Magnetic dipole interactions

Magnetic interaction - internal
Spin-orbit interaction: H e | 4
Hyperfine interaction ths =—f B ;

Magnetic interaction - external e g
Zeeman and Paschen-Back effect (Foot 5.5, SP 3.9)

We will study three magnetic effects in an atom.

The energy 1s always given by:

B—ce gl B;::-% :

and we need only determine how the magnetic moment
(1) and the magnetic field (ﬁ') should be calculated and

what wavefunctions (V) to use in the calculation in
each case.
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Magnetic dipole moment due to the orbital motion of
an electron
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Angular momentum couplings of two electrons in open subshells

Energy structure

Angular momentum

Wavefunctions
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An explicit, LS-coupled, non antisymetrized wave
function for a 2 electron configuration, »n ( n (,
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An explicit, LSJ-coupled, non antisymetrized wave
function for a 2 electron configuration, n ( n,(,
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Zeeman effect in the vector model

AB

H=p; e+ e
Weak field =>

e L and S precess much faster around J than J
around B

e The net effect of x is zero



pd-configuration LSJ-coupling and a
magnetic field
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Configuration Term Level Sublevel
Central field Repulsion Spin-orbit Mag. Field

Numerical example for 2p3d in O V, energies in cm!

E(2p3d)= 701810 Kinetic and central part of electrostatic
AE(P-D)= 8980 Direct part of electrostatic repulsion
AE (IF -'F)=15074 Exchange part of electrostatic repulsion
AE (°F4-3F3)= 235 Spin-orbit magnetic energy

AEnae(2-1)= 0.7 Magnetic energy separation in a 1T field
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Selection rules E1 (electric dipole) transitions
AJ=0,%1 not 0 to 0

Only one electron can change orbital, i.e. n(

Al=7*1

AM;=0,£1not 0 to 0if AJ =0

If perfect LS-coupling, i.e real states = basis
states

AS=0
AL =0,+1 not 0 till 0




Preparatory exercises

L
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The ground configuration in neutral Cd is 552 and the first excited configuration

is 353p. In the experiment vou will, among other lines, see the transition 3s5p P

- 3565 35,

a) Give the LS notation for the possible transitions between these terms.

b) You will find a green (A = 508.582 nm), a turquoise (. = 479.992 nm) and a
blue (A = 467.816 nm) line. Which of the transitions above correspond to the
different colors?

This exercise is essential to the lab and a solution must be presented before
vou are allowed to continue.

In the experiment you will study the transitions 3s3p !P1 - Ss5d !Da,
353p Pz - 3s6s 381, 3s5p *P1 - 3s6s 381 and 5s5p *Py - 3s6s 381 in a weak
magnetic field.

a) Derive the Landé g factor assuming LS coupling for the levels involved in
the four transitions.

b) Draw large and nice diagrams showing the different Zeeman components
that each of the 4 lines (not levels) split into in the magnetic field in the
manner of Figure 3.16 in Spectrophysics or Figure 5.13 in Atomic Physics.
Thus. choose a relative energy scale, with zero at the energy of the transition
without magnetic field, and show the splittings in units of ygF along the x —
axis. Let all Zeeman components have the same intensity.

c) What is the state of polarization of each of the components?

d) Which components do vou expect to see in a direction parallel to the
magnetic field?

Let B = 0.5 T. How large is the smallest splitting between the components

derived above?
a) Expressedin eV
b) Expressed in cm™

c) Expressed in nm
Use Appendix 1 to answer the following. A Fabry-Perot interferometer operating

in air have mirror surfaces with a reflectance of R = 0.85 and separated by
3.085 mm_We use a light source with a wavelength of 500 nm.

a) What is the free spectral range expressed in cm'! and in nm.
b) What is the line width expressed in cm™! and nm.

c) Does the size of the rings increase or decrease in higher spectral orders?

Use Appendix 2 to answer the following. What is the polarization of light when
the electric field is described by the expressions below?

a) E=E,- (&, -sin( iz — @f) +&, -cos(fz— @)

b) E=5-2, -sn(kz—ot+1/2)+3-2, -sn(kz— @f)
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Zeeman effect and the polarization of light
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T
transversal

longitudinal

Viewed in absorption: AM , =x1=0¢", AM,=0=7



Magnetic effects on the spectrum from a white
dwarf. Magnetic field about 6000 T!!

(Paschen-Back effect)

Balmer-beta
Balmer - alpha






Zeeman vs. Paschen-Back in a P

Zeeman

Paschen-Back
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