Addition of (all types of) angular momenta.

McMurry Ch 6.3. Exercises: 10 - 11 + 17 (H3)

Extremely important in atomic physics!!

Operators:
$$\hat{J} = \hat{j}_1 + \hat{j}_2$$
.

Quantum numbers:
$$J = |j_1 - j_2|, |j_1 - j_2| + 1, \dots, j_1 + j_2, M = -J, -J + 1, \dots, J$$

Eigenfunctions:

$$\chi_{j_i,m_i}$$
 eigenfunction to \hat{j}_i^2 and \hat{j}_{iz} , $i=1,2$

$$\psi_{j_1,j_2,J,M}$$
 eigenfunction to $\hat{j}_1^2,\hat{j}_2^2,\hat{J}^2$ and \hat{J}_z

$$\psi_{j_1,j_2,J,M} = \sum_{m_1} C(j_1,m_1,j_2,M-m_1:J,M) \cdot \chi_{j_1,m_1} \cdot \chi_{j_2,M-m_1}$$

where the ${\it C}$ - coefficients are called Clebsch-Gordan, and are given by exact analytical expressions

Classical example of the addition of angular momenta.

$$\mathbf{L}_{\text{system}} = \mathbf{L}_{\text{orbit}} + \mathbf{L}_{\text{spin}} = \mathbf{r}_{\text{cm}} \times M \cdot \mathbf{v}_{\text{cm}} + \mathbf{L}_{\text{spin}} =$$

$$\mathbf{r}_{\text{cm}} \times M \cdot \mathbf{v}_{\text{cm}} + I \cdot \mathbf{\omega}$$

$$j_1 = 1, m_1 = -1, 0, 1$$

 $j_2 = 2, m_2 = -2, -1, 0, 1, 2$

Coupling of two angular momenta

Let χ_{j_i,m_i} be eigenfunctions of \hat{j}_i^2 and \hat{j}_{iz} for i=1 and 2, and $\hat{J} = \hat{j}_1 + \hat{j}_2$.

$$J = |j_1 - j_2|, |j_1 - j_2| + 1, \dots, j_1 + j_2$$

The eigenfunctions of \hat{J}^2 and \hat{J}_z are then obtained through:

$$\psi_{j_1,j_2,J,M} = \sum_{m_1} C(j_1,m_1,j_2,M-m_1:J,M) \cdot \chi_{j_1,m_1} \cdot \chi_{j_2,M-m_1}.$$

where the C-factors are called Clebsch-Gordan coefficients.

$$\psi_{j_1,j_2,J,M}$$
 is an eigenfunction of $\hat{j}_1^2,\hat{j}_2^2,\hat{J},$ and \hat{J}_z

Clebsch-Gordan coefficients, both in exact analytical form and also numerically, may be found in tables or obtained from the net, e.g at: http://personal.ph.surrey.ac.uk/~phs3ps/cgjava.html