Quantum Information course 2019 Third and final hand-in assignment Hand-in deadline Friday May 24th *¹

Exercise 5.4 (please hand in your solution to Peter Samuelsson)

Exercise 8.30 (*please hand in your solution to Peter Samuelsson*) Important: In 8.30 in the book the notation and formulas are strange. The problem should instead be formulated as:

The T₂ phase coherence relaxation time is just the inverse exponential decay rate of the off-diagonal elements in the qubit density matrix, while T₁ is the inverse decay rate of the diagonal elements (see Equation 7.144)). Amplitude damping has *both* non-infinite T₁ and T₂ times. Show that for amplitude damping T₁=T₂/2. Also show that if amplitude and phase damping are *both* applied then T₁ \geq T₂/2.

¹ *If handed in too late you might have to solve and hand in additional problems