Roadmap to the structure of N-electron atoms

Hydrogenic systems:

Quantum defect

2-electron systems:

Perturbation treatment - very crude

Antisymmetric wavefunctions - very important

N-electron systems:

Central field approximation

Configurations

The periodic table of elements

LS-coupling:

Detailed energy structure within a configuration

170

levels in each p⁵s configuration, ten levels in each p⁵p, and twelve levels in each p⁵d or p⁵f configuration.)

Angular momentum

Classical

$$\mathbf{L} = \mathbf{r} \times \mathbf{p}$$

$$\frac{d\mathbf{L}}{dt} = \mathbf{\tau} = \mathbf{r} \times \mathbf{F}$$

L conserved / constant of the motion if: $\begin{cases} 1 \colon \mathbf{F} = 0 \\ 2 \colon \mathbf{F} \| \mathbf{r} \text{ i.e. central forces} \end{cases}$

Quantum mechanical

$$\hat{\mathbf{L}}$$
 constant of the motion $\Leftrightarrow \frac{d}{dt} < \hat{\mathbf{L}} >= 0 \Leftrightarrow [\hat{\mathbf{H}}, \hat{\mathbf{L}}] = 0$ (Ohlén p. 120)

Central field approximation:

Each electron moves in a central field $\Rightarrow \hat{\ell}_i$, i = 1, 2, ..., N conserved

This is not true when the non-central part of the electrostatic repulsion is taken into account!

pd-configuration LS-coupling

Configuration Term
Central field Repulsion

Numerical example for 2p3d in OV, energies in cm⁻¹

E(2p3d) = 701810 Kinetic and central part of electrostatic

 $\Delta E (P - D) = 8980$ Direct part of electrostatic repulsion

 $\Delta E (^{1}\text{F} - {}^{3}\text{F}) = 15074$ Exchange part of electrostatic repulsion

An explicit, LS-coupled, non antisymetrized wave function for a 2 electron configuration, $n_1 l_1 n_2 l_2$

$$\begin{split} \left| LM_{L}SM_{S} \right\rangle &= \sum_{m_{\ell_{1}}m_{\ell_{2}}} \sum_{m_{s_{1}}m_{s_{2}}} \\ C(\ell_{1}m_{\ell_{1}}\ell_{2}m_{\ell_{2}}:LM_{L}) \cdot C(s_{1}m_{s_{1}}s_{2}m_{s_{2}}:SM_{S}) \\ R_{n_{1}\ell_{1}}(r_{1})Y_{\ell_{1}m_{\ell_{1}}}(\theta_{1},\varphi_{1})\chi_{s_{1}m_{s_{1}}}(s_{z_{1}}) \cdot R_{n_{2}\ell_{2}}(r_{2})Y_{\ell_{2}m_{\ell_{2}}}(\theta_{2},\varphi_{2})\chi_{s_{2}m_{s_{2}}}(s_{z_{2}}) \end{split}$$

Equivalent electrons, p^2 configuration.

The table shows $M_L^{M_S}$ where $M_L = m_{l_1} + m_{l_2}$ and $M_S = m_{s_1} + m_{s_2}$.

- --: Marks the "diagonal" where all quantum numbers would be equal, which is not possible for antisymmetric wavefunctions (Pauli principle).
- x: Marks states indistinguishable from states above the diagonal which means that both cannot exist.

The allowed combinations correspond exactly to the *LS*-terms ¹D, ¹S and ³P, which are thus the only possible ones in a p² configuration.

For a general 2-electron configuration $n\ell^2$ it can be shown that the allowed LS terms are those for which:

L + S is an even number

Permitted LS-terms with equivalent electrons

Note: electrons and holes, e.g p^2 and p^4 , give the same LS terms

```
^{2}S
S
             1S
             ^{2}P
                                                                           ^{3}P
             1(SD)
                                                                           4S
             2(PD)
d, d9
             ^{2}D
d^2, d^8
                                                                           3(PF)
             1(SDG)
d^3, d^7
             2(PD,FGH)
                                                                           4(PF)
d4, d6
                                                                                                                         5D
                                                                           3(P,DF,GH)
             ^{1}(S,D,FG,I)
                                                                                                                         6S
             2(SPD,F,G,HI)
                                                                           4(PDFG)
f. f13
             ^{2}F
f2, f12
             1(SDGI)
                                                                           3(PFH)
f3, f11
             <sup>2</sup>(PD<sub>2</sub>F<sub>2</sub>G<sub>2</sub>H<sub>2</sub>IKL)
                                                                           4(SDFGI)
f4, f10
                                                                                                                         5(SDFGI)
                                                                           ^{3}(P_{3}D_{5}F_{4}G_{3}H_{4}I_{5}K_{5}LM)
             ^{1}(S_{2}D_{4}FG_{4}H_{2}I_{3}KL_{2}N)
f5, f9
                                                                          4(SP,D,F,G,H,I,K,LM)
                                                                                                                         6(PFH)
            ^{2}(P_{4}D_{5}F_{7}G_{6}H_{7}I_{5}K_{5}L_{3}M_{2}NO)
             {}^{1}(S_{4}PD_{6}F_{4}G_{8}H_{4}I_{7}K_{3}L_{4}M_{2}N_{2}Q)
                                                                           ^{3}(P_{6}D_{5}F_{9}G_{7}H_{9}I_{6}K_{6}L_{3}M_{3}NO)
                                                                                                                         ^{5}(SPD_{1}F_{2}G_{3}H_{2}I_{2}KL)
                                                                                                                                                          8S
                                                                           ^4(S,P,D,F,G,H,I,K,L,MN)
                                                                                                                         6(PDFGHI)
             {}^{2}(S_{2}P_{5}D_{7}F_{10}G_{10}H_{9}I_{9}K_{7}L_{5}M_{4}N_{2}OQ)
```

^aH. N. Russell, Phys. Rev. 29, 782 (1927); R. C. Gibbs, D. T. Wilber, and H. E. White, Phys. Rev. 29, 790 (1927).

pd-configuration LSJ-coupling

Configuration	Term	Level		
Central field	Repulsion	Spin-orbit		

Numerical	example	for	2p3d	in	O	V,	energies	in	cm ⁻¹

E(2p3d) = 701810 Kinetic and central part of electrostatic

 $\Delta E (P - D) = 8980$ Direct part of electrostatic repulsion

 ΔE (¹F - ³F) = 15074 Exchange part of electrostatic repulsion

 $\Delta E (^{3}F_{4}-^{3}F_{3}) = 235$ Spin-orbit magnetic energy

The observed energy levels of the configuration Ti III 3d4p.

Selection rules E1 (electric dipole) transitions

Foot 2.26: Rate
$$\propto \left| e\overline{E}_0 \right|^2 \cdot \left| \int \Psi_2(\hat{r} \cdot \overline{e}_{rad}) \Psi_1 d^3 r \right|^2$$

$$\Delta J = 0, \pm 1 \text{ not } 0 \text{ to } 0$$

Only one electron can change orbital, i.e. $n\ell$.

Highly unlikely that two electrons would rearrange themselves simultaneously

$$\hat{r}$$
 = one-electron operator

$$\Delta \ell = \pm 1$$

 \hat{r} has odd parity and $Y_{\ell,m}(\theta,\varphi)$ has $(-1)^{\ell}$

If perfect LS-coupling

$$\Delta S = 0$$

 \hat{r} does not include spin, thus can't change it

$\Delta L = 0, \pm 1 \text{ not } 0 \text{ till } 0$

Follows from ΔJ and ΔS

pd configuration in jj-coupling

Same number of energy levels and the same total J as in LS-coupling. Only our <u>names</u> of the levels have changed.

pd-configuration LSJ and jj - coupling

Same number of energy levels and the same total J. Only our <u>names</u> of the levels have changed.

LS to jj - coupling transition in a sp-configuration. Foot Fig. 5.10

Relative energies as a function of the spin-orbit parameter, β .

Note how the 2 J=1 states seems to "repel" each other while the two unique J-values (0 and 2) just increase linearly with the β -parameter.

Intermediate coupling in a sp configuration

The "physical" levels that we <u>name or label</u> 3P_1 and 1P_1 can be written as linear combinations of the LS-coupled basis functions. If a >> b then 3P_1 has properties very close to those of the basis function $|{}^3P_1>$. If, on the other hand a \approx b then it behaves both like a singlet and a triplet.

Selection rules E1 (electric dipole) transitions

Foot 2.26: Rate
$$\propto \left| e\overline{E}_0 \right|^2 \cdot \left| \int \Psi_2(\hat{r} \cdot \overline{e}_{rad}) \Psi_1 d^3 r \right|^2$$

$$\Delta J = 0, \pm 1 \text{ not } 0 \text{ to } 0$$

Only one electron can change orbital, i.e. $n\ell$.

Highly unlikely that two electrons would rearrange themselves simultaneously

$$\hat{r}$$
 = one-electron operator

$$\Delta \ell = \pm 1$$

 \hat{r} has odd parity and $Y_{\ell,m}(\theta,\varphi)$ has $(-1)^{\ell}$

If perfect LS-coupling

$$\Delta S = 0$$

 \hat{r} does not include spin, thus can't change it

$\Delta L = 0, \pm 1 \text{ not } 0 \text{ till } 0$

Follows from ΔJ and ΔS

LS or jj-basis

$$\psi(^{1}P_{1}) = a' \cdot |^{3}P_{1} > +b' \cdot |^{1}P_{1} > = a'' \cdot (1/2, 1/2)_{1} + b'' \cdot (1/2, 3/2)_{1}$$

