Optics and Optical Design

FAFF01 – FYST43

Cord Arnold / Olle Lundh

Cord.Arnold@fysik.lth.se
Olle.Lundh@fysik.lth.se

Photonics

Photonics = science and technology of generating and controlling photons. The science of photonics includes the emission, transmission, amplification, manipulation, detection and utilization of light.

Important photonics industry branches:

- Information and communication
- Lighting
- Laser
- Manufacturing
- Security
- Space and defense
- Life science and health care

- ...

Recent Nobel prices for photonics:

2018:

- A. Ashkin: Optical tweezers
- G. Mourou and D. Strickland: Chirped pulse amplification

2014:

- I. Akasaki, H. Amano and S. Nakamura: Blue LEDs
- <u>E. Betzig</u>, <u>S.W. Hell</u> and <u>W.E. Moerner</u>: Superresolution microscopy

2009:

- C.K. Kao: Potential of optical fibers
- W.S. Boyle and G.E. Smith: CCD sensors

Photonics program

- **►** Engineering
- **▶** Communication
- **▶** Diagnostics
- **▶** Devices and components

Specialisation E, F,

Master program

Exchange student program

http://www.atomic.physics.lu.se/education/photonics/

Photonics / Engineering

Four courses

Optics & optical design C. Arnold / O. Lundh	7.5	FAFF01 FYST43	G2	HT1: First period, autumn
Lasers O. Lundh, J. Larsson	7.5	FAFN01 FYSN14	A	HT2: Second period, autumn
Optoelectronics and optical communication D. Hessman, C. Arnold	7.5	FFFN25 FYST50	A	VT1: First period, spring
Advanced lasers and optics J. Larsson / C. Arnold	7.5	FAFN10 FYST32	A	VT2: Second period, spring
Medical Optics C. Arnold / E. Berrocal	7.5	FAFN35 FYST22	A	HT2: Second period, autumn

KFS Studentbokhandel

Course book: Fundamentals of Photonics, 2nd Edition Bahaa E.A. Saleh, Malvin C. Teich

ISBN: 978-0-471-35832-9

Ray tracing project (FRED software) in all courses.

Course content

Ray optics - Examples

- Basic optical components
- Basics of optical systems
- Background of optical design

Wave optics

https://www.ligo.caltech.edu/LA/page/what-is-interferometer

- Interference
- Diffraction

Fourier optics

Main concepts:

- Wave front decomposition
- Spatial frequency
- Diffraction limit

Maker

Plan Apo

40x/1.0 Water

 $\infty/0.17$ WD 0.20

Diffraction

pattern

Electromagnetic optics

$$\nabla \times \mathcal{H} = \frac{\partial \mathcal{D}}{\partial t}$$

$$\nabla \times \mathcal{E} = -\frac{\partial \mathcal{B}}{\partial t}$$

$$\nabla \cdot \mathcal{D} = 0$$

$$\nabla \cdot \mathcal{B} = 0.$$

- EM-fields are vectorial
- Dispersion

Polarization optics

Optics of layered media

- The power of multiple interference
- Optical coatings

Structure

Lectures: (Cord Arnold, Olle Lundh) 13-15 Mon, 10-12 Thu

Exercises: (Cord Arnold, Olle Lundh) 13-15 Fri (usually)

<u>Schedule</u>

Ray tracing project: (Hugo Laurell)

Interferometry: Jonas Björklund-Svensson,

Ivan Sytcevich

3 Laboratory exercises:

Fourier Optics: Hugo Laurell, Kristoffer

Svendsen

<u>Polarization:</u> David Busto, Hafsa Syed

Written Exam

Aims

• **Aim:** The course aims at building knowledge about the basic principles of optics and practical knowledge on optical design, with the help of a ray tracing program.

Learning outcomes

- Knowledge and understanding: For a passing grade the student must
 - have a good knowledge of optics that allows her/him to design and build industrial optical applications.
 - be able to understand why and when a given optical problem can be solved with ray optics, wave optics or electromagnetic optics.
 - be able to understand important concepts, such as polarization, diffraction, interferometry, holography.
- Competences and skills: For a passing grade the student must
 - be able to do alignments and measurements in optics.
 - be able to calculate propagation of light through optical components.
 - be able to perform optical designs.
 - be able to search and acquire knowledge from references within the field.
 - have an increased competence in presenting in writing and orally an accomplished project.
- Judgement and approach: For a passing grade the student must
 - have an increased experience of working in groups of two or four persons towards a common goal.

Course web page (not preferred)

Live@Lund (preferred)

Course registration procedure

- All students must apply for a course in advance of the course start, i.e. in advance of today!
 - Nfak: antagningen.se
- We can generally not just offer places, if students just show up at the course start.
- But, there usually is the possibility for "late" application.
 - Nfak: antagningen.se (one week after course start!)
 - LTH: Contact administration

• ...

Course registration procedure

- All students (not PhD) must self register (this not the same as applying for the course!) through Studentportalen (student.lu.se).
- This only works, if you have applied before!
- Self-registration closes:
 - 8/9 (N-fak, be fast with late application!)
 - 22/9 (LTH)

Important people and addresses

- Teaching administrator LTH: Eskil Fredriksson (H334)
- Teaching administrator N-fak: Stina Loo (H333)
- <u>studentadministration@fysik.lu.se</u> (EF och SL)
- Study director Charlotta Nilsson (H336)
- studierektor@fysik.lu.se (CN)
- Always put me in copy.

End of the introduction

Good luck with the course