dialysis depends on a number of parameters, such as filter
type, blood flow, pressure gradient, and quality of the vascular access. A number
of these parameters is individually determined for each patient. The treatment
duration is long and has to be undertaken regularly. Patients are typically treated
three to four hours three days a week. The correct dialysis dose is critical for the
patient and monitoring the dialysis dose is therefore important. Underdialyzing a
patient has severe health consequences. The current estimate of dialysis dose is
based on the removal of urea. It is uncertain whether urea is toxic in itself, but it
has been shown, that serum urea concentration correlates with symptoms and
signs of renal failure. Urea also provides information about the patients nitrogen
balance. It is the end-product of the protein breakdown process, and is directly
related to the protein catabolic rate.79 The dialysis dose is estimated from the
dimensionless expression Kt/V where K is the dialyzer urea clearance, t is the
treatment time and V is the urea distribution volume of the patient. This figure is
required to be above 1.2 when three weekly treatments are carried out. The Kt/V
value is usually estimated by the Daugirdas formula

Kt/V = − ln(R − 0. 008t) + (4 − 3. 5R)U /W , (9.1)

where t is the treament time in hours, R is the ratio of urea concentration in blood
samples taken pre- and post- treatment, U is the ultrafiltration in L, and W is the
patients weight in kg after treatment. A rough estimate is given by the formula

Kt/V = 0. 093Kt/W , (9.2)

where K is the in-vitro clearance of the filter, at a giv en blood flow, in ml/min.
These estimates are neccesarily based on assumptions of a haemodialysis treat-
ment that are following a well defined pattern. Even in patients that are in stable
condition, these estimates may vary with 10-20%. Moreover, the estimate from
the Daugirdas formula is made post-treatment and adjustment of treatment is usu-
ally not carried out on the basis of a single estimate of Kt/V . Since blood samples
are taken monthly, this means that it may be two months before a needed adjust-
ment is carried out. Another estimate of dialysate dose is the urea reduction ratio
(URR),

URR = (1 − R), (9.3)

where R is the ratio of urea concentrations in blood samples taken pre- and post-
treatment as above. This ratio should be above 65% with three weekly treatments.

The continuous measurement of urea removal during haemodialysis treatment
will be a useful diagnostic tool which may be used to control and optimize the
treatment. In paper V, dual-beam FT-IR spectroscopy is used to carry out such an
on-line monitoring. Other efforts to monitor urea concentrations in spent
dialysate by optical methods include the works by Arnold, Eddy, Flannigan and
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Olesberger,73, 80 who also work with FT-IR spectroscopy in the spectral region
5000 − 4000 cm−1. A Ph.D dissertation81 presents a method based on differential
measurements at wav elengths 1485, and 1393 nm. Non-optical methods for the
on-line monitoring of urea concentrations in spent dialysate exists. They are
based on urease chemistry, or conductivity measurements caused by changes in
ionic concentration in the dialysate. They are therefore either requiring reagents,
or monitoring a secondary effect assumed to correlate with the urea concentra-
tion. An optical method would possess strong advantages over these methods in
speed and accuracy. As mentioned, urea is only a secondary indicator of toxicity
as it is not itself toxic. High concentrations of phosphate are known to be toxic,
however. Hyperphosphateamia is linked to hyperparathyroidism, calcification,
hypertension, and left ventricular hypertrophy.82 A call for continuous monitoring
of phosphate removal has recently been made.82 Paper IV demonstrates, that
phosphate may be measured with mid infrared spectroscopy together with urea
and glucose. It is therefore possible to monitor these three components on-line
with mid infrared transmission spectroscopy.
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Summary of papers

Paper I presents measurements with a dual-beam, optical null, FT-IR instrument,
also capable of measuring traditional single-beam spectra, for the quantification
of urea and glucose in the near infrared spectral region 5000 − 4000 cm−1. The
results are compared with traditional single-beam measurements. The compari-
son shows that the dual-beam technique eliminates instrument variations and is
capable of providing data that may be modeled with fewer factors yielding lower
errors of prediction and better stability.

Paper II presents an analysis of noise levels in measurements of spectra of pure
water and aqueous solutions at different transmission cell pathlengths. An analyt-
ical model that predicts the optimal pathlength for near infrared transmission
measurements of aqueous solutions explains the results. The paper emphasizes
that transmission cell pathlength should be chosen from the absorption properties
of the solvent, and that it is favorable to increase pathlength when the detector
would otherwise saturate. Apparent discrepancies found in the literature are
explained by these results.

Paper III presents accurate measurements of the temperature variation of the
absorption spectrum of water in the mid and near infrared regions. The mea-
sured molar absorptivities of water are compared to existing values found in the
literature and tabulated. The temperatures are restricted to the physiologically
relevant range from 30 to 42 °C. The fundamental stretching and bending bands
of water are excluded. The effect of temperature on aqueous glucose solutions in
the two spectral regions is also measured. The practical consequences of temper-
ature variations and matrix effects in the two spectral regions, when trace compo-
nents must be quantified, are discussed.

Paper IV presents on-line measurements of urea concentration in dialysate dur-
ing treatment with the dual-beam, optical null, instrumentation presented in paper
I. A simple calibration model based on synthetically prepared dialysate samples
is used to predict the urea concentrations. The dual-beam instrument is demon-
strated to provide accurate mesurements over a period of one month.

Paper V presents measurements of spent dialysate in the mid infrared spectral
region for the simultaneous quantification of urea, glucose, and phosphate. The
accuracy of the predicted concentrations are found to be comparable with that of
the reference method for each of the three components.

Contributions to the papers by the author:

All work were carried out by the author with the following exceptions: Glucose
measurements in paper I were carried out by first year students from Roskilde
University as acknowledged in that paper. In paper IV and V, clinical chemical
analysis of dialysate samples were carried out by the Clinical Chemistry
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Department at the Copenhagen University Hospital. In paper V part of the mea-
surements were carried out by T. Begovic of Risø National Laboratory. S. D.
Ladefoged of the Nephrological Department, Copenhagen University Hospital
bore the responsibility for the care and treatment of the patients involved in
papers IV and V and contributed to the discussions of the clinical implications of
analysis of dialysate. The manuscripts were written by the author with assistance
from the co-authors. The author has been corresponding author of all the papers;
any fault contained therein is on his head.
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