






Series solution of the radial differential equation. 
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Ansatz:

( ) 0.

Calculate the derivatives and collect terms with similar powers in (8) 
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The lowest order term arise from the first sum with k = 0. If we write that term separately the 

first sum will start with k = 1 and both sums will be in powers of s + k – 1. If we change 

summation index in the first sum from k to k + 1 we can write everything as a single 

summation: 
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If the polynomial is zero for all values of ρ then each coefficient must be zero individually. 

Since we assumed 0 0c   the first term gives 1 or .s s     The last possibility must be 

ignored since it leads to a non-normalizable function P(ρ) when ρ →0. 

To make everything within the curly brackets equal to zero in the remaining summation the  

c - coefficients must satisfy the recursion relation (using 1s   ) 
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For large 
2

1 the ratio of the coefficients will be / 2 / 2 / .k kk c c k k k    This ratio is the same 

as that between successive terms in the expansion of 
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Hence, for large ρ the two functions behave similar and 2( )  when .P e e     

Thus it is not normalizable and the series must be truncated, i.e.  for some 

00,1,2... ( / ) ( 1) 0k N Z a N      . 

Introducing the main quantum number 01 1,2,3,... we obtain finally /n N Z a n      

and hence a quantized energy: 
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Thus the reasonable demand that the wavefunction is normalizable leads to a quantized 

energy!! 

 

 














