2. Introduction to quantum mechanics

2.1 Linear algebra

Dirac notation

Complex conjugate	z^*
Vector/ket	$ \psi angle$
Dual vector/bra	$ \langle arphi $
Inner product/bracket	$\langle arphi \psi angle$
Tensor product	$ \varphi\rangle\otimes \psi\rangle\equiv \varphi\rangle \psi\rangle$
Complex conj. matrix	A^*
Transpose of matrix	A^T
Hermitian conj/ adjoint of matrix	$A^{\dagger} = (A^T)^*$
Inner product	$\langle \varphi A \psi \rangle$

Basis, vector representation

For a set of vectors $|v_1\rangle,...,|v_n\rangle$ spanning \mathbf{C}^n

$$|v\rangle = \sum_{i} a_{i} |v_{i}\rangle \equiv \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix}$$

The set $|v_1\rangle,...,|v_n\rangle$ constitutes a *basis* for \mathbb{C}^n

Linear operators

A linear operator A means

$$A\left(\sum_{i} a_{i}|v_{i}\rangle\right) = \sum_{i} a_{i}A(|v_{i}\rangle)$$

Notation

$$A|v\rangle \equiv A(|v\rangle)$$
 $BA|v\rangle \equiv B(A(|v\rangle))$

Matrix representation

For $|v_1\rangle,...,|v_n\rangle$ spanning ${f C}^n$, $|w_1\rangle,...,|w_m\rangle$ spanning ${f C}^m$,

a *matrix representation* of $A: \mathbf{C}^n \to \mathbf{C}^m$ means

$$A|v_j\rangle = \sum_i A_{ij}|w_i\rangle$$

Numbers A_{ij} form matrix $A \Rightarrow$

Linear operator (basis given) ⇔ matrix representation (to be used interchangeably...)

Pauli matrices

$$\sigma_0 \equiv I \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $\sigma_1 \equiv \sigma_x \equiv X \equiv \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

$$\sigma_2 \equiv \sigma_y \equiv Y \equiv \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
 $\sigma_3 \equiv \sigma_z \equiv Z \equiv \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Inner vector product

A inner product on \mathbb{C}^n is

$$((a_1,...,a_n),(b_1,...,b_n)) = \sum_{i=1}^n a_i^* b_i$$

We use notation

$$\langle w|v\rangle \equiv (|w\rangle, |v\rangle)$$

Hilbert space = inner product space

The vectors $|v\rangle, |w\rangle$ are *orthogonal* if

$$\langle w|v\rangle = 0$$

The *norm* of a vector is

$$|||v\rangle|| = \sqrt{\langle v|v\rangle}$$

An *orthonormal set* of vectors $|i\rangle$ obey

$$\langle j|i\rangle = \delta_{ij}$$

Vector representation

With respect to an orthonormal basis $|i\rangle$ for ${f C}^n$

$$|v\rangle = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \qquad |w\rangle = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

the inner product is

$$\langle w|v\rangle = [b_1^*, b_2^*,, b_n^*] \begin{bmatrix} a_1 \\ a_2 \\ ... \\ a_n \end{bmatrix}$$

We thus have

$$\langle w | = \sum_{i} b_{i}^{*} \langle i | \equiv [b_{1}^{*}, b_{2}^{*}, .., b_{n}^{*}]$$

(an orthonormal basis will be used unless otherwise stated)

Outer vector product

The *outer product*

$$|\varphi\rangle\langle\psi|$$

is a linear operator

$$|\varphi\rangle\langle\psi|\left(|\psi'\rangle\right) = |\varphi\rangle\langle\psi|\psi'\rangle = \langle\psi|\psi'\rangle|\varphi\rangle$$

Cauchy-Schwartz inequality

For two vectors $|v\rangle, |w\rangle$

$$\langle v|v\rangle\langle w|w\rangle \ge |\langle v|w\rangle|^2$$

Completeness relation

For vectors $|i\rangle$ forming an orthonormal basis $\langle j|i\rangle=\delta_{ij}$ for ${\bf C}^n$

$$\sum_{i=1}^{n} |i\rangle\langle i| = I$$

Eigenvectors and eigenvalues

The *eigenvector* $|v\rangle$ to A obeys

$$A|v\rangle = v|v\rangle$$

with v the eigenvalue.

The *diagonal representation* of A is (for diagonalizable A)

$$A = \sum_{i} \lambda_{i} |i\rangle\langle i|$$

in terms of eigenvalues λ_i and orthonormal eigenvectors |i
angle of A

Hermitian operators

The *Hermitian conjugate*/adjoint of A is A^{\dagger}

We have
$$(AB)^\dagger=B^\dagger A^\dagger$$
 and $|v\rangle^\dagger=\langle v|$, $(|v\rangle\langle w|)^\dagger=|w\rangle\langle v|$

An Hermitian operator obeys

$$A^{\dagger} = A$$

Projection operator

The operator

$$P = \sum_{i=1}^{m} |i\rangle\langle i|$$

is a *projection* operator $P: \mathbb{C}^n \to \mathbb{C}^m, \ m < n$

Properties

$$P^2 = P$$
 $P^{\dagger} = P$

Orthogonal complement Q = I - P

Normal operator

An operator A is *normal* if

$$A^{\dagger}A = AA^{\dagger}$$

An operator is normal if and only if it is diagonalizable. An Hermitian operator is normal.

Unitary matrix

A matrix/operator U is *unitary* if

$$U^{\dagger}U = UU^{\dagger} = I$$

Positive operator

An operator A is *positive* if

$$\langle v|A|v\rangle \ge 0$$

and real for any vector $|v\rangle$.

Any positive operator is Hermitian ⇒
Any positive operator has real, positive eigenvalues and a *spectral decomposition*

$$A = \sum_{i} \lambda_{i} |i\rangle\langle i|$$

in terms of eigenvalues $\;\lambda_i$ and orthonormal eigenvectors $\;|i
angle\;$ of $\;A$

Tensor product

A *tensor product* between vectors $|v\rangle, |w\rangle$ in $\mathbb{C}^n, \mathbb{C}^m$

$$|v\rangle \otimes |w\rangle \equiv |v\rangle |w\rangle \equiv |vw\rangle$$

is a vector in $\mathbf{C}^{n \times m}$

Example:

$$\left[\begin{array}{c} v_1 \\ v_2 \end{array}\right] \otimes \left[\begin{array}{c} w_1 \\ w_2 \end{array}\right] = \left[\begin{array}{c} v_1 w_1 \\ v_1 w_2 \\ v_2 w_1 \\ v_2 w_2 \end{array}\right]$$

A tensor product between operators/matrices A, B is denoted

$$A \otimes B$$

Operation

$$A \otimes B(|v\rangle \otimes |w\rangle) = A|v\rangle \otimes B|w\rangle$$

Properties

$$(A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger}$$

Matrix representation

Example:

For matrices

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

we have the tensor product

$$A \otimes B = \begin{bmatrix} A_{11}B & A_{12}B \\ A_{21}B & A_{22}B \end{bmatrix}$$

$$= \begin{bmatrix} A_{11}B_{11} & A_{11}B_{12} & A_{12}B_{11} & A_{12}B_{12} \\ A_{11}B_{21} & A_{11}B_{22} & A_{12}B_{21} & A_{12}B_{22} \\ A_{21}B_{11} & A_{21}B_{12} & A_{22}B_{11} & A_{22}B_{12} \\ A_{21}B_{21} & A_{21}B_{22} & A_{22}B_{21} & A_{22}B_{22} \end{bmatrix}$$

Operator functions

For a normal operator A, written in the spectral decomposition

$$A = \sum_{a} a |a\rangle\langle a|$$

we define the/operator matrix function

$$f(A) = \sum_{a} f(a)|a\rangle\langle a|$$

Trace

The *trace* of a matrix A is

$$tr(A) = \sum_{i} A_{ii}$$

Cyclic property

$$tr(ABC) = tr(CAB) = tr(BCA)$$

Outer product formulation

$$tr(A|\psi\rangle\langle\psi|) = \langle\psi|A|\psi\rangle$$

Commutators

The *commutator* between two operators/matrices A,B is

$$[A, B] = AB - BA$$

The *anti-commutator* between two operators/matrices A, B is

$$\{A, B\} = AB + BA$$

Matrix decompositions

Polar decomposition: For a linear operator A there exists a unitary operator U and positive operators J,K so that

$$A = UJ = KU$$

Singular value decomposition: For a square matrix A there exists unitary matrices U,V and a diagonal matrix D with non-negative elements (singular values), such that

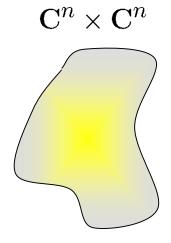
$$A = UDV$$

2.2 Postulates of quantum mechanics

State space

Postulate 1:

Associated to any isolated physical system is a Hilbert space, known as the *state space* of the system. The system is completely described by its *state vector*, a unit vector in the state space



Definitions/names

A two-level, qubit state $|\psi\rangle$ can generally be written as

$$|\psi\rangle = a|0\rangle + b|1\rangle$$

This is a *superposition* of the two basis states $|0\rangle$ and $|1\rangle$, with *amplitudes* a and b

The normalization condition gives

$$\langle \psi | \psi \rangle = |a|^2 + |b|^2 = 1$$

Evolution

Postulate 2:

The evolution of a quantum system is described by a *unitary transformation*. That is, the state $|\psi\rangle$ of the system at time t is related to the state $|\psi'\rangle$ of the system at time t' by a unitary operator U as

$$|\psi'\rangle = U|\psi\rangle$$

Postulate 2':

The evolution of state $|\psi\rangle$ of a quantum system is described by the Schrödinger equation

$$i\hbar \frac{d|\psi\rangle}{dt} = H|\psi\rangle$$

where \mathcal{T}_{l} is Plancks constant and H the Hamiltonian, a Hermitian operator.

Closed system

For a closed system the Hamiltonian H is independent on time and the system state $|\psi(t)\rangle$ is

$$|\psi(t_2)\rangle = \exp\left[\frac{-iH(t_2-t_1)}{\hbar}\right]|\psi(t_1)\rangle = U(t_2,t_1)|\psi(t_1)\rangle$$

where we define the unitary time evolution operator

$$U(t_2, t_1) = \exp\left[\frac{-iH(t_2 - t_1)}{\hbar}\right]$$

The Hamiltonian has the spectral decomposition

$$H = \sum_{E} E|E\rangle\langle E|$$

where $|E\rangle$ are the *energy eigenstates* and E the *energy*.

Effective Hamiltonian for open systems

For many open systems we have an effective time dependent Hamiltonian acting on the system \Rightarrow The solution to the Schrödinger equation is non-trivial

Measurement

Projection measurement postulate

A projective measurement is described by an observable, M, an Hermitian operator on the state space of the system. The observable has the spectral decomposition

$$M = \sum_{m} m P_m = \sum_{m} m |m\rangle\langle m|$$

 $M=\sum_m m P_m = \sum_m m |m\rangle\langle m|$ The possible outcomes correspond to the eigenvalues $\ m$ of $\ M.$

Upon measuring the state $|\psi\rangle$ the probability of getting the result mis given by

$$p(m) = \langle \psi | P_m | \psi \rangle$$

Given that m has occured, the state immediately after the measurement is (wavefunction collapse)

$$rac{P_m|\psi
angle}{\sqrt{p(m)}}$$

Average and fluctuations

The *average* measured value (over an ensemble of identical states $|\psi\rangle$)

$$\sum_{m} mp(m) = \sum_{m} \langle \psi | P_{m} | \psi \rangle = \langle \psi | \left(\sum_{m} m P_{m} \right) | \psi \rangle = \langle \psi | M | \psi \rangle \equiv \langle M \rangle$$

The magnitude of the quantum *fluctuations* are

$$\langle (\Delta M)^2 \rangle = \langle (M - \langle M \rangle)^2 \rangle = \langle M^2 \rangle - \langle M \rangle^2$$

Derivation: Heisenbergs uncertainty principle is

$$\Delta(C)\Delta(D) \equiv \sqrt{\langle (\Delta C)^2 \rangle \langle (\Delta D)^2 \rangle} \ge \frac{1}{2} |\langle [C, D] \rangle|$$

General measurement

Postulate 3:

Quantum measurements are described by a collection $\{M_m\}$ of measurement operators, acting on the state space of the system. The index m refers to the possible measurement outcomes. Upon measuring the state $|\psi\rangle$, the probability of getting the result m is given by

$$p(m) = \langle \psi | M_m^{\dagger} M_m | \psi \rangle$$

and the state after the measurement is

$$\frac{M_m|\psi\rangle}{\sqrt{\langle\psi|M_m^{\dagger}M_m|\psi\rangle}}$$

Generally

 $M_m M_{m'} \neq \delta_{mm'} M_m$

projection

$$M_m = P_m$$

The measurement operators satisfy the completeness relation

$$\sum_{m} M_{m}^{\dagger} M_{m} = I$$

Probabilities sum to one

$$\sum_{m} p(m) = \sum_{m} \langle \psi | M_{m}^{\dagger} M_{m} | \psi \rangle = 1$$

Composite systems

Postulate 4:

The state space of a composite system is the tensor product of the state spaces of the component systems.

If we have systems numbered 1through n, and system i is prepared in state $|\psi_i\rangle$, the state of the total system is

$$|\psi_1\rangle\otimes|\psi_2\rangle\otimes...\otimes|\psi_n\rangle$$

General measurement and projection II

Derivation: Given projection measurements and an *ancilla* system, derive the general measurement principles.

POVM measurement

General measurement postulate (post-measurement state not important).

A measurement is described by measurement operators $\,M_m$. The probability to get the outcome m is given by

$$p(m) = \langle \psi | M_m^{\dagger} M_m | \psi \rangle$$

We define the positive operator

$$E_m = M_m^{\dagger} M_m$$

which has the properties

$$\sum_{m} E_m = I \qquad p(m) = \langle \psi | E_m | \psi \rangle$$

We call E_m the *POVM-elements* and the set $\{E_m\}$ a *POVM.*

Distinghuishing quantum states

Given a single copy of one of two non-orthogonal states $|\psi_1\rangle, |\psi_2\rangle$, it is not possible to determine which state by any measurement.

Derivation: The example with $\{E_1, E_2, E_3\}$

Entanglement of two qubits

A composite state $|\psi\rangle$ of two qubits that can not be written as a tensor product of the states $|a\rangle,|b\rangle$ of the two qubits is *entangled*, that is

$$|\psi\rangle \neq |a\rangle|b\rangle$$

Derivation: Show that the Bell state

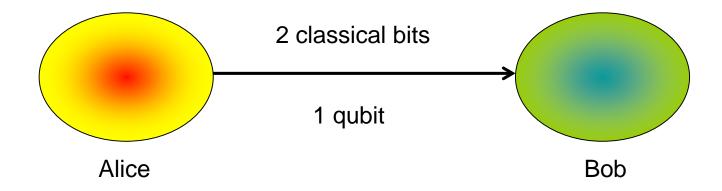
$$|\psi\rangle = \frac{1}{\sqrt{2}}[|00\rangle + |11\rangle]$$

is entangled

Entanglement is the "energy" for quantum information processing

2.3 Superdense coding

Suppose that Alice wants to send two bits of classical information to Bob by only sending one qubit. Can she do it?



Derivation: Superdense coding