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Quantum Information Lab: A214 
Introduction 

Quantum information and quantum computing are growing research topics at the moment. 
At the heart of the interest for these topics lies the huge potential for increased 
computational power when utilizing quantum phenomena, such as superpositions and 
entanglement. One of the most famous examples is the Shor’s algorithm for prime 
factorization. The mathematician Peter Shor showed in the nineties that, on a quantum 
computer, one could perform prime factorization with exponential speedup in comparison 
with a classical machine, thus transforming a computationally hard problem, to an easily 
manageable one. As an added flavor to this, prime factorization is the main ingredient in 
many of today’s encryption systems, so with a quantum computer much encrypted 
information could easily be broken. Quantum mechanics has however also supplied us with 
a solution to this problem, quantum cryptography. This is a more mature field that has 
already taken the step from the laboratory environment into commercial products.  

In addition to this, classical computers are also becoming smaller and smaller and 
approaching the point where quantum phenomena cannot be avoided. It is therefore clear 
that understanding and ultimately being able to control the quantum world will be an 
important task for the future. In this lab we aim to show the basics of how to measure as 
well as manipulate a quantum system. 

The qubit ion 

The ion that we will be using during the lab is 
Praseodymium (Pr3+). It belongs to the group of the rare-
earth ions in the periodic table. Common to all atoms in this 
group is that their excited states can have long lifetimes and 
coherence time. The reason for this is outer lying electron 
orbitals that shield the inner, active one, from charge 
fluctuations. Figure 1 shows the level structure of the Pr 
ion, including the splittings between both the different 
hyperfine levels and the electronic levels. Two of the 
hyperfine levels in the ground state, |g>, are chosen to 
represent the states |0〉 and |1〉 of our qubit. Another way 
of putting it is that our qubit is encoded in the nuclear spin 
of the atom. The third level is called auxiliary and it is used 
to store ions that would otherwise disturb the quantum 
computation process. All operations on the two qubit 
states, |0〉 and |1〉, are done using optical pulses that go via 
the electronically excited state, |𝑒𝑒〉, as indicated in Figure 1. 

It will also be important during the lab to know the relative 
transition strengths of the nine different possible 
transitions you get between the three ground state levels 
and the three exited state levels. These values are given in 
the table below: 

Figure 1) Energy level diagram of the 
Pr3+ ion. Quantum numbers for the 
nuclear spin Zeeman levels and level 
splittings are shown to the right and 
left, respectively. 
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Table 1) Relative oscillator strengths of 
the Pr3+ ion transitions. 

As can be seen, the diagonal elements are stronger than 
the off-diagonal ones, and an atom in the 5/2-level in the 
excited state has a particularly high chance of being 
deexcited to the corresponding 5/2-level in the ground 
state. 

The excited state lifetime of the Pr ions are around 150 
μs, and the lifetime of the ground state hyperfine levels 
are many seconds. The coherence time however, for 
hyperfine states (the qubit coherence time) is around 500 
μs at zero magnetic field (but can be orders of magnitude 
longer using an appropriately oriented magnetic field). 

Sechyp pulses 

In order to control the qubit and perform gate operations 
we send in optical light which can be tuned to match any 
of the nine transitions (from any of the three ground 
levels to any of the three excited levels). A simple square 
pulse with a constant Rabi frequency will rotate the state 
vector in a circle around the Bloch sphere, as can be seen 
in the blue line in figure 2. Unfortunately, these pulses are 
neither robust against laser intensity fluctuations nor 
good at transferring ions which are slightly detuned from 
the laser frequency. Therefore, more complex pulses are 
needed.  

The sechyp pulse, however, is robust in these situations. 
Now the Rabi frequency and the light frequency of the 
incoming pulse are changed according to the following: 

            Ω𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) = Ω0 sech(𝛽𝛽𝑡𝑡)  

      𝑓𝑓(𝑡𝑡) = 𝜇𝜇𝛽𝛽tanh (𝛽𝛽𝑡𝑡)   

Where 𝛽𝛽  and 𝜇𝜇  are parameters that relate to the 
frequency chirp, 𝑓𝑓, and the duration of the pulse and 
Ω0 is the maximum Rabi frequency. An example of 
how the amplitude and the frequency of a sechyp 
pulse changes with time can be seen in figure 3. 
Furthermore, the effect of such a sechyp pulse on a 
state-to-state transfer to an atomic 2-level system is 
seen in the red line in figure 2. As mentioned before, 
these pulses have the benefit compared to simple 
square pulses that they are robust against intensity 
fluctuations of the laser and better at transferring 
ensembles, consisting of ions that have slightly 
different frequencies between the upper and lower 
states, with high fidelity, but only when performing 
pole to pole transfers.  

|g> \ 
|e> 

± 1/2 ± 3/2 ± 5/2 

± 1/2 0.56 0.38 0.06 
± 3/2 0.39 0.60 0.01 
± 5/2 0.05 0.02 0.93 

Figure 2) Bloch sphere showing the path of 
a simple square pulse in blue and the path 
of the more complicated sechyp pulse in 
red.  
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In order to fully control our system we need to be 
able to perform more than just pole to pole transfers 
of our qubit states. Fortunately, since our qubit 
works with three levels (the two qubit levels |0〉 and 
|1〉, and the excited level |𝑒𝑒〉 which is only used as an 
aid to perform the qubit operations between the two 
ground levels), two-color pulses can be used to 
overcome this issue. These pulses are the topic of 
the next section. 

Two-color pulses: Dark and bright states 

Two-color pulses (dark/bright state pulses) are pulses 
where the incoming electromagnetic field has two 
frequencies, each resonant with a different 
transition, for example as represented by the two 
arrows in figure 1. Each of these two fields can have 
a different Rabi frequency Ω𝑖𝑖 and phase 𝜙𝜙𝑖𝑖. In order 
to simplify calculations we assume that the Rabi 
frequencies are equal Ω0 = Ω1 and we define the 
relative phase difference as 𝜙𝜙 = 𝜙𝜙1 − 𝜙𝜙0. Instead of 
using the basis states |0> and |1> we can now define 
two new basis states. One that is unaffected by the 
field, denoted |D>, as in “dark”, and one denoted 
|B>, as in “bright”. These will, |B> or will not, |D>, interact with the light due to interference 
of the two light waves with different frequencies; 

|𝐵𝐵〉 = 1
√2
�|0〉 + 𝑒𝑒−𝑖𝑖𝑖𝑖|1〉�  

|𝐷𝐷〉 = 1
√2
�|0〉 − 𝑒𝑒−𝑖𝑖𝑖𝑖|1〉�  

These states will always lie in the equatorial plane 
and be pointing in opposite directions. The phase 
difference 𝜙𝜙 determines the angle in the equatorial 
plane, see figure 4 for an example. Note that this 
Bloch sphere connects the two qubit levels |0〉 and 
|1〉. It is also clear that any arbitrary state 𝛼𝛼|0〉 +
𝛽𝛽|1〉 can be expressed in the |𝐵𝐵〉, |𝐷𝐷〉 basis. 

Now, if two sechyp pulses, one at frequency 𝜔𝜔0 and 
the other at frequency 𝜔𝜔1, are used simultaneously 
to perform a two-color pole to pole transfer, they 
will bring the fraction of the wave function in the 
bright state, |𝐵𝐵〉, to the excited state, whereas the 
dark state,|𝐷𝐷〉, part of the wave function is left alone 
since it does not interact with the incoming light. In 
other words, one two-color sechyp pulse will 
transfer |𝐵𝐵〉 → |𝑒𝑒〉 whilst doing nothing to |𝐷𝐷〉 and  

BeB iθ→z 

y 

x 

B

e

1 

θ 
2 

Excited state 

Bloch sphere: 

Figure 3) Sechyp amplitude and frequency 
changes as a function of time.   
 

Figure 5) Excited state Bloch sphere with |𝑒𝑒〉 and 
|𝐵𝐵〉 on the north and south poles, respectively. 
Shows the path the state vector will travel when 
subjected to two consecutive two-color pulses 
with an overall phase difference 𝜃𝜃, but the same 
relative phase difference 𝜙𝜙  between the two 
pulses within each pair.  

Figure 4) Qubit Bloch sphere with |0〉 and |1〉 
on the north and south poles, respectively, 
and also showing an example of |𝐵𝐵〉 and |𝐷𝐷〉 
states.  
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By using yet another two-color pulse with the same relative phase difference 𝜙𝜙 as before, 
i.e., it targets the same bright and dark states as the first pulse, but now with an added 
overall phase factor 𝜃𝜃, the path taken by the bright state will be as shown in figure 5. Note 
that this Bloch sphere is going between the bright state |𝐵𝐵〉 and the excited state |𝑒𝑒〉.  

As can be seen in the figure, both two-color pulses perform a pole to pole transfer, but along 
different paths, due to the overall extra phase factor 𝜃𝜃. The state will after both pulses end 
up back in the bright state, but with an added phase 𝑒𝑒𝑖𝑖𝑖𝑖, i.e., the two pulses perform the 
operation |𝐵𝐵〉 → 𝑒𝑒𝑖𝑖𝑖𝑖|𝐵𝐵〉 and |𝐷𝐷〉 → |𝐷𝐷〉 since the dark state is still unaffected by both two-
color pulses.  

We can define a transfer matrix for the combination of the pair of two-color pulses in the 
|𝐵𝐵〉, |𝐷𝐷〉 basis as:  

𝑈𝑈𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵 = �𝑒𝑒
𝑖𝑖𝑖𝑖 0 
0 1 

� = 𝑒𝑒𝑖𝑖𝑖𝑖|𝐵𝐵〉〈𝐵𝐵| + |𝐷𝐷〉〈𝐷𝐷| 

If written in the |0〉, |1〉 basis instead, one can see that the interaction is really a rotation by 
an angle 𝜃𝜃 around a vector pointing in the equatorial plane set by the angle 𝜙𝜙 (neglecting 
any global phase). In the preparation exercises you will perform this rewriting and also 
compare the result with a NOT gate; a rotation around 𝑥𝑥, 𝑅𝑅𝑥𝑥(𝜃𝜃); and a rotation around 𝑦𝑦, 
𝑅𝑅𝑦𝑦(𝜃𝜃).  

Since any unitary operator can be written as; 

𝑈𝑈 = 𝑒𝑒𝑖𝑖𝛼𝛼𝑅𝑅𝑥𝑥(𝛽𝛽)𝑅𝑅𝑦𝑦(𝛾𝛾)𝑅𝑅𝑥𝑥(𝛿𝛿) 

We can see that a combination of two-color pulses can describe any arbitrary unitary 
operator. Furthermore, all two-color pulses in the lab use the robust sechyp expression 
shown in equation (1).   

Quantum state tomography 

To determine the quantum state of our qubit a straightforward absorption measurement 
will give the relative population of |0〉 and |1〉. However, in order to determine the phase of 
the state we need to perform a full quantum state tomography (QST).  

A quantum state tomography involves three separate measurements. Since a quantum state 
collapses during readout this means that the full experiment including the preparation of the 
quantum state that should be read out need to be repeated three times. The goal of each 
measurement is to determine the projection on one of the three Bloch sphere axes 𝑥𝑥, 𝑦𝑦, or 
𝑧𝑧.  

As mentioned before a simple absorption measurement can determine the value of the 𝑧𝑧 
projection since it lies along what we may call the population axis. To determine, e.g., the 𝑥𝑥 
projection, the state vector is rotated −90° around the 𝑦𝑦 axis so that the 𝑥𝑥  axis now 
becomes vertical and lies along the population axis (the old 𝑧𝑧 axis), i.e., the 𝑥𝑥-value of the 
Bloch vector will now be the new 𝑧𝑧-value. After this rotation if an absorption measurement 
is performed it will, just as before, give a value between −1 and +1, but now this value tells 
us about the 𝑥𝑥 projection of our original state. Similarly, the 𝑦𝑦 projection can be determined 
by first performing a rotation around 𝑥𝑥 with 90° to bring the 𝑦𝑦 axis value of the Bloch vector 
to the population axis before doing the absorption measurement.  
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Figure 6) Experimental setup of the lab. 

These rotations of our state vectors can be performed using our pair of two-color pulses as 
described in the previous section, provided we choose the correct 𝜙𝜙 and 𝜃𝜃, something you 
will determine in the preparation exercises.  

Experimental setup 

 
               

A schematic experimental setup for the lab can be seen in figure 6. The Praseodymium ions 
are excited by a wavelength of 606 nm. There are very few tunable sources in this 
wavelength region, and we are using a dye laser, which is pumped by a solid state 
Neodymium laser. Unfortunately also the best commercial dye lasers are too noisy and 
spectrally broad for controlling the Pr quantum states with good precision. In order to get 
the laser stable enough to match the coherence times of the Pr ions, we have therefore built 
a frequency stabilization system, which is indicated by the feedback loop in Figure 6. This 
system narrows the linewidth of the laser down to around 10 Hz, which can be considered 
rather amazing when remembering that 606 nm is equal to around 500 THz, meaning the 
laser is frequency stabilized down to 1 part in 1014. 

The light from the laser is continuous, and we are then employing Acousto-Optic Modulators 
(AOMs) to shape the light into having the desired amplitude envelopes and frequency chirps. 
The main element of the AOM is a piezo-electric ultrasound speaker attached to a crystal. A 
RF pulse signal is sent to the ultrasound speaker and the generated sound wave in the crystal 
creates a refractive index variation in the crystal, which acts like a grating for the incoming 
light. In the lab the AOMs are controlled from a computer, where a Matlab program is used 
to specify the pulse parameters. 

After the pulse shaping, the light goes through a fiber (which also cleans up the spatial 
mode) and over to the experimental crystal with the Pr3+ions. In order to avoid phonon 
excitations (which drastically shorten the coherence time) it is necessary to cool the crystal 
to around 4 K. This is done using a cryostat that operates with liquid Helium. There are two 
detectors in the experiment. One is situated just before the crystal, and used as a reference 
detector, and the other one just after the crystal, will detect the actual experimental signal. 
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Pum
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One can divide and subtract the reference signal from the experimental signal in order to 
reduce noise due to signal fluctuations (noise) in the input pulses. The detectors are then 
connected to an oscilloscope which in turn is connected to a computer where the signal can 
be analyzed. 
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