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Abstract: In the recent years, there has been an increase in applications
of non-contact diffusion optical tomography. Especially when the objective
is the recovery of fluorescence targets. The non-contact acquisition systems
with the use of a CCD-camera produce much denser sampled boundary data
sets than fibre-based systems. When model-based reconstruction methods
are used, that rely on the inversion of a derivative operator, the large number
of measurements poses a challenge since the explicit formulation and
storage of the Jacobian matrix could be in general not feasible. This prob-
lem is aggravated further in applications, where measurements at multiple
wavelengths are used. We present a matrix-free model-basedreconstruction
method, that addresses the problems of large data sets and reduces the
computational cost and memory requirements for the reconstruction. The
idea behind the matrix-free method is that information about the Jacobian
matrix could be available through matrix times vector products so that
the creation and storage of big matrices can be avoided. We tested the
method for multiple wavelength fluorescence tomography with simulated
and experimental data from phantom experiments, and we found substantial
benefits in computational times and memory requirements.
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1. Introduction

In the last few years fluorescence imaging has become an important tool with many biological
and medical applications. Tomographic approaches have been utilized to image novel fluores-
cent agents with functional and molecular specificity through several millimeters to centimeters
of tissue in vivo [1].

Recently developed systems [2, 3] employ non contact detection schemes in order to re-
trieve the fluorescence measurements. In these systems, thedetection of transilluminated light
is performed by an optical system that projects the surface of the medium onto a CCD camera
producing a large amount of measurement from the pixels of the CCD sensor. Provided that the
signal-to-noise ratio is good enough, a larger dataset can provide an improved solution to the
inverse problem of finding the fluorescent agent inside a scattering medium. Firstly, the spatial
resolution of the reconstruction can be increased using a larger amount of feasible measure-
ments extracted from a large field-of-view [4]. Secondly, the higher information content reduces
the illposedness of the problem [5]. Moreover, the use of spectral filters in front of the camera
provide multispectral datasets. In the case of multispectral bioluminescence tomography it has
been reported that increasing the number of spectral bands renders improved accuracy of the
reconstruction results [6, 7, 17]. The use of multispectralreconstructions has also the poten-
tial to increase the fluorescent agent contrast by unmixing the fluorochrome signal from the
autofluorescence signal [8]. All of the above aspects contribute to very large datasets. In or-
der to solve the inverse tomographic problem the requirements on the computational hardware
become immense. In the most common reconstruction schemes the system Jacobian is built
and stored in the computer memory. The size of the Jacobian matrix depends on the number
of measurements acquired and the resolution of the geometryused for the numerical solution.
Practically this imposes a limit for the maximum size of the Jacobian depending on the amount
of computer memory that is available. The problem of large datasets has been investigated
for the diffuse optical tomography case using an approach based on the analytical solution to
the diffusion equation by Wang et. al. [9]. They report on theability to reconstruct absorption
heterogeneities using a number of source-detector pairs inthe order of 108.

The approach presented in this report is based on a formulation of the diffusion approxima-
tion for the fluorescence case and uses a matrix free formulation. Hence, the explicit calculation
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and storage of the Jacobian is avoided by replacing it by a vector times matrix operator and a
vector times adjoint matrix operator. The method is demonstrated for the reconstruction of flu-
orescence targets embedded inside scattering medium usingsimulations and experimental data
acquired using a multispectral scheme. We show that the method is beneficial for reconstruc-
tions of fluorescence targets using large datasets and multiple wavelengths, since it decreases
the computational cost and memory requirements in comparison to the traditional Jacobian
methods. Also, the matrix free formulation has the propertyof requiring equal computer power
independent on the number of detectors used, thus making it ideal for imaging detectors.

This paper is organized as follows. In section 2 we describe the problem using a set of two
paired diffusion equations for the excitation and the fluorescence wavelength, and construct
the derivative operators. Section 3 defines the reconstruction as an optimization problem and
section 4 gives an insight to the scalings that were introduced to improve the convergence of the
problem. Section 5 presents the matrix-free approach and deals with the implementation issues.
We use multiple wavelengths to recover two fluorochromes with different spectral response
using numerical simulations in subsection 7.1 and phantom experimental data in 7.2.

2. Formulation of the problem

In multispectral fluorescence reconstruction the fluorochrome concentration distributions of
multiple fluorochromes with distinct quantum yield spectraare reconstructed simultaneously
from measurements at multiple wavelengths. In analogy to the absorption coefficient [10], we
define a wavelength-dependentfluorescence yield coefficient hin a domainΩ:

h(r ,λ ) = ∑
i

ηi(λ )ci(r), r ∈ Ω (1)

whereηi(λ ) = εiγi(λ ) is the product of the quantum yieldγi(λ ) and the extinction coefficientεi

for fluorochromei at wavelengthλ , andci(r) is the concentration distribution of fluorochrome
i.

The forward model for the continuous-wave fluorescence tomography problem is given by
the coupled diffusion equations at the excitation and emission wavelengthsλe andλ f , respec-
tively:

(−∇D(r ,λe)∇+ µa(r ,λe))U (e)(r) = q(r) (2)
(

−∇D(r ,λ f )∇+ µa(r ,λ f )
)

U ( f )(r) = U (e)(r)h(r ,λ f ), (3)

with Robin boundary condition at both wavelengths, [11],

U(ξ )+2ζD(ξ ,λ )
∂U (e/ f )(ξ )

∂n
= 0, ξ ∈ ∂Ω (4)

whereD and µa are the wavelength-dependent diffusion and absorption coefficients, q is a
boundary source at the excitation wavelength,ζ is a boundary term incorporating the refractive
index mismatch at the surface of the medium,n is the outward surface normal atξ , andU (e)

andU ( f ) are the photon density fields at the excitation and emission wavelength, respectively.
The contribution ofh to the absorption atλe is here considered negligible.

The exitance at boundary∂Ω for both wavelengths is given by the boundary operator

y(ξ ) = −D(ξ ,λ )
∂U(ξ )

∂n
=

1
2ζ

U(ξ ) ξ ∈ ∂Ω (5)

The exitance distribution on the surface is sampled with an array of detectors (e.g. a CCD

camera), providing a discrete set of measurementsg(e)
d andg( f )

d at both wavelengths, such that

g(e/ f )
d = M

[

y(e/ f )
]

:=
∫

∂Ω
y(e/ f )(ξ )wd(ξ )dξ (6)
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wherewd is the sensitivity profile of detectord on the boundary.
Assuming that the optical parametersD(r ,λ ) and µa(r ,λ ) are known, the reconstruction

problem consists in finding the fluorochrome concentrationsci(r). First consider the problem
of reconstructingh. Eq. (2-6) define the forward problem which maps distribution h(r ,λ f ) to

fluorescence datag( f )
d :

g( f ) = F(h) (7)

To solve Eq. (2) and (3), we use a finite element model. ParametersD, µa andh are expressed
as finite-dimensional vectorsD, µa, h ∈ R

P whose elements are the coefficients of a basis
expansion

D(r) ≈
P

∑
k=1

Dkbk(r), µa(r) ≈
P

∑
k=1

µkbk(r), h(r) ≈
P

∑
k=1

hkbk(r) (8)

with basis functionsB = {bk(r),k = 1. . .P}. The fieldsU are expanded in the basis of a finite
element methods (FEM) :

U(r) ≈
N

∑
ℓ=1

Uℓvk(r) (9)

hence the diffusion equation can be written as a linear system

K(D,µ)U = Q (10)

whereK ∈ R
N×N is a system matrix assembled from element contributions that depend on the

parameter distributions, andU is the vector of basis coefficients representing the photon density
distribution in basis expansionV = {vℓ(r), ℓ = 1. . .N}. The forward model in the discrete
setting consists of solving

KλeU
(e) = Q, (11)

Kλ f
U( f ) = h⊙U(e), (12)

with Kλ f
= K[D(λ f ),µa(λ f )], Kλe = K[D(λe),µa(λe)] and⊙ representing element multipli-

cation. Together with the boundary operator, the forward model can now be expressed in the
linear form

g( f )
Q = FQ(h) = A

(h)
Q h := M

[

K
−1
λ f

hK
−1
λe

Q
]

(13)

whereA
(h) is the discrete matrix representation of the forward operator. Since the problem is

linear, the Jacobian of the forward operator is the same in matrix representation. Examination
of the expression in Eq. (13) indicates that the Jacobian canbe constructed using the adjoint
formulation

J(h)
(sd),k = U (e)

s,k U ( f )+
d,k (14)

where(sd) denotes a row index constructed from an ordering of source indexs and measure-
ment indexd, and

KλeU
(e)
s = Qs, (15)

Kλ f
U( f )+

d = Q+
d , (16)

are the solutions of the direct and adjoint problems.
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3. Inverse problem

In general we pose the inverse problem as an optimisation problem

x̂ = argmin
x

[

Φ(x) :=
1
2
||g(f)

meas−F(x)||2 +αΨ(x)

]

(17)

with regularisation termΨ and hyperparameterα. SinceF(x) = Ax is linear, an iterative solu-
tion to Eq. (17) is obtained for example by the damped Gauss-Newton scheme :

(

A
T
A+αΨ′′(x(k))

)

xδ = A
T(g(f)

meas−Ax(k))−αΨ′(x(k))

τk = argmin
τ

Φ(x(k) + τxδ )

x(k+1) = x(k) + τkx
δ (18)

whereτ denotes the step length. If the regularisation is quadratic, Ψ(x) = 1
2||Lx||2, we have the

direct reconstruction formula

(AT
A+αL

T
L)x̂ = A

Tg(f)
meas (19)

whereL is for example the Cholesky factorisation of a quadratic Markov Random field. In the
results presented in this paper, we consider only the simplestzero-order Tikhonovregularisation
L = I.

3.1. Multiple monochromatic reconstruction

The standard way of recovering the fluorochrome concentrations is to takex to be the distribu-
tions ofh(λ ) at the individual fluorescence measurement wavelengthsλℓ using

ĥ(λℓ) = arg min
h(λℓ)

1
2
||g(f)

meas(λℓ)−A(λℓ)h||
2 +αΨ(h(λℓ)) (20)

followed by solving

[η ]ck = h(λ ) ≡











η1(λ1) η2(λ1) · · · ηn(λ1)
η1(λ2) η2(λ2) · · · ηn(λ2)

...
...

. . .
...

η1(λn) η2(λn) · · · ηn(λn)





















c1,k

c2,k
...

cn,k











=











hk(λ1)
hk(λ2)

...
hk(λn)











(21)

for each basis coefficientk, where it is assumed that the number of wavelengths is greater than
or equal to the number of recovered fluorochromes.

3.2. Multispectral reconstruction

In the multispectral problem, instead of reconstructingh, we want to reconstruct the distribu-
tionsx = {c1,c2, . . . ,cN} of multiple fluorochromescl simultaneously from data

g( f ) =
{

g( f1),g( f2), . . . ,g( fm)
}

(22)

at multiple wavelengthsλ f . From Eq. (1) we have by chain rule

A
(cl ,λ ) =

{

∂Fi j (c,λ )

∂cl ,k

∂cl ,k

∂hk(λ )

}

= A
(h)ηl (λ ) (23)
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The complete Jacobian of the problem can then be assembled from blocks for the different
wavelengths and chromophores:

A
(c) = diag

[

A
(h(λ1)),A(h(λ2)), . . .A(h(λm))

]

⊗ [η ]

=











A
(h(λ1))η1(λ1) A

(h(λ1))η2(λ1) · · · A
(h(λ1))ηn(λ1)

A
(h(λ2))η1(λ2) A

(h(λ2))η2(λ2) · · · A
(h(λ2))ηn(λ2)

...
...

. . .
...

A
(h(λm))η1(λm) A

(h(λm))η2(λm) · · · A
(h(λm))ηn(λm)











(24)

where⊗ denotes the tensor product.

4. Data scalings

Due to uncertainties in laser power, detector gain, and losses we cannot expect the forward
model to be compatible with the measured data. To avoid problems due to the model mismatch,
we employ data normalization by making use of the available excitation data, and thus we do
not require absolute measurements. The optimization problem Eq. (17) is transformed into the
rescaled problem

x̂ = argmin
x

1
2
||g̃( f )− F̃(x)||2 +αΨ(x) (25)

We used two different normalization strategies:

• The Normalized Born approach [12], which is extensively used in fluorescence tomogra-
phy.

g(f)
meas→ g̃( f ) = g(f)

meas, F(x) → F̃(x) =
g(e)

meas

g(e)
proj

F(x) (26)

Whereg(e)
proj denotes the calculated data in the excitation wavelength.

• To get a good balance between the individual fluorescence spectral bands, each spectral
band is scaled with its mean̄g( f ).

g(f)
meas→ g̃( f ) =

g(f)
meas

ḡ( f )
, F(x) → F̃(x) =

g(e)
meas

g(e)
proj ḡ

( f )
F(x) (27)

5. Implementation of the matrix-free method

When faced with solving the linear problem Eq. (25), the explicit computation and storage of

the matricesAT
A andA

Tg(f)
meas is costly and often intractable for large scale problems. This

is mainly due to the large size of the Jacobian matrixA. As an example, a problem with 30
sources and 475 detectors solved on a geometry with 7812 elements would need about 890MB
of storage for each wavelength. The problem is more intense when multiple wavelengths are
used, when more samples from the CCD image are required or a high resolution mesh is used
to represent the domain in the solver. When using a Krylov solver for the linear problem we
require to construct the set of basis vectors

{

z,Hz, . . .H jz
}

(28)

wherez = A
Tg(f)

measandH = A
T
A+αL

T
L. In our approach therefore, we represent the forward

and adjoint multiplication by the Jacobian implicitly, using a function that returns the result of
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the operation. To be specific, we use the Matlab ’gmres’ function to solve Eq. (25), and pass it a
function that calculates the forward and adjoint solutionsfor any intermediate vector generated
in the solution iteration. The method is summarised in Algorithm 1.

Algorithm 1 Schematic of Reconstruction Method

For each sources, calculate forward excitation fieldsU(e)
s

Calculatez = A
Tg(f)

measusing adjoint solver
Inside GMRES solver :

v0 = z.
for all Krylov basis vectorsv j , j = 1. . .do

for all wavelengthsn = 1. . .do
Update fluorphore concentrationh( fn) = ∑i ηi(λ fn)v j−1,i

Calculate forward projectionr = Ah( fn)

1 Solve for every sources : Kλ f
U

(λ f )
s = h( fn) ⊙U(e)

s

2 Calculate : r fn
s = M [U

(λ f )
s ]

Adjoint Calculationx fn = A
T
n · r

fn

1 Solve for every sources : Kλ f
V = r ( fn)

s

2 f = f +V⊙U(e)
s

end for
end for

6. Materials and methods

We considered a test case where the concentrations of two fluorochromes are to be recovered
from measurements at two different wavelengths. We presentresults from simulated measure-
ments with random Gaussian noise and experimental phantom measurements, showing that
the matrix free algorithm is capable of dealing with large data sets reducing the memory and
computational costs in respect to the traditional approach.

6.1. Simulation procedure

For the simulation we reproduced the experimental phantom setup of section 7.2 and we as-
sumed a diffusive slab of dimensions 76x69x20 mm3 containing a rod with concentration
1.7 µM simulating the spectral characteristics of Rhodamine 101 (left) and a rod simulating
Rhodamine 6G (right) with fluorochrome concentration 0.4 µM, as shown in Fig. 1(a). In total
30 source positions were used (marked as dots in the back of the figure), and measurements
were calculated from 475 positions, placed inside the rectangle area in the front of the figure.
Homogenous optical properties were assumed for each wavelength, given in Table 1.

Table 1. Bulk optical properties at the excitation wavelength and emission wavelengths.

532nm 580nm 620nm
mm−1

µa 0.054 0.052 0.040
µ ′

s 0.96 0.88 0.82
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Fig. 1. (a) A representation of the experimental setup. The dots in the back of the figure de-
note source positions and the rectangle in the front the image acquired by the CCD camera.
The rod on the left contains the Rhodamine 101 while the one on the right the Rhodamine
6G with spectral responses given in the graph on the right. (b) Estimated quantum yield
spectra for Rhodamine 101 and Rhodamine 6G.

Using the finite element method on a mesh with 6480 voxel elements to solve Eq. (11) we
calculated the excitation fields for the wavelength of 532nmand the two fluorescence data set
y(580) andy(620) for the two wavelengths 580nm and 620nm, respectively. Thisamounted to
14250 measurements for each wavelength.

Gaussian random noise of 3% was then introduced to the measurements, of both fluorescence
and excitation, and the optimisation problem Eq. (19) was solved to recover the concentrations
of the two different fluorochromes.

6.2. Experimental setup

Experimental data was acquired using a phantom setup. The bulk scattering media was made
from a mixture of water, gelatin, titanium dioxide (TiO2) and bovine blood to mimic biological
tissue. It was gently stirred to become homogenous and thereafter casted into a slab of size
76x69x20 mm3. Inside the slab, two cylindrically shaped fluorescent targets with a diameter of
2.5 mmwere placed, one containing a 0.4 µM concentration of Rhodamine 6G and the other a
1.7 µM concentration of Rhodamine 101. An estimate of the quantum yield was evaluated by
measuring the fluorescence induced spectra in a pure fluorochrome solution. The obtained spec-
tra was normalised with its sum and tabulated quantum yield factor to give the estimated quan-
tum yield spectra. For the two fluorochromes involved, the spectra are presented in Fig. 1(b).
The extinction coefficient for Rhodamine 6G and Rhodamine 101 at the excitation wavelength
were 23mm−1/mM and 6mm−1/mM respectively [13]. Non-contact measurements were per-
formed with a CCD-camera (C4742-80-12AG, Hamamatsu) and anobjective lens (Nikon f/1.8,
focal length 50mm). In front of the lens was a liquid crystal tunable bandpass filter (LCTF
VIS 20-35, Varispec) mounted to allow detecting only the fluorescence atλ f = 580 nm and
λ f = 620nm, respectively, together with a cut-off filter for blocking the excitation light. A con-
tinuous wave (CW) laser (VA-I-N-532, Viasho Laser) emittingat λe = 532nmand generating
approximately 10mW of optical power to the target was used as excitation source.The source
was translated along one of the surfaces in a grid pattern by the use of stepper motors. A total
of 30 source positions were used together with 1665 detectors sampled across the whole field
of view of the CCD-camera, as presented in Fig. 1(a).

The absorption and reduced scattering coefficients were obtained from white-light (Oriel
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Fig. 2. Simulated data reconstruction (using 473 detectors per source) Horizontal and
Vertical slice along the middle of the slab for the recovered concentrationsusing simulated
data with added 3% noise at the 580nm and 620nm wavelengths for Rhodamine 101 (a)
and Rhodamine 6G (b). The computational time for the traditional method ofexplicit Jaco-
bian was 15minutes 58sec while for the reconstruction using the matrix-free method was
2minutes 44sec.

Apex Fiber Illuminator, Newport) transmission measurements with spectrally filtered detection
between 540nm to 720nm in steps of 20nm. The spatially resolved transmission data was
used to retrieve an effective attenuation coefficient at each spectral band. Time-of-flight spec-
troscopy was used for assessing the reduced scattering coefficient [14], whereby the absorption
coefficient can be computed. The optical properties of interest are presented in Table 1.

7. Results

7.1. Simulated data

The images of the recovered fluorochromes using the matrix-free method are displayed in Fig.
2 on a horizontal and vertical slice along the middle of the slab. We can see that the location
and shape of the target rods were recovered successfully.

For comparison, we reconstructed the same simulated data using the explicit Jacobian
method. The resulting images using the matrix-free method are identical to those with the ex-
plicit Jacobian. The computational time spend in our 1.8 Ghzmachine was about 16 minutes
for the traditional method and 2 minutes, 44sec for the matrix-free method.

7.2. Experimental data

The multispectral matrix free algorithm was used and the recovered fluorochrome concentra-
tions are presented in Fig. 3 as horizontal and a vertical slices along the middle of the slab.
We notice that the location, the shape and the separation between the two fluorochromes were
successfully recovered. The reconstruction took 4 minutes, 32sec. We also tried the same re-
construction using the traditional explicit Jacobian method and the results again were identical
to those of Fig. 3. In this case the reconstruction time was was 17 minutes, 5sec.
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Fig. 3.Experimental data reconstruction using 473 detectors per sourceHorizontal and
vertical slice along the middle of the slab for the recovered concentrationsusing for phan-
tom experimental measurements at the 580nmand 620nmwavelengths for Rhodamine 101
(a) and Rhodamine 6G (b). This reconstruction using the matrix-free method took 4min.
46sec while the computational time for the traditional method with the explicit Jacobian
was 17minutes 4sec.

The same reconstruction was performed with the use of a denser sampling on the detectors
plane, that resulted to 1665 detectors per source used. The Fig. 4 includes the resulting images
from this reconstruction.

There are artifacts appearing close to the detectors plane,in all cases of reconstruction
method, especially in the image of the Rhodamine 6G, which wespeculate originates from
a poor signal-to-noise ratio at the shorter wavelengths.

8. Discussion and conclusions

We have developed and tested a method for the reconstructionof fluorochrome concentrations
inside diffusive mediums, taking in respect the latest developments in non contact tomography
that allows for a large amount of data to be collected. The proposed method relies on an itera-
tive GMRES solver which calls a functional procedure replacing large matrices with operators
that calculate on the run multiplications of matrices with vectors without the necessity for the
construction of the matrix. We have shown that the matrix-free method reduces substantially
the computational costs and the memory requirements in comparison to the traditional meth-
ods that construct an explicit Jacobian matrix. In Table 2 weshow the timings and memory
requirements for the matrix-free method and the explicit Jacobian for two different measure-
ment setups, one using 1665×30 detectors and one with 475×30 and for the two wavelengths
(580nmand 620nm). We should also note that with the matrix-free method the computational
cost does not increase when we use more measurements, unlikethe traditional methods.

In this paper we have used multispectral data. Increasing the number of spectral bands will
inherently create a large number of measurements. The presented method provides a convenient
tool for handling such datasets. We believe that this could enhance the fluorochrome contrast
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Fig. 4. Experimental data reconstruction using 1665 detectors per source Horizontal
and Vertical slice along the middle of the slab for the recovered concentrations using ex-
perimental measurements at the 580nm and 620nm wavelengths for Rhodamine 101 (a)
and Rhodamine 6G (b). This reconstruction using the matrix-free methodtook 4min 57sec
while the computational time for the traditional method with the explicit Jacobian was
52min 22sec

Table 2. Reconstruction times for explicit Jacobian method and the matrix-free using two
(580nm and 620nm) wavelengths and two different measurement setups, 475 measure-
ments per source and 1665 positions per source. For the memory allocation calculations, a
mesh of 6480 nodes were assumed.

Implementation No. measurements Reconstruction time Largest memory allocation
min sec MB

matrix-free 28,500 4min 46sec 350
99,900 4min 57sec 350

explicit Jacobian 28,500 17min 4sec 1500
99,900 52min 22sec 5200

for spectrally overlapping fluorphores. This is the focus ofour future work.
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