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Projects 
• 1   Quantum simulators, Andreas 
• 2   Free space communication, Andreas 
• 3   Quantum computation with spins in quantum dots, Peter 
• 4   Bell inequality: quantum non-locality vs local realism, Peter 
• 5   Entanglement: concept, measures and open problems, Peter 
• 6   Quantum computing in rare earth ion doped crystals, Stefan 
• 7   Quantum repeaters, Stefan 
• 8   Quantum memories, Stefan 
• 9   Quantum computation with superconducting qubits, Ville 
• 10 Majorana qubits & topological quantum computation, Martin 
• 11 Beam up my quantum state, Scotty!, Peter 



Please sign up for a project Wednesday 
April 17th at the latest 

• Choose project by sending a mail to Stefan.kroll@fysik.lth.se or 
by handing a note the lecturers 

• You can sign up alone or in pairs 
• If you sign up alone you will be grouped in pairs with an other 

person who also has signed up alone 
• When you sign up, you specify your first, second and third 

choice for project 
• We will try to give as many as possible their favourite choice 

under the constraint of not having more than two groups on each 
project 

• Give your preferred presentation date, May 29th or June 3rd 
• If one of the dates is impossible for you please write this.  



Errata list, Nielsen & Chuang 

• http://www.michaelnielsen.org/qcqi/errata/e
rrata/errata.html 



Part II, Nielsen & Chuang 

• Quantum circuits (Ch 4) SK 
• Quantum algorithms (Ch 5 & 6) 

–  Göran Johansson 
• Physical realisation of quantum computers 

(Ch 7) 
– Andreas Walther 



Chapter 4 

• Quantum circuits 
– Quantum circuits provide us with a language 

for describing quantum algorithms ⇒ We can 
quantify the resources needed for a quantum 
algorithm in terms of gates, operations etc. It 
also provides a toolbox for algorithm design. 

• Simulation of quantum systems 
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Why are there few quantum 
algorithms 

• Algorithm design is difficult 
• Quantum algorithms need to be better than 

classical algorithms to be interesting 
• Our intuition works better for classical 

algorithms, making obtaining ideas about 
quantum algorithms still harder 
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Chapter 4, Quantum circuits 

• 4.2 Single qubit operations 
– We will analyse arbitrary single qubit and 

controlled single qubit operations 



In quantum information data is 
represented by quantum bits (qubits) 
• A qubit is a quantum mechanical systems 

with two states |0> and |1> that can be in 
any arbitrary superposition   
         
  Ψ = α|0〉+β |1〉     

 of those states 



Qubit representation 
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Single qubit gates 

• Single qubit gates, U, are unitary 



1.3.1 Single qubit gates 



Fig 4.2, page 177 



Single qubit gates on Bloch 
sphere 

• X-gate 
– 180° rotation around x-axis 

• Y-gate 
– 180° rotation around y-axis 

• Z-gate 
– 180° rotation around z-axis 
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Fig 4.2, page 177 



Single qubit gates on Bloch 
sphere 

• S-gate 
– 90° rotation around z-axis 

• T-gate 
– 45° rotation around z-axis 

• H-gate 
– 90° rotation around the y-axis followed by 180° 

rotation around the x-axis 



Rotation an arbitrary angle around 
axes x, y and z 
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CNOT is a MODULO-2 addition of 
the control bit to the target bit 

ctctc ⊕→



Fig 4.4, control-U 

tUctc c→



Controlled arbitrary rotation 

tUctc c→
Lets start with inputs |c> = |0> 
and |t> = |Ψ>, what is the output?  

Now we choose |c> = |1> and |t> 
= |Ψ>, what is the output?  



Controlled arbitrary rotation 



Arbitrary single qubit operation in 
terms of z and y rotations 

 (theorem 4.1 page 175) 
 



Preparing for logical gates 
Page 176 



Controlled arbitrary rotation 



Notation 

• Computational basis states (page 202) 
– A quantum circuit operating on n qubits acts in 

a 2n-dimensional complex Hilbert space. The 
computational basis state are product states |x1, 
. . .,xn> where xi=0,1. 

– For example a two qubit state |x1>|x2> in the 
computational basis is expressed as   

– |Ψ> = α|00> + β|01> + γ|10> + δ|11> 
• Where we have the basis states for the tensor 

product of the |x1>|x2> basis states 



Hadamard gates, exercise 4.16 



Exercise 4.16, page  

 
• Matrix for H-gate on x2 

 
 

• Matrix for H-gate on x1 
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H-gate is unitary 

• Matrix multiplication H†H=I 
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Exercise 4.20 

Discuss with your neighbour. How would you solve this? 



Multiplying the Hadamard gates 

• We can just extend exercise 4.16 by 
multiplying the two Hadamard gates 
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Exercise 4.20 

• Multiplying Hadamard and CNOT gates give 
 
 
 
 
 
 

• Answer: a CNOT gate where the lower bit is the control bit 



















=

=



















−−
−−
−−





































−−
−−
−−

0010
0100
1000
0001

1111
1111
1111

1111

2
1

0100
1000
0010
0001

1111
1111
1111

1111

2
1

What operation is this matrix carrying out? 



Two control bits 



Many control bits 
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Quantum 
teleportation 

Measurements followed by classically controlled operations can always 
be replaced by conditional quantum operations 

Principle of deferred measurement 

No classical operation is 
needed from Bobs side. 



1.3.7 Quantum teleportation 

Quantum 
teleportation 
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Universal quantum gates (4.5) 

– A set of gates is universal if any unitary 
operation can be approximated to arbitrary 
accuracy by quantum circuits only involving 
these gates 
 



CNOT, Hadamard and T-gates form 
a universal set  

• 1. An arbitrary unitary operator can be expressed as 
a product of unitary operators acting on two 
computational basis states ( subsection 4.5.1).  

• 2. An arbitrary unitary operator acting on two 
computational basis states can be expressed as a 
product of single qubit operations and CNOT gates. 
(page 192-193) (subsection 4.5.2, exercise 4.39) 



Exercise 4.93, Page 193 



CNOT, Hadamard and T-gates form 
a universal set  

• 1. An arbitrary unitary operator can be expressed as 
a product of unitary operators acting on two 
computational basis states ( subsection 4.5.1).  

• 2. An arbitrary unitary operator acting on two 
computational basis states can be expressed as a 
product of single qubit operations and CNOT gates. 
(page 192-193) (subsection 4.5.2, exercise 4.39) 

• 3. Single qubit operations may be approximated to 
arbitrary accuracy using Hadamard and T gates 
(subsection 4.5.3) 



Single qubit operations may be approximated to 
arbitrary accuracy using H- and T-gates 

(subsection 4.5.3) 
• From the corrected  version of Eq. 4.13 page 176 we 

see that (exercise 4.11): 
• If m and n are non parallel vectors in three 

dimensions any arbitrary single qubit unitary 
operation, U may be written as  
 
 

• It is shown on page 196 that rotations of arbitrary 
angles can be carried out around two different axes 
using combinations of H- and T-gates 

)...()()()( 2211 γβγβα
mnmn RRRReU i=



Approximating arbitrary unitary 
gates (4.5.3 & 4.5.4) 

• In order to approximate a quantum circuit 
consisting of m CNOT and single qubit gates with 
an accuracy ε, only about O[m*log(m/ε)] gate 
operations are required (Solovay-Kitaev theorem). 

• This does not sound too bad! 
• The problem is that of the order 22n gates are 

required to implement an arbitrary n-qubit unitary 
operation (see page 191-193), thus this is a 
computationally hard problem. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PSPACE 

Quantum Computational Complexity 4.5.5. 
 
Relation to classical complexity classes 
 

 
 
 
 
 
 
 
 
 
 
 

BQP 

 
 
 
 
 
 
 

BPP 

P 

• BPP is thought to be subset 
of BQP, enabling QC to 
solve some problems more 
efficient than classical 
computers 
 

• BQP is a subset of PSPACE 
 Any problem consuming 

polynomial time can consume 
a maximal polynomial amount 
of space 

 



The power of quantum computation 
• NP complete problems are a subgroup of NP 
• If any NP-complete problem has a polynomial time 

solution then P=NP 
• Factoring is not known to be NP-complete 
• Quantum computers are known to solve all problems in P 

efficiently but cannot solve problems outside PSPACE 
efficiently 

• If quantum computers are proved to be more efficient than 
classical computers P=/=PSPACE 



Quantum computing changes the 
landscape of computer science 

• QC algorithms do not violate the Church-
Turing thesis: 
– any algorithmic process can be simulated using 

a Turing machine 
• QC algorithms challenge the strong version 

of the Church-Turing thesis 
– If an algorithm can be performed at any class of 

hardware, then there is an equivalent efficient 
algorithm for a Turing machine 
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The quantum circuit model of 
computation 

• Properties: 
– Quantum computer may be a hybrid of quantum and 

classical resources to maximize efficiency 
– A quantum circuit operates on n qubits spanning a 2n 

dimensional state space. The product states of the form 
|x1,x2,..,xn> ;xi={0,1} are the computational basis states 

• Basic steps: 
– Preparation  
– Computation 
– Measurement 



The quantum circuit model of 
computation 

• Maybe it would be better that the 
computational basis states are entangled 

• Maybe the measurements should not be 
carried out in the computational basis 

• It is not known whether the quantum circuit 
model constitute an optimum quantum 
computer language 

Projects? 
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Quantum simulation 

• Feynman 1982 
• Chemistry (large molecules, reactions) 
• Biology (even larger molecules) 
• Simulation of the properties of new synthesized 

molecules 
 



Simulation of quantum systems 

• With n qubits there are 2n different differential 
equations that must be solved  

• The equation above has the formal solution  

Ψ=Ψ H
dt
di

)0()( Ψ=Ψ
− Hti

et 



Simulation of quantum systems 
•While quantum computers are hoped to solve general calculations efficiently, 
another field in which they are hoped to succeed is the simulation of specific 
physical systems described by a Hamiltonian.  
•However the physical system must be approximated efficiently, to do so: 

|ψ(t)> Exp[-iHt] 

|ψ’(t)> U |ψ’(0)> 

|ψ(0)> 



|ψ’(0)> 

|ψ(0)> Approximating the state 
The continuous function is discretised to arbitrary 
precision using a finite set of basis vectors 
 
 
 
 
The set of basis vectors must be chosen such that for 
any given time, the approximated state has to be equal to 
the original state within a given error tolerance  

k k
k

c(x) (x)dx ' cΨ = ϕ → Ψ = ϕ∑∫



Exp[-iHt] 

U 

Approximating the Operator 
Discretizing of the differential equations begins with 
choosing an appropriate ∆t. It has to fulfill the demands 
set by the maximum error. 
 
The approximation of the differential operator is a three 
step process.  
 
First, if possible separate H into a set of Hamiltonians, 
Hi, which act on a maximal constant number of 
particles. (next neighbor interaction, etc).  
 
Secondly, write the effect of H on the system as time 
evolves as a product of the effect of the individual Hi.  
 
Thirdly, the effect of Hi is written in terms of a quantum 
circuit. 



Separate H into Hamiltonians, Hi, acting on 
subsets of particles.  

H7 

H6 

H5 
H4 

H3 

H2 

H1 



Simulation of quantum systems 
Approximating the Operator 
 
The evolution operator is of the form 
 
 
 
If possible H is broken down into a sum of local interactions 
 
 
 
If the sub Hamiltonians do not commute it follows that 
 
 
 
 
We now introduce the Trotter formula 
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 (Trotter formula) 
 
By varying n we can obtain a product representation of the evolution operator 
within any given error 
 
 
 
Now that H is broken down into a product of local Hamiltonians which may be 
written on a quantum circuit form (Exercise 4.51). The product of the circuit 
corresponds to a unitary operator U. 
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Simulation of quantum systems 
Approximating the Operator 



Exercise 4.51, page 210 
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• 4.5 Universal quantum gates 
– Single qubit and CNOT gates are universal 
– A discrete set of universal operators 
– Approximating arbitrary unitary gates is hard 
– Quantum computational complexity 

• 4.6 Circuit model summary 
• 4.7 Simulation of quantum systems 



Chapter 4 

End 
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