The foundations of quantum mechanics were established during
the first half of the twentieth century by Niels Bohr, Werner
Heisenberg, Max Planck, Louis de Broglie, Albert Einstein, Erwin
Schridinger, Max Born, John von Neumann, Paul Dirac,
Wolfgang Pauli, David Hilbert.....

Erwin Schrédinger

In January 1926, Schriédinger published in Annalen der Physik
the paper "Quantisierung als Eigenwertproblem' [tr. Quantization
as an Eigenvalue Problem] on wave mechanics and what is now
known as the Schrédinger equation. ... This paper has been
universally celebrated as one of the most important achievements
of the twentieth century, and created a revolution in quantum
mechanics, and indeed of all physics and chemistry.
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Important steps in the development of our atomic models
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Empty space and indivisible particles
Continuous matter made up of the 4 elements
Hard sphere, kinetic theory of gases
Systematic studies of experimental spectra

"Plum pudding", negative electrons imbedded in a
positive nucleus

Classically impossible planetary atom

Postulated stable "Rutherford atom". Introduced
quantization

Experimental determination of magnetic moments - spin

Non relativistic quantum mechanics. Stable orbits follow
from general postulates. Probability interpretation of
wavefunctions

Relativistic quantum mechanics. Explains spin and
antiparticles

Quantum electrodynamics (QED). Quantized EM field
that exists even in vacuum. Explains spontaneous
emission.

Electroweak interaction. QED + weak interaction

"Standard model"; Electroweak + strong interaction.
Higgs boson (2012)

Quantized gravity, TOE (Theory of everything) String
theory? Time-dependent fundamental constants....



Some quantum mechanical results.
Seee.g. McMurry Ch. 1 -4 and G. Ohlén Ch. 5

Some postulates:

The state ofa particle at time? is fully described by a continuous, complex
wavefunction u(z, y,z.t) which can be normalized so that |1.f|2 gives the probability
density for theresults of a position measurement. This means that:

I|u|2dV=1

Every measurable quantity, 4, in physicsis represented by a Hermitian operator, A.

If 4 has adiscrete, non-degenerate spectrumi.e.
Au =Au. . n=12 N,

a measurement of 4 can only give as a result an eigenvalue 4, of A. Afterthe
measurement the system is described by the corresponding eigenfunction uy.

Animportant special case is when A=H-=total energy. Then we get the famous
(time independent) Schrddinger equation:

Hu,=Eu,

Hermitian operators:
An operator is Hermitianif

(u

A Hermitian operator has real eigenvalues and orthogonal eigenfunctions

)= u

v) < J.us.;iv dv = I(ﬁu)sv dv

If a Hermitian operator has a discrete eigenvalue spectrum the set ofall
eigenfunctions is complete, i.e. arbitrary function, f, in the same coordinate space,
can be written as:

f = Zcﬂuﬂ



Completeness of sin(t) and cos(t)
Fourier analysis.

An arbitrary function f(t) with a period of T can always
be written as:

f(t):%ao+ S (amCos(Mat)+hy,sin(met))
m=1L

=27
T

Fourier approximation for a square wave with 1,3,5,25 terms
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Commutator:
The commutator of two operators is defined as:

(48] 15-5
(45]=[5.4], [LB+¢]=[18]+[4c]
[45.6]- [8.6]+[1.¢]a

] [AB] is Hermitian if 4 and B are.

If 4 and B are Hermitian and [43} = (O there exists a set of common

eigenfunctions. u,. i.e. Au, =a,u, and Bu, =b,ii,,.

If 4 and B commute they can simultaneously be measured with arbitrary
accuracy.

Expectation value:

The expectation (mean) value of an operator in a state described by the
wavefunction # is defined as:
< A >E<u|.»iu>

The variance of the operator is defined as:

(A.»i)z e P e

General statement of the uncertainty principle:

Let 4 and B be Hermitian and C =i - [AB} then

a&-&ézlﬁ:é:»‘
3

Constant of the motion:

sl o [H , A] >, where A is the Hamilton operator.
dt h

|:H g A] =(0= A41sa constant of the motion



1-dim infinite box of length L.

U(x)
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Quantum mechanical treatment of angular

momentum.
McMurry Ch. 4 and 6. (G. Ohlén Ch. 5 and 7.) Exercises: 7 - 9 (H2)

Recapitulation of basic quantum mechanical concepts. Ch 2-4.

Orbital angular momentum operators and commutator relations. Ch 4.

(5,1, =0 [£, £, =tk [£, 2, ]=on,
|22 |=0

General (orbital and spin) angular momentum operators (J2, J.) and
commutator relations. Ch 6.1, 6.2.

jj’t’..r':m = ?IJJ(‘} e D : ;{,r':m
j__,;gj:m =m-h- Kioae
Jj integer or half integerand m=—j.—j+1....J—LJ

Orbital angular momentum eigenfunctions Y¢m(6,0), ¢ mteger. Ch
4.5,4.6

Parity [](,,)= (-1’

Angular distributions |7, ,, (6, (p)|2




Orbital Angular Momentum

McMurry Ch. 4

L=rxp







General Angular Momentum Operators.

Orbital, spin, nuclear, sums of momenta....
Defined from the commutator relations derived for the orbital case.

McMurry Ch 6 solves the general eigenvalue problem using step
operators j'i = jx +i] , and obtains the following eigenvalue

relations:

jzlj,m % hz](] +1) : Zj,m
Jz;t’j,m :m'h'lj,m'
j integer or half integer

M el

=2 m—==2 =1 013



Notation for angular momentum operators and
eigenfunctions

General:

J.J,. Xm (Orbital, spin-, nuclear- or sums of momenta)

quantum numbers: j and m

Orbital angular momentum:
ﬁz,ﬁz,}’é:m. Y, is called a spherical harmonics
quantum numbers: £ and m

Show that m, and hence also £, must be an integer. Determine Y,



Orbital angular momentum in spherical coordinates.
McMurry Ch. 4. GO Ch. 7

Z

[x =rsinfcosg
y =rsing@sin@ dV =dxdydz = r*sin @ - drd0dy

Z=rcos@

pe. 0 cosp O
L, = th(sin &y + tanﬁ%)’
0 d
L, = ih(— cos Y5 T :::; 5‘{,0)
Note,
0 independent of 7!

L, = —ith—
de

6 1 9 1 B
2 _ g2 9 il o=
Rp=sh (392 g2 tan § 00 i sinzﬁﬂcpz)



Examples of orbital angular momentum with € = 1 and 2.

L=H-Ji(t+D)

L.=h-m,




Table4.1 Legendre polynomials and associated Legendre functions.

Legendre polynomials
Py(cos 8) =1
Pi(cos 8) = cos 6
P,(cos 8) = 3(3cos? 6 — 1)
Ps(cos 8) = 5(5cos® 8 — 3 cos 6)
Py(cos 8) = %(35 cos* 8 — 30cos? 6 + 3)

Associated Legendre functions
P](cos 6) = Py(cos 6)
Pi(cos 6) = sin 6
P3(cos 8) = 3sin O cos 6
P5(cos ) = 3sin? @
P3(cos 6) = %sin 0(5cos?8 — 1)
P3(cos ) = 15sin? 6 cos 6
P3(cos 8) = 15sin® @



|

TABLE 2.1 SPHERICAL HARMONICS

Y,,, = 1/3%5; sin20 e+2i¢
Yo = F \/é—i— sin 0 cos § e*1¢
Yy = (2 cos?0 — sinZ0)

16n

Y3,i3 — \ /6%51__[_ SiﬂSB o1 3id
\f&s—- sin®0 cos 6 e+2i¢
32m

Y340 =
Y301 =7 62411*: (4 cos?® sin O — sin30) e*io
Y35 = t (2 cos?0 — 3 cos O sin20)

161



Cartesian: (x, Vv, Z) — (=X, -V, -2)
Polar coordinates: » > r,0 >71-6, 0 > @+

Spherical harmonics ¥, (7-0,9+7)=(-1)"-Y,,(0,9)
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Spin angular momentum, S
McMurry Ch 6.2

Magnitude quantum number s =12

S=h1/s(s+l):>S=|S|=—

Projection quantum number ms =+ 14

S.=mh=1t—h

/2. Mg ('SZ) 5

M,ﬂﬁ(ﬂ/ 2)=1
(F1/2)=0

.-"2: 11/2





