Roadmap transitions

- Einstein coefficients A₂₁, B₁₂ and B₂₁ (H2, #31) Foot Ch 1.7, SP 7.4, 7.5
- Basic conditions for laser action
- Much more about lasers (not covered here):

Spectrophysics Ch. 14

Wikipedia,

Atomic Physics Home page (Popular description in Swedish)

http://www.atomic.physics.lu.se/research/,

Lecture by Prof Anne L'Huillier (Monday 11/2)

Many elective courses given by the division

- Lifetime and Intensity
- Selection rules Foot Table 5.1, SP 2.4.4
- Relative intensities in *LS* multiplets (H2, #33) and two-electron lab

Boltzmann population distribution at thermal equilibrium

Degeneracy – statistical weight, g, in a pd-configuration.

Planck's Radiation Law

Assume that light can only be absorbed or emitted in discrete quantities (photons) where the energy depends on frequency as:

$$E = h \cdot f = h \cdot \frac{c}{\lambda}, \ h = 6,62 \cdot 10^{-34} \text{ Js}$$

The energy density per frequency interval, ρ , is then given by:

$$\rho(f) = \frac{8\pi h f^3}{c^3} \cdot \frac{1}{e^{hf/kT} - 1},$$

[\rho]=1 J/(m³×Hz) = 1Js/m³

Einstein coefficients

$$A_{21}N_{2} + \rho B_{21}N_{2} = \rho B_{12}N_{1} \Longrightarrow \dots \Longrightarrow \begin{cases} g_{2}B_{21} = g_{1}B_{12} \\ g_{2}A_{21} = \frac{8\pi hf^{3}}{c^{3}}g_{1}B_{12} \end{cases}$$
(Exercise 32)

If
$$g_1 = g_2$$
 then $\begin{cases} B_{21} = B_{12} \\ A_{21} \sim f^3 \cdot B_{21}, \sim f^3 \cdot B_{12} \end{cases}$

Consequences:

- Drive hard and *saturate* a transitions, i.e. $N_1 = N_2$
- Laser actions requires $N_2 > N_1$ i.e. an *inverted* population
- Difficult to obtain laser action at short wavelengths due to the f^3 scaling

Selection rules and metastable levels in He

Fig. 2.9. The energy level structure of He.

Observations of so-called spin forbidden transitions, i.e. where $\Delta S \neq 0$, is one sign of intermediate coupling effects. The $1s^2 {}^{1}S_0 - 1s2p {}^{3}P_1$ has indeed been observed in all He-like systems.

Laser problem 1: Inverted population

Always some "trick".

For example optical pumping or the HeNe-scheme. The latter uses a near coincidence in energy between 2s^{1,3}S in He and 4s and 5s in Ne which opens a selective collisional excitation of the latter levels in Ne, thereby obtaining an inverted population relative to lower lying levels.

Laser problem 2: High intensity

(Fabry-Perot lecture in lab preparation)

Spectral line intensity.

Where n_{ij} is the number of emitted photons per second in 4π steradian (full sphere).

The number of detected photons, the intensity, is then

$$I_{ij} = \varepsilon(\lambda_{ij}) \cdot A_{ij} \cdot N_i$$

where $\varepsilon(\lambda)$ takes care of the solid angle subtended by the detector and all, wavelength dependent, detector efficiencies. Here the intensity is measured in <u>number</u> of photons per second and unit area, meaning that the normal unit W/m² is obtaind by multiplying by the energy *hf* of one photon.

Eta Carinae

Almost all information we have about our surroundings comes from the analysis of light

Astrophysical application

Chi Lupi is a blue giant star in the constellation Lupus, 195 light years away

Isotope anomaly of Hg in the atmosphere of χ – Lypi. Leckrone, Wahlgren and Johansson Ap J 377, L37 (1991)

Absorption - classical.

The incoming light (electric field) induces an oscillating electric dipole moment $\overline{d} = -q \cdot \overline{E}$

Damped and driven harmonic oscillator

Selection rules E1 (electric dipole) transitions

 $\Delta J = 0, \pm 1 \text{ not } 0 \text{ to } 0$ Exercise 17

Only one electron can change orbital, i.e. $n\ell$ Highly unlikely that two electrons would rearrange themselves simultaneously $\hat{r} =$ one-electron operator

 $\Delta \ell = \pm 1$

 \hat{r} has odd parity and $Y_{\ell,m}(\theta,\varphi)$ has $(-1)^{\ell}$

If perfect LS-coupling, i.e real states = basis states

 $\Delta S = 0$

 \hat{r} does not include spin, thus can't change it

 $\Delta L = 0, \pm 1 \text{ ej } 0 \text{ till } 0$

Follows from ΔJ and ΔS

Relative intensities in the Be-sequence

Relative intensities in some LS multiplets

The (normally) very intense "diagonal" in the multiplets is shown in red

	$^{2}S_{1/2}$	${}^{2}P_{1/2}$	$^{2}P_{3/2}$	$^{2}D_{3/2}$	$^{2}D_{5/2}$
${}^{2}P_{1/2}$	1	2	1	5	
${}^{2}P_{3/2}$	2	1	5	1	9

	$^{2}D_{3/2}$	$^{2}D_{5/2}$	${}^{2}F_{5/2}$	${}^{2}F_{7/2}$	$^{2}G_{7/2}$	$^{2}G_{9/2}$
${}^{2}F_{5/2}$	14	1	20	1	27	
${}^{2}F_{7/2}$		20	1	27	1	35

	$^{3}S_{1}$	$^{3}\mathbf{P}_{0}$	$^{3}P_{1}$	$^{3}P_{2}$	$^{3}\mathrm{D}_{1}$	$^{3}D_{2}$	$^{3}D_{3}$
$^{3}P_{0}$	1		4		20		
$^{3}P_{1}$	3	4	3	5	15	45	
$^{3}P_{2}$	5		5	15	1	15	84

	$^{3}D_{1}$	$^{3}D_{2}$	$^{3}D_{3}$
$^{3}D_{1}$	81	27	1
$^{3}D_{2}$	27	125	28
$^{3}D_{3}$	-	28	224

	³ D ₁	$^{3}D_{2}$	$^{3}D_{3}$	$^{3}F_{2}$	$^{3}F_{3}$	$^{3}F_{4}$	$^{3}G_{3}$	$^{3}G_{4}$	$^{3}G_{5}$
$^{3}F_{2}$	189	35	1	640	80		720		
$^{3}F_{3}$		280	35	80	847	81	63	945	
$^{3}F_{4}$			405		81	1215	1	63	1232

Relative intensities in a ³D - ³F multiplet and the LS sum rules

	$^{3}D_{1}$	$^{3}D_{2}$	$^{3}D_{3}$	Σ int.	$g_{\rm L} = 2J+1$	$(\Sigma \text{ int.})/g_{\text{L}}$
$^{3}F_{2}$	189	35	1	225	5	45
³ F ₃		280	35	315	7	45
$^{3}F_{4}$			405	405	9	45
Σ int.	189	315	441			
$g_{\rm U} = 2J + 1$	3	5	7			
$(\Sigma \text{ int.})/g_{\text{U}}$	63	63	63			

The sum of all intensity TO a given LOWER level is proportional the statistical weight (2J+1) of the level.

The constant is the same for all levels of the lower LS term.

The sum of all intensity FROM a given UPPER level is proportional the statistical weight of the level.

The constant is the same for all levels of the upper LS term

