

Synchrotron radiation and applications of synchrotron radiation

Joachim Schnadt Division of Synchrotron Radiation Research Department of Physics Lund University

Synchrotron radiation and synchrotron radiation facilities

What is synchrotron radiation?

Synchrotron radiation was first observed at a synchrotron (at the General Electric Synchrotron Accelerator in 1946). Today synchrotron radiation for use in materials experiments is normally produced in *electron storage rings*.

Cyclotron: accelerator with constant magnetic field in electric field-free space and alternating electric field for acceleration, spiral electron trajectory, increasing electron energy

Synchrotron: accelerator with varying magnetic and electric fields, fixed electron trajectory, increasing electron energy

Storage ring: accelerator with fixed electron trajector and fixed electron energy, electron speed close to speed of light, fields of bending magnets fixed, alternating electron field for compensating energy loss

Cyclotron, synchrotron, storage ring

Synchrotron radiation facilities around the world

Action of a synchrotron radiation source

www.isa.au.dk – ASTRID, Aarhus University, Denmark

Properties of synchrotron radiation

Adapted from Terasawa and Kihara *in:* H. Saisho and Y. Gohshi (Eds.), *Applications of Synchrotron Radiation to Materials Analysis*, Elsevier, Amsterdam, 1996

(1) A continuous spectrum from the infrared to the X-ray region.

(2) High intensity, owing to the high current electrons accumulated in the storage ring.

(3) Collimation of the emitted radiation in the instantaneous direction of flight of the emitting particles (the angular spread is of the order of 1 mrad).

A relativistic speeds (Lorentz contraction factor $\gamma = 1/(1-v^2/c^2)^{1/2}$) electrons emit into the forward direction.

Images: D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation, Cambridge University Press, Cambridge, 1999

Light emission of relativistic electrons

D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation, Cambridge University Press, Cambridge, 1999.

Properties of synchrotron radiation

Adapted from Terasawa and Kihara *in:* H. Saisho and Y. Gohshi (Eds.), *Applications of Synchrotron Radiation to Materials Analysis*, Elsevier, Amsterdam, 1996

(4) Polarisation control

Properties of synchrotron radiation

Adapted from Terasawa and Kihara *in:* H. Saisho and Y. Gohshi (Eds.), *Applications of Synchrotron Radiation to Materials Analysis*, Elsevier, Amsterdam, 1996

(5) High brilliance of the source, because of the small cross section of the electron beam and the high degree of collimation of the radiation.

Flux = number of photons/(s mm²)

Brilliance = flux/(mrad² 0.1% BW)

0.1% BW denotes a bandwidth of $10^{-3}v$ centered around the frequency v.

(6) A time structure with pulse lengths down to 100 ps.

(7) Absolute calculability of all the properties of the source.

(8) Cleanliness of the source, since the light emission takes place in an ultra-high vacuum, in contrast to the situation in gas discharge or spark lamps.

Ways of producing synchrotron radiation

OLIVE * SIGILI

Bending magnet radiation

Undulators and wigglers

Undulator equation:

Why undulators and wigglers?

FIGURE 5.24. General trends of spectral brightness for undulator radiation, wiggler radiation, and bending magnet radiation, showing the complementary nature of soft x-ray (1–2 GeV) and hard x-ray (6–8 GeV) storage ring facilities. High spectral brightness is particularly useful for experiments involving scanning microscopy and partial coherence, diffraction from small crystalline samples, and other studies which generally benefit from radiation of minimal divergence emanating from a small source size. Units as in Eq. (5.65).

D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation, Cambridge University Press, Cambridge, 1999.

Improved flux / brilliance as compared to bending magnet sources!

www.hasylab.de

Z

1- 200

MAX IV Laboratory – the national synchrotron radiation facility in Lund

Why will MAX IV be world-best?

Circumference (m)	528
Nr of straight sections	20
Injection	full energy, top-up
Stored current (mA)	500
Horizontal emittance (nm rad)	0.2 - 0.3
Vertical emittance (nm rad)	< 0.008
Horizontal beam size (σ μm)	42 52
Vertical beam size (σ μm)	< 6

Circumference (m)	96
Nr of straight sections	12
Injection	full energy, top-up
Stored current (mA)	500
Horizontal emittance (nm rad)	6.0
Vertical emittance (nm rad)	0.06
Horizontal beam size (σ μm)	184
Vertical beam size (σ μm)	13

Characteristics will allow:

nanofocusing, use of coherence, extremely high resolution, use of very small biological samples, ...

Sweden is not dark!

26 August 2015: circulating electron beam in the 3 GeV ring of MAX IV

2 November 2015: synchrotron radiation recorded

The MAX IV Laboratory

- 1. FemtoMAX (2015) Ultra-fast processes in materials
- 2. NanoMAX (2016) Imaging, spectroscopic & scattering with nanometer resolution
- 3. BALDER (2016)

-H

X-ray absorption spectroscopy in-situ and time resolved

- 4. BioMAX (2016) Highly automated macromolecular crystallography
- 5. VERITAS (2016)

RIXS with unique resolving power and momentum resolution

6. HIPPIE (2016)

High-pressure photoelectron spectroscopy

7. ARPES (2017)

Angle resolved photoelectron spectroscopy

- 8. FinEstBeaMS (2017) Estonian-Finnish Beamline for Materials Science
- 9. SPECIES (Transfer) (2017) VUV High-pressure photoelectron spectroscopy and RIXS
- 10. FlexPES (Transfer) (2017) Photoelectron Spectroscopy and NEXAFS
- 11. MAXPeem (Transfer) (2017) Photoelectron microscopy

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik

- 12. CoSAXS (2018) Small angle scattering
- 13. SoftiMAX (2018) Coherent Soft X-Ray Scattering, Holography

14. DanMAX (2019)

Initial beamline programme

- **BioMAX (3 GeV ring):** A multipurpose high throughput beamline for macromolecular crystallography.
- VERITAS (3 GeV ring): A beamline for soft X-ray Resonant inelastic X-ray scattering (RIXS) in the energy range of 275-1500 eV.
- **HIPPIE (3 GeV ring):** A state-of-the-art beamline for high pressure X-ray photoelectron spectroscopy (HP-XPS), high pressure X-ray absorption spectroscopy (HP-XAS) as well as XPS and XAS in ultrahigh vacuum.
- NanoMAX (3 GeV ring): A hard X-ray beamline for micro- and nanobeams.
- **FemtoMAX (Linac):** A beamline situated on the extension of the linac to facilitate studies of the structure and dynamics of materials with X-ray pulses of 100 fs.
- **ARPES (1.5 GeV ring):** A beamline for angle resolved photo electron spectroscopy (ARPES)c overing photon energies between 10-1000 eV but with emphasis on the lower energy range.
- Balder (3 GeV ring): A beamline for in-situ hard X-ray spectroscopy.
- SPECIES (1.5 GeV ring): A VUV beamline for high pressure X-ray photoelectron spectroscopy (HP-XPS) and Resonant inelastic X-ray scattering (RIXS)
- FinEstBeaMS (1.5 GeV ring): A beamline for soft x-ray spectroscopy on vapours and materials
- **SoftiMAX (3 GeV ring):** A beamline for coherent x-ray imaging and for scanning transmission x-ray microscopy (STXM).
- CoSAXS (3 Ge V ring): A beamline for small angle x-ray scattering (SAXS).
- FlexPES/PEEM (1.5 GeV ring): Transfer of the Photoemission electron microscopy and of a soft x-ray spectroscopy beamline from present MAX-lab.

Applications of synchrotron radiation

Applications of synchrotron radiation

Spectroscopy

X-ray absorption spectroscopy, including X-ray magnetic circular dichroism X-ray emission spectroscopy Photoelectron spectroscopy, including Angle-resolved photoemission spectroscopy Vibrational spectroscopy

• • •

Imaging

X-ray tomography Synchrotron infrared microspectroscopy Photoemission electron microscopy Scanning x-ray microscopy Phase contrast microscopy Scattering

Powder diffraction, crystallography Small angle x-ray scattering Inelastic x-ray scattering Magnetic scattering Time resolved x-ray scattering

Microfabrication

X-ray lithography

List by no means complete!

Applications of synchrotron radiation

Spectroscopy

X-ray absorption spectroscopy, including X-ray magnetic circular dichroism X-ray emission spectroscopy Photoelectron spectroscopy, including Angle-resolved photoemission spectroscopy Vibrational spectroscopy

• • •

Imaging

X-ray tomography Synchrotron infrared microspectroscopy Photoemission electron microscopy Scanning x-ray microscopy Phase contrast microscopy Scattering

Powder diffraction, crystallography Small angle x-ray scattering Inelastic x-ray scattering Magnetic scattering Time resolved x-ray scattering

Microfabrication

X-ray lithography

List by no means complete!

X-ray photoelectron spectroscopy

(X-ray) Photoelectron spectroscopy

Photon in – electron out, i.e. PES is an *electron spectroscopy*

Photoelectric effect (observed by Heinrich Herz 1887, explained by Albert Einstein in 1905)

www.physicsforum.com

Works (of course) on atoms, molecules, and solids

Energy levels of atoms and solids

All electron spectrocopy methods rely on the electronic structure of atoms, molecules, and solids

Semiconductor or isolator Metal Increasing binding energy of electrons Vacuum level – Vacuum level Un-occupied, Unoccupied 3d (conduction band) 3s, 3p, 3d Partially occupied 3p Fermi level Valence 35 band 3s, 3p, 3d 2p _ 2p 2s -2s 1s ____ 1s ·CA Note: Energies not to scale NZ

Schematic energy level diagram for a solid

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik

Schematic energy level diagram for an atom

X-ray photoelectron spectroscopy

Photoelectron spectroscopy = Photoemission spectroscopy XPS = X-ray photoelectron spectroscopy UPS = Ultraviolet photoelectron spectroscopy

X-ray photoelectron spectroscopy

Core level binding energies:

characteristic for the elements

E	Bin	din	g er	nerg	jies																	55	Cs
		1s	2s	2p1	2p3	3s	3p1	3p3	3d3	3d5	4s	4p1	4p3	4d3	4d5	4f5	4f7	5s	5p1	5p3		50	
1	H	14																			H	96	ва
2	не	20 55																			He	57	La
4	Be	112																			Be	58	Се
5	В	188																			В	50	-
6	С	284																			С	59	Pr
7	N	410	2s	2p1	2p3	3s	3p1	3p3	3d3	3d5	4s	4p1	4p3	4d3	4d5	4f5	4f7	5s	5p1	5p3	N	60	Nd
8	0 F	543 686	23																		0 F	61	Pm
10	Ne	863	41	14	14																Ne	c0	o
11	Na	1072	64	31	31																Na	62	SIII
40	Ma		00	54	54																Ma	63	Eu
12	AI		90 119	74	74																AI	64	Gd
14	Si		153	103	102																Si	C.F.	Th
15	P		191	134	133	14															P	00	10
16	s		229	166	165	17															s	66	Dy
17	CI		270	201	199	17															CI	67	Но
18	Ar		319	243	241	22	3p1	3p3	3d3	3d5	4s	4p1	4p3	4d3	4d5	4f5	4f7	5s	5p1	5p3	Ar	60	Er
19	K		378	296	293	33	17	17													K	00	
20	Ca		439 501	350	347 402	44 53	20	20													Ca	69	Τm
22	Ti		565	464	458	62	37	37													Ti	70	Yb
23	V		630	523	515	69	40	40													V	71	1.0
24	Cr		698	586	577	77	46	45													Cr		Lu
25	Mn		770	652	641	83	49	48													Mn	72	Hf
26	Ге		847 927	723	710	93	56 63	55 61													Ге	73	Та
20	NII		1009	070	055	110	60	67													NI	74	w
20	INI			013	000	112	69	67													INI		
29	Cu		1098	954	934	124	79	77													Cu	75	Re
30	Zn		1196	1045	1022	140	92	89	10	10											Zn	76	Os
	_			1144	1117																_	77	Ir
31	Ga					160	108	105	20	20											Ga	78	Pt
32	Ge					184	128	124	32	31											Ge		
33 34	Se					207	140	143	40 58	44 57											AS Se	79	Au
35	Br					256	189	182	70	69	4s	4p1	4p3	4d3	4d5	4f5	4f7	5s	5p1	5p3	Br	80	Hg
36	Kr					287	216	208	89	88	22										Kr	81	TI
37	Rb					322	247	238	111	110	29	14	14								Rb		Die
38	Sf					358	280	269	135	133	37	20	20								Sf	82	PD
40	Zr					431	345	331	183	181	43 51	29	29								Zr	83	Bi
41	Nb					470	379	364	209	206	59	35	35								Nb	84	Po
42	Мо					508	413	396	233	230	65	38	38								Mo	85	At
43	Тс					544	445	425	257	253	68	39	39								Тс	86	Rn
44	Ru					587	485	463	286	282	11	45	45								Ru	87	Fr
40	Pd					673	561	490 534	342	309	63 88	49 54	49 54								Pd	99	Da.
47	Ag					718	604	573	374	368	97	58	58	4d3	4d5	4f5	4f7	5s	5p1	5p3	Ag	00	Rd
48	Cd					772	652	618	412	405	109	68	68	11	11						Cd	89	AC
											123											90	Th
49	In					828	704	666	453	445	120	79	79	19	19						In	91	Ра
50	Sn					884	757	715	494	486	137	91	91	26	25						Sn	92	U
51	Sh					946	814	768	539	530	155	105	105	35	3/1						Sh	93	Np
01	00					1000	014	100	000	500	171	100	100	00	04							04	D
52	Те					1009	873	822	585	575	171	114	114	44	43			14			Те	94	Рú
53	I					1071	930	874	630	619	186	123	123	52	50			16			1	95	Am
54	Xe					1144	997	936	685	672	209	141	141	65	63			19			Xe	96	Cm

1064	997	738	724	230	170	158	77	75			24			Cs	
1137	1062	795	780	254	192	179	92	90			23			Ва	
	1126	851	834	274	210	195	104	101			34	17	17	La	
	1184	900	882	290	222	207	112	108			37	18	18	Се	
		950	930	305	237	218	114	114			38	20	20	Pr	
		1001	980	318	248	227	120	120			38	23	23	Nd	
		1060	1034	337	264	242	129	129			38	22	22	Pm	
		1110	1083	349	283	250	132	132			41	20	20	Sm	
		1166	1136	366	289	261	136	136			34	24	24	Eu	
			1186	380	301	270	141	141			36	21	21	Gd	
				398	317	284	150	150			42	28	28	Tb	
				412	329	293	154	154			63	26	26	Dy	
				431	345	306	161	161			51	20	20	Но	
				451	362	320	169	169			61	25	25	Er	
				470	378	333	180	180			54	32	26	Tm	
				483	392	342	194	185			55	33	26	Yb	
				507	412	359	207	197			58	34	27	Lu	
				537	437	382	224	213	19	17	64	37	30	Hf	
				566	464	403	241	229	27	25	71	45	37	Та	
				594	491	425	257	245	36	34	77	47	37	w	
				628	521	449	277	263	45	43	81	44	33	Re	
				657	549	475	294	279	55	52	86	60	48	Os	
				692	579	497	313	297	65	62	98	65	53	Ir	
				726	610	521	333	316	76	73	105	69	54	Pt	
				763	643	547	354	336	89	85	110	75	57	Au	
				803	681	577	379	359	104	100	127	84	65	Hg	
				845	721	608	406	385	122	118	137	100	76	ті	
				893	762	645	435	413	143	138	148	107	84	Pb	
				942	807	681	467	443	164	159	161	120	94	Bi	
										184				Po	
										210				At	
										238				Rn	
										268				Fr	
										299				Ra Ar	
										333				Th	
					1168	968	714	677	344	335	290	226	179	Pa	
						1046	781	739	391	380	325	262	197	U	G.
						1086	816	771	414	402			206	Np	1
						1121	850	802	439	427			216	Pu	5
							883	832	463	449			216	Am	29 25
							919	865	487	473			232	Cm	252
				_				T	11	II.		N	1	7	1
							5	1	12	1	K	V		-	4
							6	5	11	}}	7	Ľ,	- Ja	7	F
							1	_ ,	1		~	~	· ·	-	

Chemical shifts in x-ray photoelectron spectroscopy

XPS Analysis of Pigment from Mummy Artwork

Saving the Vasa with XPS?

http://www-ssrl.slac.stanford.edu/research/highlights_archive/vasa.html

The study shows that in humid museum atmospheres a stepwise sulfur oxidation produces sulfuric acid $S(s) + \frac{3}{2}O_2 + H_2O \rightarrow 2H^+(aq) + SO_4^{2-}$

Mean free path I

XPS and AES rely on the **short mean free path** of **low energy electrons** in solids for achieving **surface sensitivity.**

 $-dI = \sigma N' I dx$
processes)

(σ : cross section for inelastic

(N': Scattering centers per cm³)

$$I(x) = I_0 e^{-\sigma N'x} = I_0 e^{-x/2}$$

where $\lambda = (\sigma N')^{-1}$ is the mean free path

I(x) is the intensity of electrons that have <u>not</u> lost any energy after they have travelled the distance x in the solid.

So, if you made all atoms in a solid emit electrons at a given energy of around say 70 eV and detected all electrons coming out of the sample with that energy, the majority of the electrons would come from the first few atomic layers.

Mean free path I

As you see virtually no electrons make it for more than 5λ without loosing energy.

Actually most of the electrons which escape from a surface without loosing energy have originated from within 1-2 * λ below the surface. Remember the minimum λ is about 5 Å.

X-ray photoelectron spectroscopy

Photon energies: 100-2000eV, Electron energies: 0-1000eV

X-ray photoelectron spectroscopy

- delivers elemental information
- delivers chemical information
- on solids: very surface sensitive

Iron phthalocyanine

Iron phthalocyanine (FePc)

- Similar to haem (responsible for oxygen storage and transport in mammals)
- Iron in ionic state (+2)
- Iron behaves very much as a single atom, but is modified due to presence of "macrocycle"

Do not confuse with notation from atomic spectroscopy! Atomic spectroscopy: Fe I = neutral helium, Fe II = Fe⁺, etc. Chemical notation: Fe(I) = Fe⁺, Fe(II) = Fe²⁺, etc.

Hund's rules for ground state configurations:

- (a) Highest possible S
- (b) Highest possible L for the S from (a)
- (c) Highest possible J for more than half-filled shell, smallest possible
 - J for less than half-filled shell

In general, in transition metal complexes the electron configurations are hydrogen-like!

Furthermore the d levels split up due to the "ligand field".

Iron phthalocyanines on a Au(111) surface

b) Configuration 2

X-ray photoelectron spectroscopy

X-ray photoelectron spectroscopy

Metal valence levels of iron phthalocyanine

Coupling of valence spin angular momentum with angular momentum of the core hole!

X-ray photoelectron spectroscopy

Pyridine, carbon monoxide, nitric oxide on iron phthalocyanine

d-levels of iron phthaloycanine

	Width (eV)	S
FePc/Au(111)	2.29	1
NH ₃ /FePc/Au(11 1)	1.02	0
Py/FePc/Au(111)	1.02	0
CO/FePc/Au(11 1)	1.01	0
NO/FePc/Au(11 1)	1.26	1/2

NH₃, pyridine, CO quench the spin; NO reduces the spin

X-ray absorption spectroscopy

X-ray absorption spectroscopy

XANES = X-ray Absorption Near Edge Structure NEXAFS = Near Edge X-ray Absorption Fine Structure XAS = X-ray Absorption Spectroscopy

Linear combination of atomic orbitals

σ^* and π^* orbitals

Excitations in x-ray absorption

Electron removed typically from 1s orbital

Dipole selection rule: $\Delta I=1$

Implies that electron only can be put into *atomic* orbital with I=1 (p) only

Both σ^* and π^* orbitals have p atomic orbital character – σ^* along bond axis π^* perpendicular to bond axis

→ makes possible determination of molecular geometry at surface

Geometry determination for iron phthalocyanine on a Au(111) surface

Take-home messages

Synchrotron radiation:

- Extremely powerful tool for investigation of matter (atoms, molecules, solids)
- Extremely high "brilliance" (photon flux into solid angle)
- Lunds hosts a world-leading synchrotron radiation facility MAX IV

X-ray photoelectron spectroscopy:

- Photon in electron out
- Probes occupied states
- Elemental analysis
- Chemical analysis (down to spin)
- when applied to solids: very surface sensitive

X-ray absorption spectroscopy:

- Probes unoccupied states
- Chemical analysis
- Geometry determination

